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Abstract

Ancestral graphical models form a superclass of directed acyclic graphical
models, and unlike the latter, are closed under marginalization and condition-
ing. For this reason, ancestral graphs are particularly suitable to represent
the conditional independence structures due to hidden common causes and/or
hidden selection variables. Different ancestral graphs, however, can be Markov
equivalent in the sense that they entail the same independence structure. In
this paper, we give a set of orientation rules that can detect, given an arbi-
trary (maximal) ancestral graph, which features of the graph are specific to
the graph, and which features of the graph are shared by all graphs Markov
equivalent to it. By so doing, we solve the completeness problem for the FCI al-
gorithm, an algorithm for causal discovery in the presence of latent confounders
and selection bias. We regard this set of rules as a characterization of Markov

equivalence classes for ancestral graphical models.



1 Introduction

Two virtues of graphical models have made them increasingly popular among
researchers in statistics and artificial intelligence. On the one hand, graphi-
cal models use graphs to encode a set of conditional independence relations
— an independence model — among random variables, which can usually facili-
tate multivariate statistical analysis by, for example, simplifying the likelihood
function. On the other hand, the graphs employed in graphical modeling often
bear interpretations related to data generating processes, which are meaning-
ful for the purpose of selecting causal models. A good case in point is directed
acyclic graph (DAG). The independence models associated with DAGs allows a
neat and convenient factorization of the joint likelihood into several conditional
likelihood functions. Meanwhile, the causal interpretation of DAGs elaborated
in Pearl (2000) and Spirtes et al. (1993) enables principled search of causal
models and inference of such novel quantities as intervention effects.

In this paper we consider the class of ancestral graphical models introduced
by Richardson and Spirtes (2002), which properly includes the class of DAG
models. The motivation behind ancestral graphs is likewise two-fold. On the
statistical side, the class of DAG models is not closed under marginalization
and conditioning, whereas the class of ancestral graph models is'. Hence, if an
independence model T over variables V = O UL U S is represented by a DAG,
then the independence model over O obtained by marginalizing 7 over L and
conditioning on S can always be represented by an ancestral graph over O,
even though it may not be representable by a DAG over O. On the causal side,
ancestral graphs can be used to meaningfully represent the causal relationships
among a set of variables, even when the underlying data generating mechanism

involves unobserved confounders and selection bias (Richardson and Spirtes

In fact, the class of ancestral graphs is the smallest superclass of DAGs closed under marginal-

ization and conditioning; see Richardson and Spirtes (2002).



2003). Thus, instead of searching among the infinite space of causal models
represented by DAGs with latent variables and selection variables, one can
search among the finite space of ancestral graphs for a suitable causal model.

Two different DAGs (over the same set of vertices) can be Markov equiva-
lent in the sense that they entail the same independence model, i.e., the same
set of conditional independence relations among the variables (represented by
the vertices). This feature certainly holds for any superclass of DAG models,
and in particular, for ancestral graphical models. Markov equivalent ancestral
graphs cannot be distinguished by data, because they represent the same set of
joint probability distributions (i.e., the set of distributions that satisfy the com-
mon independence model). So it is desirable to have a compact representation
that characterizes the common features shared by all members of a Markov
equivalence class of ancestral graphs. For one thing, it is important for the
purpose of causal inference to distinguish graphical features that are shared
by all members of a Markov equivalence class from ones that are not invariant
across the class (see, e.g. Spirtes et al. 1993). For another, in model selection
it is often recommendable to traverse the space of Markov equivalence classes
(as contrasted to the space of graphs). This calls for a good representation of
the Markov equivalence classes.

Two representation schemes have been proposed in the literature for Markov
equivalence classes of ancestral graphs. One is Partial Ancestral Graphs (PAGs),
used in Spirtes et al. (1999) to represent the output of their causal search al-
gorithm, known as the FCI algorithm; the other is Joined Graphs (JGs), intro-
duced by Ali (2002) as an analogue of essential graphs presented in Andersson
et al. (1997). However, no full characterization of either representation is yet
available. In this paper, we provide one for PAGs. Specifically, we give a set of
rules that can detect all invariant orientations in a (maximal) ancestral graph.
In other words, we can use these rules to construct a PAG that contains all

and only those invariant features in a given (maximal) ancestral graph. We



then give a characterization of PAGs based on these rules. Analogous works on
Markov equivalence classes of DAGS include Meek (1995) and Andersson et al.
(1997).

Section 2 introduces the background of ancestral graphs and a theorem on
Markov equivalence we will rely on. The main result of this paper is presented
in section 3. We conclude the paper With some discussion of related issues in

section 4.

2 Ancestral Graphs and Markov Equivalence

As mentioned earlier, ancestral graphs are primarily motivated by the need
to represent the presence of latent confounders and selection variables in the
data generating procesé. For this task we need a richer formalism than typical
directed graphs. Besides directed edges (—), an ancestral graph can also con-
tain bi-directed edges («, to represent the presence of latent confounders), and
undirected edges (—, to represent the presence of selection variables). Before

we introduce the definition of ancestral graphs, we need some basic terminol-

ogy.?

A mixed graph is a graph consisting of vertices and edges that may contain
any of the three kinds of edges (directed, bi-directed and undirected) and at
most one edge between any two vertices. The two ends of an edge we call marks
or orientations. Obviously two kinds of marks can appear in a mixed graph:
arrowhead (>) or tail (—). Specifically, the marks of an undirected edge are
both tails; the marks of a bi-directed edge are both arrowheads; and a directed
edge has one arrowhead and one tail. We will be interested in characterizing
marks that are invariant across a Markov equivalence class. Sometimes we say

an edge is into (or out of) a vertex if the mark of the edge at the vertex is an

2The terminology and definitions introduced in this section follow Richardson and Spirtes (2002)

closely.



arrowhead (or tail).

Two vertices are said to be adjacent in a graph if there is an edge (of any
kind) between them. Given a mixed graph G and two adjacent vertices 4, B
therein, A is a parent of B and B is a child of A if A — B isin G; A is called
a spouse of B (and B a spouse of A) if A « B isin G; A is called a neighbor
of B (and B a neighbor of A) if A—B isin §. A path in § is a sequence
of distinct vertices (Vy,..., V) such that for 0 < i < n -1, V; and V4, are
adjacent in §. A directed path from V; to V,, in G is a sequence of distinct
vertices (Vp, ..., V) such that for 0 < 1 < n—1, V; is a parent of V;17 in G.
A is called an ancestor of B and B a descendant of A if A = B or there is
a directed path from A to B. We use Pa, Ch, Sp,Ne, An,De to denote the
set of parents, children, spouses, neighbors, ancestors, and descendants of a
vertex, respectively. A directed cycle occurs in G when B — A is in G and
A € Ang(B). An almost directed cycle occurs when B « A is in G and
A € Ang(B).

Definition 1. A mized graph is ancestral if the following three conditions

hold:
(al) there is no directed cycle;
(a2) there is no almost directed cycle;

(a8) if there is an undirected edge between Vi and Vs, i.e., Vi —V,, then Vi

and Vo have no parents or spouses.

Obviously DAGs and undirected graphs (UGs) meet the definition, and
hence are special cases of ancestral graphs. The first condition in Defini-
tion 1 is just the familiar one for DAGs. Together with the second condition,
they define a nice connotation of arrowheads — that is, an arrowhead implies
non-ancestorship — which induces a natural causal interpretation of ancestral

graphs. The third condition requires that there is no edge into any vertex in



the undirected component of an ancestral graph. This property simplifies pa-
rameterization and fitting of ancestral graphs (Richardson and Spirtes 2002,
Drton and Richardson 2003).

Ancestral graphs encode conditional independence relations by a graphical
criterion that generalizes the well-known d-separation for DAGs. Given a path
u in a graph, a non-endpoint vertex V on u is called a collider if the two edges

incident to V on u are both into V, otherwise V is called a non-collider.

Definition 2 (m-separation). In an ancestral graph, a path u between vertices
A and B is active (m-connecting) relative to a set of vertices Z (A,B ¢ Z)
if

i. every non-collider on u is not a member of Z;

1. every collider on u is an ancestor of some member of Z.

A and B are said to be m-separated by Z if there is no active path between
A and B relative to Z.

Let X,Y,Z be three disjoint sets of vertices. X and Y are said to be m-
separated by Z if Z m-separates every member of X from every member of

Y.

The following property is true of DAGs and UGs: if two vertices are not
adjacent, then there is a set of some other vertices that m-separates the two.
This, however, is not true of ancestral graphs in general. For example, the
graph (a) in Figure 1 is an ancestral graph that fails this condition: C' and D
are not adjacent, but no subset of {4, B} m-separates them. This motivates

the following definition:

Definition 3 (maximality). An ancestral graph is said to be maximal if for

any two non-adjacent vertices, there is a set of vertices that m-separates them.

As we already noted, DAGs and UGs are all maximal. In fact, maximality

corresponds to the property known as pairwise Markov property, i.e., every



(a) (b)

Figure 1: (a) an ancestral graph that is not maximal; (b) a maximal ancestral graph

missing edge corresponds to a conditional independence relation. It is shown
in Richardson and Spirtes (2002) that every non-maximal ancestral graph has
a unique supergraph that is ancestral and maximal, and furthermore, every
non-maximal ancestral graph can be transformed into the maximal supergraph
by a series of additions of bi-directed edges. For example, in Figure 1, (b).
is the unique maximal supergraph of (a), which has an extra bi-directed edge
between C' and D. This justifies considering only those ancestral graphs that
are maximal. From now on, we focus on maximal ancestral graphs (MAGs).
Maximality is closely related to the notion of inducing path, as defined

below:

Definition 4 (inducing path). In an ancestral graph, a path u between A and
B is called an inducing path if every non-endpoint vertez on u is a collider

and is an ancestor of either A or B.

By this definition, if A and B are adjacent, then the edge between them is
trivially an inducing path. In fact, the presence of an inducing path is necessary
and sufficient for two vertices not to be m-separated by any set. We write it
as a proposition here for later reference, the proof of which can be found in

Richardson and Spirtes (2002).

Proposition 1. An ancestral graph is mazimal if and only if there is no in-
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ducing path between any two non-adjacent vertices.

A MAG represents the set of joint distributions (over its vertices) that satisfy
its global Markov property, i.e., the set of distributions of which the conditional
independence relations as implied by the m-separation relations in the MAG
hold. Hence, if two MAGs share the same m-separation structures, then they
represent the same set of distributions. In this case, we call them Markov

equivalent.

Definition 5 (Markov equivalence). Two MAGs G1,G, (with the same set
of vertices) are Markov equivalent if for any three disjoint sets of vertices
X,Y,Z, X and Y are m-separated by Z in G if and only if X and Y are
m-separated by Z in Gs.

There are sufficient and necessary conditions for Markov equivalence of
MAGSs that can be checked in polynomial time (Spirtes and Richardson 1996,
Ali et al. 2004). Before we present a version of the conditions, the following

definitions are needed.

Definition 6 (unshielded collider). In a MAG, a triple of vertices (A, B,C)
forms an unshielded collider if A and C are not adjacent, and there is an

edge between A and B and one between B and C' such that both edges are into
B.

It is well known that two DAGs are Markov equivalent if and only if they
have the same adjacencies and the same unshielded colliders (Verma and Pearl
1990). These conditions are still necessary for Markov equivalence between
MAGs, but are not sufficient. For two MAGs to be Markov equivalent, some
shielded colliders have to be present in both or neither of the graphs. The next

definition is related to this.

Definition 7 (discriminating path). In a MAG, a path between D and C,
u={(D,---, A, B,C), is a discriminating path for B if

8



1. u includes at least three edges;
ii. B is a non-endpoint vertex on u, and is adjacent to C on u; and

iti. D is not adjacent to C, and every vertex between D and B is a collider

on u and is a parent of C.

Note that we write a discriminating path in such a form v = (D,---, A, B, C’),
that is, we specify the endpoints and the vertices adjacent to B, the vertex be-
ing discriminated. The ellipsis therein designates any number (possibly zero)
of other vertices. More generally, we adopt it as a convention for depicting a
path: the vertices specified in the sequence are understood as distinct ones,
and the ellipsis could be any number (possibly zero) of vertices.

Discriminating paths behave similarly to unshielded triples in the following
way: if a path between D can C is discriminating for B, then B is a collider
on the path if and only if every set that m-separates D and C excludes B; and
B is a non-collider on the path if and only if every set that m-separates D and
C contains B. Thus we have the following proposition, proved in Spirtes and

Richardson (1996):

Proposition 2. Two MAGs over the same set of vertices are Markov equivalent
if and only if

(el) They have the same adjacencies;

(e2) They have the same unshielded colliders;

(e3) If a path'u is a discriminating path for a vertex B in both graphs, then B
is a collider on the path in one graph if and only if it is a collider on the

path in the other.

Given an arbitrary MAG G, we denote its Markov equivalence class, the set
of MAGs Markov equivalent to G, by [G]. A mark in G is said to be invariant
if the mark is the same in all members of [G]. According to Proposition 2, all

members of [G] have the same adjacencies. But between two adjacent vertices,
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the edge, and hence one or both of the marks on the edge, may be variant
across [G]. In what follows, we aim to fully characterize the invariant marks in

G, or in other words, the common marks shared by every member of [7].

3 A Characterization of Markov Equivalence

Classes

In this section we present the main results of the paper. In 3.1, we introduce
the representation we are going to work with, called complete partial ancestral
graph (CPAG), which is complete with respect to the common marks shared by
all members of a Markov equivalence class. In 3.2 we present a set of orientation
rules that can, given an arbitrary MAG ¢, yield the CPAG of [G]. Then we
give a syntactical characterization of CPAGs in 3.3 based on the orientation

rules.

3.1 Complete Partial Ancestral Graphs (CPAGs)

Richardson (1996) introduced partial ancestral graphs (PAGs) to represent the
output of his causal inference algorithm in linear feedback systems. Then PAGs
are used by Spirtes et al. (1999) to represent the output of the FCI algorithm, an
algorithm for causal inference in the presence of latent variables and selection
bias. A PAG is a graph that can contain three kinds of marks: tail (=),
arrowhead (>) and circle (o). (So, by simple combinatorics, there could be
six sorts of edges: —, —, <>, o—, o—o, 0—.) The circle is intended to be
interpreted as an uninformative or ambiguous mark, which indicates that the-
corresponding mark is not invariant across the equivalence class. This intuition

is captured in the definition below:

Definition 8 (CPAG). Let [G] be the Markov equivalence class for an arbitrary
MAG G. The complete partial ancestral graph (CPAG) for [G], Pg, is

10



a graph with (possibly) the three kinds of marks (and hence siz kinds of edges:

—; T &, 00—, 0—9, 0_>), such that
i. Pg has the same adjacencies as G (and hence any member of [G]) does;
it. A mark of arrowhead is in Pg if and only if it is invariant in [G]; and

i, A mark of tail is in Pg if and only if it is invariant in [G].

The difference between a CPAG and a PAG as previously employed in the
literature® is of course that the latter is not alleged to contain all invariant
arrowheads or tails. The difference between a CPAG and a joined graph intro-
duced by Ali (2002) is that the latter only aims to represent all invariant arrow-
heads and hence do not distinguish invariant tails from variant marks. Clearly
the most complete representation of a Markov equivalence class of MAGs is the
CPAG.

Now we proceed to describe solutions to the following two problems:

e How to construct the CPAG for a Markov equivalence class given a single

representative of that class; (section 3.2)

e How to characterize CPAGs without explicit reference to Markov equiva-

lence classes. (section 3.3)

3.2 Construction of the CPAG

Suppose we are given a MAG G. How can we construct the CPAG that repre-
sents [G]? It is certainly infeasible to spell out all the members in [G] and build
the CPAG according to Definition 8. For one thing, the size of [G] could be big;
for another, it is not clear how one can list all the MAGs Markov equivalent

to § without first figuring out the invariant edges or marks. The approach we

31t is worth noting that a graphical object named partially oriented inducing path graph (POIPG)
is studied in Spirtes et al. (1993), which, however, can be shown to be just a PAG that is not complete

in the sense of Definition 8.
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take follows the spirit of Meek (1995), and more closely, the FCI algorithm in
Spirtes et al. (1999). In particular, we start with a graph that has the same
adjacencies as G does and every mark therein is a circle (i.e., every edge therein
is of the form o—o)%. Then we apply a set of orientation rules that change some

circles into informative marks: arrowheads or tails.

3.2.1 The Orientation Rules and Soundness

We need a few definitions of special paths to state some of the rules. Let us call
any graph that may contain the three kinds of marks a partial mixed graph

(PMG).

Definition 9 (uncovered path). In a PMG, a path u = (Vo, -+, V) is said to
be uncovered if for every 1 < i <n -1, V;_1 and Viq1 are not adjacent, i.e.,

every consecutive triple on the path is unshielded.

Definition 10 (potentially directed path). In a PMG, a path u = (Vo,- -+, Vp)
is said to be potentially directed (abbreviated as p.d.) from Vo to Vy, if for
every 0 < i < n — 1, the edge between V; and Viy1 is not into V;, nor is it out

of Viy1.

Intuitively, a p.d. path is one that could be oriented into a directed path by
changing the circles on the path into appropriate tails or arrowheads. As we
shall see, uncovered p.d. paths play an important role in orienting circles into
tails. A special case of a p.d. path is where every edge is of the form o—o. We
will call such a path, a path that consists solely of o—o edges, a circle path.

To state the orientation rules more efficiently, we need a meta-symbol * that
serves as a wildcard for marks. More specifically, if * appears in an antecedent
of a rule, that means it does not matter whether the mark at that place is an

arrowhead, or a tail, or a circle. If * appears in the consequence of a rule, that

4The adjacencies can be constructed even if we are not given a MAG, but instead given a set of

independence facts (that can be revealed by data). See Spirtes et al. (1993), Spirtes et al. (1999).
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means the mark at that place remains what it was (before the firing of the
rule).

We break down the orientation process into four steps. Let P, be the
starting graph we just mentioned — the graph with the same adjacencies as G
does and only o—o edges. The first step is to introduce all unshielded colliders
in G, ie., to apply the following rule to Py. (Greek letters are used in the

orientation rules to denote generic vertices.)

RO For every triple a*-k 8o s.t. &, v are not adjacent, if it is an unshielded

collider in G, then orient the triple as ax— 8 «*7.

The soundness of R0 readily follows from (e2) in Proposition 2, namely, Markov
equivalent MAGs have the same unshielded colliders. Let P; denote the result-

ing graph. The following lemma is thus evident.

Lemma 1. RO is sound, i.e., every non-circle mark in P; is invariant across

]

Proof. It follows from the fact that every graph in [G] contains the unshielded
colliders in G. O

The next step is to introduce more invariant arrowheads (as well as some
invariant tails) by applying the following rules repeatedly until none can be

fired.

R1 If ox— Bo—%, and o and ~y are not adjacent, then orient the triple as

ox— 3 — 7.
R2 If « — Bx— v or ax— 8 — +, and o *—0 7y, then orient a oy as ax— 7.

R3 If ax— B +x7, a*—0 § o—*y, a and -y are not adjacent, and 8 »—o 3, then

orient 6 x—o 3 as Ox— (.

5Tf we are not given a MAG directly, the antecedent of this rule can be formulated in terms of
m-separation features, which, under suitable assumptions, are identifiable from data. See Spirtes et

al. (1999) for details.
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R4 Ifu={(6,..,q,pB,7) is a discriminating path between § and v for 8, and
B o—x v; then if 3 — v appears in G5, orient 8 o—* v as 8 — ; otherwise
orient the triple (o, 8,7v) as @ & < 4.

The pictorial illustrations of these rules are given in Figure 2. These rules,
together with R0, will be referred to as arrowhead orientation rules, because
the rest of the rules will not introduce more arrowheads. Let Py be the graph
resulting from repetitive (and exhaustive) applications of R1 — R4 to P;. We
will show later that the arrowhead orientation rules are sufficient to identify
all invariant arrowheads in G. That is, all arrowheads that are common to
members of [G] will be explicitly marked in P,. This means that these rules
can be used to characterize, for example, the joined graph as defined in Ali
(2002). In particular, if we change the remaining circles in P into tails, we get

the joined graph for [G].

o o 01*\0 (}\
I o I B sy
O p—% e 2 &
B YRl I\o I \
B ¥ p—=Y
R2

Figure 2: Graphical illustrations of R1 — R4

6 Again, this rule shall be formulated in terms of m-separation features if G is not given directly.

14



For now we show that R1 — R4 are sound.

Lemma 2. R1 — R4 are sound (and hence every non-circle mark in Py is

invarient across [G]).

Proof. It suffices to show that for each rule, if a mixed graph satisfies the
antecedent of the rule but contains a mark different than what the rule requires,
the graph is either not a MAG or not Markov equivalent to G, and hence not
a member of [G]. In every case that follows, we assume the antecedent of the
rule holds in the graph under consideration.

R1: Suppose a mixed graph, contrary to what the rule requires, has an
arrowhead at 8. Then it contains an unshielded collider {«, 3,v) which is not
in G, and so is not Markov equivalent to G. Furthermore, if the mark at v is a
tail, then ax— [§ —~ appears, which means the graph is not ancestral.

R2: Suppose a mixed graph, contrary to what the rule requires, has a tail
at . If it is o —, the graph is not ancestral because the edge between § and
«v is into «y. If it is & « =, then either v is an ancestor of 8 and Bx— v, or B is
an ancestor of o and ax— B. In either case the graph is not ancestral.

R3: Suppose a mixed graph, contrary to what the rule requires, has a tail
at 8. If it is § —3, the graph is not ancestral because the edge between o
and B is into 8. Suppose it is # < 3 that appears in the graph. Notice that if
the triple {a, 8,~) is an unshielded collider in the graph, then the graph is not
Markov equivalent to G. On the other hand, if it is not a collider, then at least
one of the two edges is out of 6. Note that neither the edge between o and 6,
nor the edge between v and 8 can be undirected, for otherwise the graph is not
ancestral due to the presence'of # «— B. So either § — «, or 8 — «; that is, (3
is either an ancestor of & or an ancestor of . In either case, the graph is not
ancestral because ax— ( «—xv is present.

R4: There are two cases to consider.

Case 1: 8 — « appears in §. So the triple (o, §,7) is not a collider. By
(€3) in Proposition 2, in any MAG equivalent to G, (o, 3,7) is not a collider.

15



Suppose a mixed graph contains the triple as a non-collider, but contrary to
what the rule requires, has an arrowhead at 3 on the edge between § and +.
Then the edge between § and « is out of 8. If it is B —a, then the graph is not
ancestral because by our supposition there is an arrowhead at §; ifit is 8 — «
that appears in the graph, remember that by the definition of discriminating
path (Definition 7), « is a parent of v. So § is an ancestor of vy, which, together
with our supposition, makes the graph not ancestral. Furthermore, if the edge
between 3 and + is 8 —-, then the graph is not ancestral because « is a parent
of . Therefore, any MAG equivalent to G has to contain § — v, as the rule
requires.

Case 2: B — v does not appear in G. By the definition of discriminating
path, o is a parent of «, that is, & — ~ appears in G. This implies that the
edge between 3 and v is not undirected, and hence it is into 5. It follows that
(o, B,7) is a collider in G, for otherwise the edge between o and § is either
o «— B or a —f3, either of which would violate the definition of ancestral
graphs. So, by Proposition 2, in any MAG equivalent to G, the triple (o, 3,7)
is a collider. Also, by the definition of discriminating path, c is a collider on the
path, which means a « § «x*v is in any MAG equivalent to G. Furthermore,
because o — 7 is present, o < [ « v will make the graph not ancestral.

Therefore, o« 8 < «y is in any MAG equivalent to G. O

What comes next is a set of rules that can introduce more tails into Ps.
These rules can be further classified into two categories. We first list those that
are primarily related to (invariant) undirected edges, the pictorial illustrations

of which are given in Figure 3.

R5 For every (remaining) o o—op, if there is a path v = (o, 7, -+, 0, B) that
is an uncovered circle path between o and 8 s.t. a, 8 are not adjacent
and 3,7 are not adjacent, then orient o o—of and every edge on u as

undirected (—).
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R6 If o — 3 o—% ~y, then orient § o—x vy as § —# 7.

R7 If @ —o f oy, and a, v are not adjacent, then orient g o—x«y as 8 —*-~.

s
oo———0 a B
o
R5
0,
-~ e
§ O ¥ B i BO Y B —Y

R6

Figure 3: Graphical illustrations of R5 — R7"

We add a quantifier in R5 to indicate that it will be executed once and for
all (before R6 and R7), as is the case with RO. It should be clear from the
ensuing proof of soundness that R5 — R7 are primarily motivated by the third
condition in the definition of ancestral graphs ((a3) in Definition 1), namely,

the restriction on the endpoints of undirected edges.
Lemma 3. R5 — R7 are sound.

Proof. Again, we show that any mixed graph that violates the rule does not
belong to [G].

R5: Note that the antecedent of this rule implies that (a7, --,0,8,a)
forms an uncovered cycle that consists of c—o edges. Suppose a mixed graph,

contrary to what the rule requires, has an arrowhead on this cycle. By our
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argument for the soundness of R1, it should be clear that the cycle must be
oriented as a directed cycle to avoid unshielded colliders that are not in G. But
then the graph is not ancestral.

R6: It is clear that if any graph, contrary to what the rule requires, contains
a —f3 7y, the graph is not ancestral.

R7: Suppose a mixed graph, contrary to what the rule requires, has an
arrowhead at § on the edge between 8 and 4. Then either @ —f «x*v is
present, in which case the graph is not ancestral; or @ — 8 «x*+y is present, in

which case the graph contains an unshielded collider that is not in G. ]

Let P3 be the graph resulting from repetitive (and exhaustive) applications
of R5—R7 to P;. By the above lemma, every non-circle mark in Pjs is invariant
across [¢]. Furthermore, as our proof of completeness will show, in P; every
circle on either o—o or o— corresponds to a variant mark in G. That is, only
circles on o— possibly hide invariant marks. So the last bunch of our rules

aims exclusively at orienting o— into —.
R8 faa— B — vora—of — v, and ao— ~, orient awo— 7y as o — .

RY If0 - B — v, ao— v, and u = {a,---,0) is an uncovered p.d. path from
o to 8 such that the vertex adjacent to o on u is not adjacent to <y, then

orient ao— 7y as a — 7.

R10 If @o— v, and u = (&, 3,6, --,7) is an uncovered p.d. path from o to v

such that v and [ are not adjacent, then orient co— vy as o — 7.

R11 Suppose ao— v, B8 — v « 0, u; is an uncovered p.d. path from « to
B, and ug is an uncovered p.d. path from « to . Let p be the vertex
adjacent to o on uy (u could be B), and w be the vertex adjacent to o
on uy (w could be §). If 4 and w are not adjacent, then orient co— « as

a— 7.

Figure 4 contains pictorial illustrations of these rules. Again, the soundness

of these rules is not hard to verify.
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Figure 4: Graphical illustrations of R8 — R11

Lemma 4. R8 — R11 are sound.

Proof. We show that, for each of the four rules, if a mixed graph has an arrow-
head in the place where the rule requires a tail, the graph is not a member of
9.

R8: This rule is analogous to R2. Obviously if a mixed graph, contrary to
what the rule requires, contains o < <y, then either an almost directed cycle is
present or there is an arrowhead into an undirected edge, and hence the graph
is not ancestral.

R9: If a mixed graph, contrary to what the rule requires, contains o < 7,
the uncovered path u must be a directed path (from « to 8) in the graph, to
avoid unshielded colliders which are not present in G. But then « is an ancestor
of v, which, together with & < v, makes the graph not ancestral.

R10: The same argument for the soundness of R5 applies here. If a mixed

graph, contrary to what the rule requires, contains o < -, then the uncovered
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path u must be a directed path (from « to <) in a graph, to avoid unshielded
colliders which are not present in G. But then the graph is not ancestral.
R11: This rule is analogous to R3. The antecedent of the rule implies that
the triple (4, @, w) is not a collider in G, which means at least one of the two
edges involved in the triple is out of o in any MAG equivalent to G. Now,
suppose a mixed graph, contrary to what the rule requires, contains a < .
Then the edge(s) out of & must be a directed edge for the graph to be ancestral.
It follows that either u; or us is a directed path in the graph to avoid unshielded
colliders which are not in G. In either case, o is an ancestor of <y, and hence

the graph is not ancestral. O

So, every non-circle mark in Py, the resulting graph from repetitive appli-
cations of R8 — R11 to Ps, is also invariant across [G]. We write it down as a

theorem here.
Theorem 1 (Soundness). Every non-circle mark in Py is invariant.

The main aim of this paper, however, is to show that Py = Pg, ie., P4 is
the CPAG for the Markov equivalence class of G. For this purpose we need to
demonstrate that each remaining circle in P4 represents a variant mark, that
is, there is a member of [J] in which the circle is marked as an arrowhead and
there is a member of [G] in which the circle is marked as a tail. Before we

‘ turn to the rather involved demonstration of this fact, we make some further
‘remarks about the orientation rules, which are summarized in Figures 5 and 6
for easy reference. _

We broke down our presentation of R0 —-R11 into several steps to highlight
the mod.ularity in the process. Application of RO gives us P, which, in the case
of DAGs, would be an {incomplete) pattern or a PDAG, in the terminology
of Chickering (2002). Then R1 — R4 éonstitutes the first block of rules to

be applied to P;. The resulting graph P2, reveals all invariant arrowheads

20



Arrowhead Orientation Rules:

RO For every triple o *— 8 o—« v s.t. «, 7y are not adjacent, if it is an unshieldec
collider in G, then orient the triple as ax— 3 .

R1 If ax— [ o—x, and o and - are not adjacent, then orient the triple a:
ax— 3 — .

R2 If a — B*— v or ax— [ — v, and o *—o vy, then orient o *—o v as ax— 7.

R3 If ax— B «—*vy, o x—o f§ o— vy, a and v are not adjacent, and ¢ x—o 3, ther
orient § *—o 3 as 0x— (.

RA Ifu=(0,...,a,B,7) is a discriminating path between 6 and «y for 5, and Bo-~y
then if 3 — v appears in G, orient o+ as § — y; otherwise orient the triple

Figure 5: Summary of the arrowhead orientation rules

and some special invariant tails’. The rest two blocks of rules, R5 — R7 and
R8 — R11, are independent of each other in the sense that any firing of a rule
in one block will not trigger any extra firing of a rule in the other. (And for
that matter, of course, R1 — R4 is also independent of these two blocks). We
listed R5 — R7 first, because, as will become clear later, they are the necessary
steps in transforming a PAG into a MAG in which all bi-directed edges and
undirected edges are invariant. That is, suppose we construct Pp out of data
rather than a given MAG, and would like to turn it into a representative MAG
with a minimum number of bi-directed and undirected edges (perhaps for the
purpose of fitting and scoring, as in Spirtes et al. (1997)), then we need to
apply R5 — R7 but do not need to apply R8 — R11. On the other hand,

since R5 — R7 are relevant only when undirected edges may be present, they

"The reason why the tails contained in P, are special is related to the identification of intervention

effects, the discussion of which shall be left to another paper.
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Tail Orientation Rules:

R5 For every a o—of, if there is a path u = («,, -+, 0, 8) that is an uncovered
circle path between o and G s.t. «, 8 are not adjacent and 3, v are not adjacent,
then orient o o—of and every edge on u as undirected (—).

R6 If & — B o—* +, then orient §o—xy as f —* 7.

R7 If o —o B o—x, and «, v are not adjacent, then orient 8 o—x vy as § —x* .

R8 Ifaa— B — yora—o [ — 7, and ao— 7, orient ao— v as o — 7.

RIIfO— B — v, ao— v, and u = {(a,- - -, 8) is an uncovered p.d. path from «
to 8 such that the vertex adjacent to & on u is not adjacent to v, then orient
Qo— 7y as o — 7.

R10 If ao— v, and u = (&, 3,0,---,7) is an uncovered p.d. path from o to y such
that v and @ are not adjacent, then orient ao— v as o — 7.

R11 Suppose co— v, B — v « 6, uy is an uncovered p.d. path from o to B, and
ug is an uncovered p.d. path from « to 6. Let u be the vertex adjacent to o
on u; (i could be B), and w be the vertex adjacent to o on ug (w could be 6).
If 4 and w are not adjacent, then orient co— v as a — .

Figure 6: Summary of the tail orientation rules

will not be invoked in such tasks as causal discovery in the presence of latent
confounders but no selection bias.

It is also worth noting the resemblance between R10 and R5. (In fact,
the latter essentially amounts to a double application of the former plus R7.)
So R10, just as R5, need only be checked once for each relevant edge. The
implementation details shall not concern us in this paper, so we simply note
that the antecedent of each rule that involves (uncovered) paths, in the worst
case, can be checked in O(mn), with m being the number of edges and n being

the number of vertices in the graph. More efficient implementation is possible
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given a further elaboration of the property of uncovered p.d. paths.

3.2.2 Completeness w.r.t Arrowheads

In what follows, we prove the completeness of R0—R11, or simply put, Py = Pg,
where Py is the output from the process described in section 3.2.1, and Pg is the
CPAG for [G]. We first show that P4 is complete with respect to arrowhead®,
namely all invariant arrowheads have been included in P4. In other words, for
every circle in Py, there is a MAG in [G] in which the circle is oriented as a tail.
To demonstrate this fact, we need to establish some properties of P4. Certain
properties are already evident given Theorem 1. For example, the defining
properties of ancestral graphs, i.e., (al)-(a3) in Definition 1 all hold of P4, and
there is no inducing path between two non-adjacent vertices. Other properties
are not so obvious. The following lemma establishes a property of P4 which is
analogous to the one proved by Meek (1995) in the context of DAGs. We will
call this property CP1, as this property together with some others will be used
to characterize CPAGs later.

Lemma 5. In Py, the following property holds:

CP1 for any three vertices A, B,C, if Ax— Bo—x C, then there is an edge
between A and C with an arrowhead at C, namely, Ax— C. Furthermore,
if the edge between A and B is A — B, then the edge between A and C is
either A — C or Ao— C (i.e., it isnot A C).

Proof. We prove that CP1 holds of Py, the graph resulting from exhaustive
applications of the arrowhead orientation rules R0 — R4. The fact that it also
holds of P4 obviously follows, because no extra arrowheads are introduced in

Py.

8This part is joint work with Ali and Richardson, which is also reported, in a slightly different
framework, in Ali et al. 2005.
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Let M = {Y|3X, Z such that X+«— Y o— Z but not X*— Z is in Pp}. We
need to show that M is empty. Suppose for the sake of contradiction that M is
not empty. Let Yy be a vertex in M S{J.Ch that no proper ancestor® of Yy in P is
in M. (This specification is legitimate because there is no directed cycle in P».)
Let Fy, = {X|3Z such that X*— Yj o— Z but not X*— Z is in Pp}. Since
Yy € M, Fy, is not empty. Choose X in Fy, such that no proper descendant
of Xo in P; is in Fy,. Finally, choose any Z, such that Xo+— Yy o—x Zp but
not Xox— Zp is in P,. We will manage to derive a contradiction out of this.

Note that Xy and Zp must be adjacent, otherwise the circle at ¥ on Yyo+ Z
would have been oriented by R0 or R1. Furthermore, the edge between X, and
Zy is not out of Zp, i.e., the mark at Zy on the edge is not a tail. The reason is
this: it is evident that no — or o— could result from applications of R0 — R4,
and hence none is present in P;. So if the edge between Xy and Zp is out of
Z, then it must be X « Zp. But then ¥ o—+ Zg would have been oriented as
Yy «—*Zy by R2. This is a contradiction. Hence the edge between X, and Zo
is not out of Zy. Since by our supposition, the edge is not into Zy either, the
mark at Zy on the edge between Xg and Zo has to be a circle, namely Xg*—o0 Zy.

Below we enumerate the ways in which the arrowhead at Yp on Xox— Yp
could have been oriented, and derive a contradiction in each case.

Case 1: Xox— Yp is oriented by R0. That means there is a vertex W such
that W is not adjacent to Xg, and Xox— Yy «=*W appears in P,. This implies
that Zy and W are adjacent, for otherwise the circle at Yy on Yy o— Zy would
have been oriented by either RO or R1. Furthermore, because Xo x—o Zy, it is
not the case that Zy «—*W, otherwise the circle at Zy would have been oriented
by RO or R1. It follows that either Zg oW or Zy W (again, because no —
or —o is present). In the former case, Xg#o Zgo+W and Xox— Yy W, and
hence Yy o— Zy should have been oriented as Yy «—*Zg by R3; in the latter case,

Zo — Wx— Yy, and hence Y; o—+ Zj should have been oriented as Yy «—*Zy by

9A proper ancestor of a vertex is an ancestor distinct from the vertex itself.
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R2. So in either case it is a contradiction.

Case 2: Xox— Yj is oriented by R1, which means that there is a vertex
W not adjacent to Yy such that Wx— Xy — Yj is in Ps. It is not the case
that Xo «o0Zy, otherwise Yy o—« Zy would be oriented by R2 to be Yy «xZ;.
So X o—0 Zy is in Ps. It follows that W and Z; are adjacent, otherwise the
circle at Xy on Xy o—o Zy would be oriented by R0 or R1. Now the unshielded
triple Yy o—* Zy *—« W cannot be a collider, for otherwise Xy — Ygo— Zp, and
Xo 0o—o Zy would be oriented as Xpo— Zg by R2. Since it is a non-collider, it
cannot be that Wx— Z, otherwise Yy o—* Zy would be oriented as Yy «+ Zp.
Now we have Wx— Xy o—0 Zy but not Wx— Zy in Py. So Xpisin M and is a
parent of Yy, which contradicts our choice of Yj.

Case 8. Xox— Y} is oriented by R2. There are two sub-cases to consider.

Case 8.1: There is a vertex W such that Xo — Wx— Y, appears in Pa.
Then W and Z must be adjacent, for otherwise the circle at Yy on Yp o— Zg
would be oriented by either RO or R1. Furthermore, it is not the case that
Wx— Zy, otherwise by R2, Xox— Zg, a contradiction. Now we have Wx—
Yy o—* Zo but not Wx— Zo. So W is in Fy, and is a child of Xo, which
contradicts our choice of Xj.

Case 3.2: There is a vertex W such that Xox— W — Y, appears in Po.
Again, W and Z, must be adjacent, for the same reason as in 3.1. Furthermore,
it must be the case that W o—x Zy. If not, either W — Zy or W «—x*Zy.
In the former case, R2 would dictate that Xo*x— Zj, which contradicts our
assumption; In the latter case, R2 would dictate that Yy «*Zg, which also
contradicts our assumption. Now we have Xox— W o—k Zy but not Xo+— Zp.
So W is in M and is a parent of Yy, which contradicts our choice of Y;.

Case 4: Xo*— Yy is oriented by R3. That means there are two non-adjacent
vertices U and V such that U #— X #— V is a non-collider (which, at the time
Xo*— Yy gets oriented, is U x—o X o— V), and Ux— Yy <=V is a collider in

Po . U and V must be adjacent to Zp, otherwise the circle at Y on Yy o— Zp
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would be oriented by either RO or 7?,1 Furthermore, since U *—* Xo*—* V is a
non-collider, either U x—o0 Xg o— V, or U «+ X, or X¢ — U appears in Pa. It
follows that the triple (U, Zy, V) is not a collider, otherwise Xo*—0 Zg should be
oriented as Xo*— Zg by R3 or R2, contrary to our assumption. Also, neither
Zo — U nor Zyg — V is the case, otherwise Yy o—* Zy should be oriented as
Yy «—xZy by R2, contrary to our assumption. Then it must be the case that
U x—o0 Zg o—* V. Again, by R3, Yy o— Zy should be oriented as Yy «—*Zp, a
contradiction.

Case 5. Xox— Yj is oriented by R4. There are three sub-cases to consider.

Case 5.1: There is a discriminating path u = (U, ..., W, Xy, Y5) for X in P
(and X¢ — Y is in G), which orients the edge as Xo — Yp. By the definition of
discriminating path, W «xXo and W — Y. So W is adjacent to Zp, otherwise
the circle at Yy on Yy o— Zg would be oriented by either RO or R1. It is not the
case that W — Zy, for otherwise Xy *—o Zy would be oriented as Xox— Zg by
R2. It is not the case that W «*Zy, for otherwise Yy o— Zp would be oriented
as Yy «=*Zy by R2, contrary to our assumption. So it has to be that W o— Z,.
Now we have Xg*— W o— Zg but not Xo+x— Zp. So W is in M and is a parent
of Yy, which contradicts our choice of Y.

Case 5.2: There is a discriminating path u = (U, ..., Xo, Yo, W) for Y; in P,
(and Xo — Y is not in G), which orients the triple as Xy «» Yo < W. Then W
is adjacent to Zy; if not, the circle at Y on Yy o+ Zy would be oriented by either
R0 or R1. By the definition of discriminating path, Xy is a parent of W, i.e.,
Xo — W. Hence it is not the case that Wx— Zy, otherwise Xog*— Zp by R2,
contrary to what we established at the beginning. So we have W < Yy o— Zg
but not Wx— Zj, which means W is in Fy,. But W is a child of Xy, which
contradicts our choice of Xp.

Case 5.8 There is a discriminating path v = (U, ..., W, Yy, Xo) for ¥} in
P2 (and X9 — Yp is not in G), which orients the triple as W « Y5 < Xo.

The contradiction in this case is the least obvious, and needs several non-trivial
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steps to be revealed.

Note that Zj is not on u because it is not the case that Zg — X as we
showed at the beginning. As a first step, we show that for every vertex Q on u
between U and W (including W), it is not the case that @ «—=*Zy. Otherwise,
for any such @, w(U,Q) & Q «*Zy & Zp o—+ Xp is a discriminating path for
Zy. (We use @ to denote the concatenation operation of paths). So the circle
at Zp on Zy o—« Xy would be oriented by R4, a contradiction.

Next, we establish that every vertex on u between U and W (including U
and W) is adjacent to Z;. Suppose not, let V be the closest vertex to ¥y on
w(U, W) that is not adjacent to Zyg. If V = W, the circle at Y5 on Yy o—* Zg
would be oriented by either R0 or R1. If V 3 W, let T be the first vertex after
V on u(V, W), which is adjacent to Zy (because of our choice of V). Because u
is a discriminating path, the edge between V and T is V*— T'. Since (V, T, Zo)
is an unshielded triple, the edge between T" and Zj is either T — Zp or T' «—*Z.
Hence it is T — Zy, as the latter case has been ruled out in the previous step.
Then we can show that every vertex on u(T, W) (including W) is a parent of
Zy. Otherwise, let R be the closest vertex to T on u(T, W) that is not a parent
of Zy. Then u(V, R) ® R *—x Zy is a discriminating path for R (because every
vertex between T and R is a parent of Z, by our choice of R). Since it is not
the case that R — Zg, the edge between R and Zy must be oriented as R « Zj,
which, however, has been shown impossible. Hence every vertex on u(T, W)
(including W) is a parent of Zy. Then u(V,Yp) @ Yy o—% Zp is a discriminating
path for Yy, which means the circle at ¥ on Y0~ Zy would be oriented by R4,
a contradiction. So every vertex on u(U, W) (including U and W) is adjacent
to Zg.

The contradiction we are about to carry out is on the adjacency between U
and Yy. We first argue that U is not adjacent to Yp. Suppose for contradiction
that they are adjacent. By the definition of discriminating path, U is not
adjacent to Xg, so U #x Yy < Xp is an unshielded triple. It follows that either
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RO or R1 could apply here, and it is either U « Yy « X or Ux— Yy — Xp.
The former case is impossible, because that would make u an inducing path
between U and X, two non-adjacent {fertices, which contradicts the maximality
of G. In the latter case, we claim that U x—o Z; is present. Otherwise, either
Ux— Zy or U « Zy. In the former case the circle at Zy on Zy o—+ X would
be oriented by either RO or R1; in the latter case, let S be the vertex next
to U on u. Then by R2, the edge between S and Zp would be oriented as
S «—x*Zgy, which we have shown to be impossible. So U #—o Zj o— X is present.
Now, by R3, the edge between Yy and Z, would be oriented as Yy «—*Z, a
contradiction. Hence U and Yy are not adjacent.

An immediate corollary of the above argument is that it is not the case that
Ygo— Zy. Otherwise, the edge between U and Zp would be oriented either as
Ux— Zy or as U « Zy (because U and Y) are not adjacent). But neither of
the two cases can be true, as shown in the above argument. It follows that
Yy o—o0 Zy is present.

Now we are ready to complete the argument. We show (by induction) that
every vertex on u between W and U, and in particular U, is adjacent to Yo,
which yields a contradiction. Obviously W is adjacent to Yp. In the inductive
step, we show that if a vertex S; between W and U is adjacent to Yg, then
the next vertex So (the one further from W) is also adjacent to Yp. Suppose
otherwise, that S; is adjacent to Yy but Sy is not. Because Sy *—+ Zy o—0 Y is
an unshielded triple, it is not the case that Syx— Zp. Note that this further
rules out S; — Zp, as the latter implies the former by R2. Sy « Zy is also
impossible, for in that case we have S; «x*Zy by R2, which we have ruled out.
Hence the only possible case is Sz *—0 Z o—0 Y. Now let us focus on the triple
Sox— S1 x—* Y5. It is an unshielded triple, which implies either S «—*Yj or
S1 — Y5. In the former case, we can apply R3 to orient the edge between S
and Zy as S1 +=*Zy, which we have shown to be impossible; in the latter case,

since neither S; — Zp and S «—*Z4 can be true, it must be Sy o—* Zy. Thus
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we have Spx— S1 0—% Zy but not Sox— Zy. Hence S is in M and is a parent
of Yy. This contradicts our choice of Yy. So Sz is also adjacent to Yy, and
by induction U is also adjacent to Yy. Hence a contradiction, which concludes
Case 5.3.

Hence, the initial supposition that M is non-empty leads to contradiction.
Furthermore, for any A — B o— C in Py, it is not the case that A — C, for
otherwise the circle at B on B o— (' could be oriented as an arrowhead by R2.
Since we have shown that Ax— C appears, it is either A — C or Ao— C. So

CP1 holds of P, and hence also holds of P;. O

The following lemma concerning the endpoints of circle paths immediately

follows from CP1.

Lemma 6. In Py, for any two vertices A and B, if there is a circle path, i.e.,

a path consisting of o—o edges, between A and B, then:
(i) if there is an edge between A and B, the edge is not into A or B.

(i) for any other vertex C, Cx— A if and only if Cx— B. Furthermore,
C & Aif and only if C < B.

Proof. We do induction on the length of the circle path. For (i), the base case
is trivial. In the inductive step, suppose the proposition holds when there is
a circle path consisting of n o—o edges between any two vertices. Consider
the case in which the circle path between A and B has n + 1 edges. Let D
be the vertex adjacent to B on the circle path. By the inductive hypothesis,
the edge between A and D, if any, is not into D. This implies that the edge
between A and B, if any, is not into B, otherwise CP1 does not hold of the
triple Ax— B o—oD. By symmetry, the edge between A and B, if any, is not
into A either. Hence (i) is true.

For (ii), notice that it is a direct consequence of CP1 that if Ao—oB, then
for any other vertex C, C+— A iff. Cx— B. Furthermore, if C' ++ A, then the
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edge between C and B can’t be Co— B, for then the triple A < Co— B would
violate CP1. Neither can it be C — B, for then C — B o—o0A would violate
CP1 (because C « A is present). So it has to be C — B. By symmetry,
C < B also implies C «+» A. Thus the base case holds. The inductive step is
similar to that in (i). |

Next, we establish a property concérning —o edges, which we will call CP2.

Lemma 7. In Py, the following property holds:

CP2 For any two vertices A, B, if A —o B, then there is no edge into A or B.

Proof. Note that by CP1, for any A—e B, if C¥— B, then C+— A. So it suffices
to prove that for any A —o B, there is no edge into A. Let E = {X —oY|3Z
s.t. Zx— X}. We need to show that E is empty. Suppose for contradiction
that it is not empty. Let Xo —o Yy € E be the member of E that gets oriented
first in the orientation process, that is, the tail marks on the other edges in E
get oriented after Xy o—oY} is oriented as Xy —o Yp. Choose any Zy such that
Zox— Xo is in Py4. Since Xy o—oYj is oriented as Xo —o Yy either by R6 or
R7, we consider the two cases one by one:

Case 1: Tt is oriented by R6. That means there is a vertex W such that
W —Xp is in Ps. But then Zgx— Xo —W violates (a3) in the definition of
ancestral graphs, which contradicts the soundness of Py.

Case 2: It is oriented by R7. That means there is a vertex W such that
W, Y, are not adjacent, and W —o Xy or W — Xy appears in P4. The latter
case has been ruled out in the above case. In the former case, since Zgx— X
is in Py, by CP1, Zopx— W is in Py, too. But then W —o Xj is in E and gets
oriented before Xy —o Y, does, which contradicts our choice of Xy —o Y.

Hence the supposition that E is not empty is false. CP2 holds of Py. [

Since Py is sound, i.e., every non-circle mark therein is invariant in [G],

any MAG equivalent to G should contain the non-circle marks in P4. In other
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words, every MAG equivalent to G is a further orientation of P4 in the sense
of changing circles into arrowheads or tails. To prove arrowhead completeness,
we need to show that every circle can be oriented into a tail in some MAG
orientation of P4. The following operation takes care of all circles on o— and

o— edges (and some circles on o—o edges).
Definition 11 (Tail Augmentation). Let H be any partial mized graph. Tail
augmentation of H is defined as the following set of operations on H:

e change all o— edges into directed edges —;

e change all o— edges into undirected edges —;

o for any A o—oB,. if there is no arrowhead into A or B, then change the

edge into an undirected edge A —B.
The resulting graph is called the tail augmented graph (TAG) of H,

denoted by Hiag.

It is clear that the tail augmentation changes some circles in a PMG to tails,
but does not affect any non-circle mark already in the PMG. Furthermore, after
tail augmentation, all the remaining circles, if any, belong to o—o edges. Now
consider the TAG of Py, Patag. It is obvious that CP1 still holds of Patag as
well as (al)-(a3) in Definition 1. Furthermore, Lemma 6 and Lemma 7 ensure
that no endpoint of a (remaining) o—o edge is an endpoint of an undirected

edge in Pypag-
Lemma 8. Let Puiag be the TAG of Py. In Patay,
(i) (a1)-(a8) (in Definition 1) and CP1 hold;
(ii) there is no inducing path between two non-adjacent vertices; and

(iii) there is no such triple as A —B o—oC.

Proof. First we prove (i). For (al), suppose for contradiction that there is a

directed cycle. Let ¢ = (Vp,+ -, Vy, Vo) be a shortest directed cycle in Pasqgq,
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that is, no other directed cycle has fewer edges than ¢ does. Since no directed
cycle is present in Py, the corresponding cycle in P4 must contain a o— edge.
That is, there exists 4 such that Vj_1x— Vjo— V43 is in Py. Because CP1
holds of P4, there is an edge V;_1%— Vi41 in Py. The edge can’t be V1 « Vi
for the following reason: the edge between V;_; and V; is either V;_10— V; or
Vi—1 — V. In the former case, the triple V;+1 < V;_j0— V; would violate CP1;
in the latter case, the circle at V; on Vo —% V1 should have been oriented by
R2. So either V;_j0— V41 or V;1 — Vi34 is in Py, which means V, 1 — Vi
is in Paeqg. But then (Vo,- -+, Vie1, Vig1,+++, Va, Vo) is a shorter cycle than c is,
hence a contradiction. So there is no directed cycle in Paqg.

For (a2), suppose for contradiction that there is an almost directed cycle in
Pitag. Let ¢ = (Vo,++,Va, Vo) be a shortest one. Without loss of generality,
suppose the bi-directed edge in the cycle is Vj « V,, and (Vo, Vi, -+, Vy) is a
directed path from Vj to V,,. It is obvious that Vg « V, is also in Py, because
no extra arrowheads are introduced in Pataq. Since no almost directed cycle
is present in P4, the corresponding path between Vp and V,, in P4 contains a
o— edge. If the edge between Vy and V; is not o—, then there must exist
1 < i< n—1such that V;_1x— V;o— Vj41 is in Ps. By the same argument
we went through in proving (al), there is a shorter directed path from Vj to
V.. and hence a shorter almost directed cycle. So it is Vyo— Vj that appears in
P4, then by CP1, V,x— V] is in Py, which means either V,, - Vi or V, & V1
is in Pasag. In the former case, there is a directed cycle in Pysqy, which we have
shown to be impossible; in the latter case, there is a shorter almost directed
cycle, a contradiction.

For (a3), note that any X —Y in Py,g corresponds to either X —Y or
X —oY or X o—0oY in P. In the first case, there is no edge into X or Y due to
the soundness of Py; in the second case, CP2 (Lemma 7) guarantees that there
is no edge into X or Y; in the third case, the definition of tail augmentation

guarantees that there is no edge into X or Y.
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For CP1, note that no extra arrowheads are introduced in Puatag and hence
any pattern of *— o—x in Pgyqy is also in P4. Since CP1 holds of Py, it also

holds of Patag.

Next, we prove (ii). It is convenient to define the rank of an inducing path.
By definition (Definition 4), an inducing path is one on which every vertex
(except the endpoints) is a collider and is an ancestor of one of the endpoints.
In other words, from each interior vertex on the path there is a directed path
to one of the endpoints. Let thé rank of each interior vertex on the path be the
length of a shortest directed path from that vertex to one of the endpoints. We
define the rank of an inducing path as the length of the path plus the sum of
the ranks of the interior vertices.

Suppose for contradiction that in Pyeg there is an inducing path between
two non-adjacent vertices X and Y. Let p = (X =V, V1, -+, Vo1, Y = V) be
the one of the lowest rank. By definition, V;’s (1 < 1 < n—1) are colliders on the
path and are ancestors of either X or Y. This implies that V; is an ancestor of
Y and V;,-1 is an ancestor of X, otherwise there would be a directed or almost
directed cycle in Pysag, which we have shown to be absent. For the same reason,
the edge between X and V; is X < Vi, and the edge between V,,_; and Y is
Vi1 < Y. So every edge on p is bi-directed. Since no extra arrowheads are
introduced in Pytqq, these bi-directed edges on p are also in Py.

Furthermore, note that P, is sound and hence should not contain any in-
ducing path between X and Y. It follows that not every interior vertex on p
is an ancestor of X or Y in P4. Let V; (1 < j < n — 1) be such a vertex, that
is, V; is not an ancestor of X or Y in P4. Without loss of generality, suppose
in Patag, V; is an ancestor of Y. Let d be a shortest directed path from Vj to
Y in Pasqeq. Since d is not a directed path in Py, d must contain a o— edge in
P4. Since d is a shortest one, CP1 implies that o— can only appear as the first

edge on the directed path (by the argument we have used several times above).
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That is, let Vj1 be the vertex adjacent to V; on d, then Vjo— Vj; is in Py.

Now we argue that there is a Vi (j +1 < k < n — 1) such that V4 « Vj;
is in P4. Suppose not; we prove by induction that for every j+1 < i < n,
either Vio— Vj1 or V; — Vj; is present in P4. The base case is easy. Since
Vit1 & Vjo— Vj1 is in Py, by Py, we have V1% — Vj1. Since it is not
bi-directed by the supposition, it is either Vjyj0— Vi or Vi1 — Vo In
the inductive step, suppose Vji1,..., Vi all satisfy the claim, we argue that
Vim+1 also satisfies the claim. V41 must be adjacent to V1, otherwise either a
Vio— Vi1 will be oriented as Vi, <> Vi1 (7 +1 < k < m) by R4, or all Vyo— Vjy
will be oriented into Vi — Vj1, and hence Vjo— Vj; will be oriented by R4.
Furthermore, the edge between V11 and Vj1 is Vipg1¥— Vj1. This is because
either Vipo— Vj1 or Vi, — V1 appears. In the former case, Vipy1x— Vj1 by
CP1; in the latter case, Vipp1%— Vj1 by R2. Lastly, since the edge between
Vm+1 and Vi is not bi-directed (in the case of V1 =Y, itisnot Y « Vi
because Vj; is an ancestor of Y in Pitag), it is either Vipp10— Vi1 or Vi1 — Vi
This completes the induction. But then either Yo— V)1 or Y — Vj1, which
contradicts the fact that Vj; is an ancestor of Y in Paag. So there is a Vi
(j+1<k<n-1)such that Vy < Vj; is in Py.

By essentially the same argument, we can show that there is a V}, (0 <
h < j —1) such that Vi « Vj is in Py. (The only difference is that we
rule out the case Xo— Vj; and the case X — Vj; not because Vj; is an
ancestor of X, but because X cannot be an ancestor of Y in Pyqag, for other-
wise an almost directed cycle would be present.) This implies that the path
Vo=X, -, Vu,Vj1i, Vi, -+, Vo = Y) (V3 could be Vp) is an inducing path be-
tween X and Y but is of a lower rank than p, a contradiction. Hence there is

no inducing path between two non-adjacent vertices in Paag.

Lastly, we demonstrate (iil). Suppose for contradiction that there is such a

triple X —Y 0o—oZ in Pyseq. By the definition of tail augmentation, in P4 the
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edge between X and Y is either X —Y or X o— Y or X o—oY. In the first
case, obviously the circle at Y on Y o—o0Z should have been oriented by Rg; in
the second case, by CPs, there is no edge into Y, and then by Lemma 6, there
is no edge into Z either, so Y o—oZ should be changed to Y —Z in the tail
augmentation; in the third case, since X o—oY is changed to X —Y in the tail
augmentation, there is no edge into Y in Py, which implies, by Lemma 6, that
there is no edge into Z either, and hence Y o—oZ should be changed to Y —Z

in the tail augmentation. Therefore, each case leads to a contradiction. O

Let the circle component of any PMG be the induced subgraph that
consists of all o—o edges in the PMG. We denote the circle component of Pysqq
by Pfiug- Since CP1 holds of Pyteg, no matter how we orient the remaining
o—o edges (i.e., Pf,y), no new unshielded colliders or directed cycles or almost
directed cycles would be created that involve the arrowheads already present
in Patag. In particular, as shown in the next lemma, if we orient Pg,  into a
directed acyclic graph with no unshielded colliders, then the resulting graph is

a maximal ancestral graph and is Markov equivalent to G.

Lemma 9. Let Pyag be the TAG of Py. If we further orient Pjy,q, the circle
component of Patag, into a DAG with no unshielded colliders, the resulting graph

is a MAG and is Markov equivalent to G.

Proof. Let H denote the resulting graph. We first show that H is a MAG.
Since M is obviously a mixed graph, we only need to check that (al) — (a3) in
Definition 1 hold, and that there is no inducing path between two non-adjacent
vertices. The argument is very similar to the one we saw in the previous lemma,
so we will only highlight the strategy.

There is no directed cycle in H. Otherwise let ¢ be a shortest one. The
corresponding cycle in Pysqq must contain — o—o, because there is no directed
cycle in Paiqg and by assumption Pfftag is oriented into a DAG. Then CP1

implies that there is a shorter directed cycle in H, a contradiction.
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For almost the same reason, there is no almost directed cycle in H. Other-
wise a shortest such cycle must be present in Pyag.

For any X —Y in H, it is also in Pysqag4, because no new undirected edge is
created in 7. We have shown that there is no edge into X or Y in Pyeg, and
that there is no o—o edge incident to X or Y in Pasqq. It obviously follows that
there is no edge into X or Y in H.

To show that H is maximal, we will again use the rank of an inducing path
as defined in the proof of the previous lemma. Suppose for contradiction that
there is an inducing path between two non-adjacent vertices X and ¥ in H.
Consider one that is of the lowest rank, p = (Vp = X, W1, -, V1, Vi, = Y.
As we have shown in the proof of the previous lemma, every edge on p is bi-
directed, which is also in Pyiqg, because no new bi-directed edge is created in H.
Then we shall argue that in Pgzag it is also the case that every V; (1 <i <n—-1)
is an ancestor of either X or Y, and hence p is also an inducing path in Pgy,
which contradicts the last lemma. Here is the argument. For an arbitrary V;
(1 <4 <n-1), by supposition, it is an ancestor of X or Y in H. Without loss
of generality, suppose it is an ancestor of Y. Let d be a shortest directed path
from V; to Y. Then d must also be a directed path in Pyseg. Suppose not, then
it contains a 0—o in Pgyseg. Furthermore, the first edge must be V; o—oV;y, for
otherwise — o—o would appear on the path and CP1 implies there is a shorter
directed path in H. Now by Lemma 6, we have V;_; « V;; and V41 < Vjy,
which means we can replace V; with V;; and create an inducing path with a
lower rank (because the directed path from V;; to Y is shorter than the one
from V; to Y). Contradiction. So d is also a directed path in Pysag, which
means V; is also an ancestor of Y in Pysqg. That is, p is also an inducing path
between X and Y in Pysqg, which contradicts the previous lemma.

Therefore H is a maximal ancestral graph.

Now that we have shown H to be a MAG, we only need to check the condi-
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tions in Proposition 2 to demonstrate its Markov equivalence with G. Obviously
they have the same adjacencies, i.e., (el) holds. For (e2), notice that every un-
shielded collider in G is also in P4 — which is guaranteed by R0 — and hence is
also in H. Conversely, for any unshielded collider in H, in Pyaq, the triple is
either *—+«*, or ¥— o—o, or o—o o—o. The latter two cases are impossible,
because by CP1 *— o—o implies that the triple is shielded; and by assumption,
the circle component is oriented into a DAG with no unshielded colliders. So
it must be the first case. Then the unshielded collider is also in P4 (because no
arrowhead is introduced in tail augmentation), and hence also in G.

Thus if H and G are not Markov equivalent, it is due to a violation of (e3).
That is, there is a path v = (W,...,,X,Y, Z) that is discriminating for ¥ in
both graphs, but the triple (X,Y,Z) is a collider in one of the graphs but a
non-collider in the other. Note that if the triple is a collider in H, then it is easy
to deduce from the definition of discriminating path that X < Y & Z isin H.
But every bi-directed edge in H is also in P4 (because neither tail augmentation
nor the further orientation of Paeg creates any new bi-directed edge), so A <
B « C is also in §. Therefore, it can only be the case that (4,B,C) is a
collider in G and a non-collider in H. We will derive a contradiction from this.

First of all, we argue that if every collider on u(W,Y) = (W,-.., X,Y) is
present in Py, then every vertex between W and X (including A) is a parent of
Z in P4. The argument goes by induction. Let U be the vertex next to W on
u. (W, U, Z) is an unshielded triple (because by the definition of discriminating
path, W and Z are not adjacent). Since by assumption U is a collider on the
path, Wx— U is in Py; so the edge between U and Z is either oriented as
U«—=*Z by ROor U — Z by R1. It cannot be the former case, because in G
(and in H) we have U — Z. Hence U — Z is in Ps. Now suppose the first n
vertices after W on u are all parents of Z in P4. Then the edge between the
n+1% vertex and Z can be oriented by R4. Because it is a parent of Z in G, the

edge should be oriented as a directed edge into Z. End of induction. Therefore,

37



if every collider on u(W,Y') is present in Py, u is also a discriminating path in
P4, which means the triple (X,Y, Z) would be oriented as a collider, as is the
case in G. Then it would be a collider in H, too, a contradiction.

Thus some collider on u(W,Y") is not present in P4. In other words, some
arrowheads on the path correspond to circles in P4. Note also that only the
first and/or the last collider on the path can be absent from P4, because bi-
directed edges in H, if any, are all in Py as well. Below we consider‘three cases
separately.

Case 1: u(W,Y) only has three vertices, (W, X,Y). So in Py, it is either
(a) Wo—oX «=Y, or (b) Wx— X o—0Y, or (¢) W o—oX o—0Y (because extra
arrowheads are only introduced in the orientation of the circle component of
Pitag). In (a) and (b), by CP1, W and Y are adjacent. In (c), because
(W, X,Y) is oriented as a collider in H, and by assumption no unshielded
collider is introduced in the orientation of Pg,,, W and ¥ must also be adjacent
(Wo—oY). So (W,Y, Z) is an unshielded triple, in any case. Since (X,Y, Z) is a
non-collider in ‘H, it must be that Y — Z, which can be easily deduced from the
definition of discriminating path. Thus (W,Y, Z) is an unshielded non-collider
in H. We already showed that G and H have the same unshielded colliders, so
(W,Y, Z) is also an unshielded non-collider in G. Furthermore, since (X, Y, Z)
is a collider in G, we have X < Y « Z in G, and hence the edge between W
and Y must be W — Y (to avoid collider). But then the path u is an inducing
path between W and Z in G, which contradicts the fact that G is maximal.

Case 2: w(W,Y) has four vertices, (W,U, X,Y). So in Py, it is either (a)
W o—olU « X «+Y, or (b) Wx— U & X o—oY, or (¢) W o—oU & X o—oY.
In (c), it is easy to deduce from Lemma 6 that W < Y is in P4, and hence is
in both G and H. But then the triple (WY, Z) is an unshielded collider in G
but not in H, contrary to what we already showed. In (a), Lemma 6 implies
that W < X. Hence X — Z is also present in P4. So the path (W, X,Y, Z)

is a discriminating path for Y in P4, which means the edge between Y and Z
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should be the same in G and H, contrary to the assumption. In (b), Lemma 6
implies that U <> Y. For the same reason as in (a), the path (W,U,Y,2) is a
discriminating path for Y in P4, hence the edge between Y and Z should be
the same in G and H, contrary to the assumption.

Case 8 u(W,Y) has more than four vertices, (W,U,V1,..., V2, X,Y) (h
and V; could be the same vertex). Again there are three cases: (a) W o—
oUeo Vi Vh o X %Y, 0r (b) Wk— U - V- Vo &5 X 0—0Y, or ()
W o—olU < V;--- V5 & X 0o—0Y. In any of the three cases, by essentially the
same argument as we saw in Case 2, there would be a discriminating path in
P4 for Y that ends at Z, so the edge between Y and Z should be the same in
G and H, contrary to the assumption.

Therefore, the initial supposition of non-equivalence is false. H and G are

Markov equivalent. O

To orient Pf,,, into a DAG is trivial - an arbitrary ordering over the vertices
in P,y would do. But that does not in general yield a DAG with no unshielded
colliders. In fact, as is well known, an undirected graph can be oriented into
a DAG with no unshielded colliders if and only if it is chordal (see, e.g., Meek
(1995). A graph is chordal (a.k.a triangular) if there is no cycle of length 4
or more without an edge (chord) linking two non-consecutive vertices on the

cycle. The chordality of Pg,,, is not hard to see.
Lemma 10. The circle component of Patag, Pltaqs S chordal.

Proof. Suppose for contradiction that there is a cycle (Vo, V1,- -, Va1, Vi, Vo)
in Pf;,y such that no non-consecutive vertices on the cycle are adjacent. We
argue that the cycle is also chordless in Pyt,g, and hence chordless in P4 (because
Patag and Py have the same adjacencies). Suppose on the contrary that in Pazag
there is an edge linking two nonadjacent vertices on the cycle, say, V; and V.
The edge is either V; —V; or is into at least one of them. By Lemma 8, there

is no such pattern as — o—o in Pyiqg, so the former case is impossible. By
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Lemma 6, since there is a circle path between V; and Vj, the edge between V;
and Vj, if any, is not into V; or V; in P4, and hence is not into V; or V; in Pyag.
So the latter case is also impossible. Hence the cycle is also chordless in Py.
But then the edge Vp o—oV] (as well as other edges on the cycle) should have
been oriented by R5. Contradiction. Therefore, there is no such cycle in Pg,,

in the first place, which means Pj,,, is chordal. O

Therefore, Pf;,, can be oriented into a DAG with no unshielded colliders.
By Lemma 9, there is a MAG in [G] — the Markov equivalence class to which
G belongs — in which all circles except possibly ones in Pf;,, are marked as
tails. In other words, these circles do not hide invariant arrowheads. The next
lemma due to Meek (1995) entails that the circles in Pf,, do not hide invariant

arrowheads either.

Lemma 11 (Meek). Let X and Y be any two vertices adjacent in a chordal
graph. That graph can be oriented into a directed acyclic graph with no un-

shielded colliders in which the edge between X and Y is oriented as X — Y.
The completeness of P4 with respect to arrowheads is now evident.

Theorem 2. P4 is complete with respect to arrowheads. That is, for every

circle in Py, there is a member of [G] in which the circle is oriented as a tail.

Proof. It follows readily from Lemma 9, Lemma 10 and Lemma 11. |

3.2.3 Completeness w.r.t Tails

Now we turn to the even more involved task of showing that P4 is also complete
with respect to tails, that is, for every circle in Py, there is a MAG equivalent
to G in which the circle is oriented as an arrowhead. The following operation

introduces arrowheads to the circles on the —o edges.
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Definition 12 (Arrowhead Augmentation). Let H be any partial mized graph.
Arrowhead augmentation of H is defined as the following set of operations

on H:
e change all o— edges into directed edges —;
e change all —o edges into directed edges —.

The resulting graph is called the arrowhead augmented graph (AAG)
of H, denoted by Haag.

Thus the arrowhead augmentation and the tail augmentation are common in
their treatments of o— edges. They are distinguished by their treatments of —o
edges: the tail augmentation turns the circles into tails, whereas the arrowhead
augmentation turns the circles into arrowheads. Furthermore, unlike the tail
augmentation, the arrowhead augmentation does not affect any o—o edge.

Let Paqaag be the AAG of Ps. We will prove a lemma about Paqqy analogous
to Lemma 8. For that purpose, we need to establish some properties of Py
concerning —o edges. A path (Vo,---,V},) is called a tail-circle path from V4

to Vi, if for every 1 (0 <4< n-1), V; —o Viy1.

Lemma 12. In Py, the following hold:

(i) For any A —o B, there is an uncovered tail-circle path from an endpoint

of an undirected edge to B that includes the edge A —o B.

(it) If u is an uncovered tail-circle path, then any two non-consecutive vertices

on u are not adjacent.

Proof. Let TC be the set of —o edges in P4. We can order the members of
TC by their order of occurrence in the orientation process. (i) can be proved
by induction. Let X —oY be the ?first” edge in TC - that is, it gets oriented
as such before any other member of TC does (i.e., the others were still o—o
edges). Among all the orientation rules, only R6 and R7 could yield —o edges.
If X —oY is oriented by R6, then obviously X is an endpoint of an undirected
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edge; if X —oY is oriented by R7, which means there is a vertex Z such that
Z,Y are not adjacent, and Z —o X o—oY is the configuration at the point
of orienting X o—oY. If Z —o X remains in Py, then it belongs to TC, and
it occurs earlier than X —o Y does, which contradicts our assumption about
X —oY. So in Py it must be Z —X (because no orientation rule will orient —o
into —). Hence in either case X is an endpoint of an undirected edge. Then
X —oY is an uncovered tail-circle path from an endpoint of an undirected edge
toY.

Now we show the inductive step. Suppose the first n edges in TC satisfy (i);
consider the n+ 1 edge, U —o W, in TC. Again, it is oriented by R6 or R7. If
it is oriented by R6, then U is an endpoint of an undirected edge, and U —o W
constitutes an uncovered tail-circle path from U to W; if it is oriented by R7,
then there is a vertex V such that V, W are not adjacent, and V —o U o—oW
is the configuration at the point of orienting X o—oY. If V —o U remains in
P4, then it is one of the first n edges in TC. By the inductive hypothesis, there
is an uncovered tail-circle path, T', from an endpoint of an undirected edge to

| U that includes the edge V. —o U. Since V, W are not adjacent, T' appended
to U —o W constitutes an uncovered tail-circle path from an endpoint of an
undirected edge to W. If, on the other hand, V —o U is not in P4, then it must
be V —U, which makes U an endpoint of an undirected edge, and U —o W
the desired path. Therefore, for every edge in TC, the property stated in (i)
holds.

Next we prove (ii). If u has only one edge, the proposition trivially holds,
because there is no pair of non-consecutive vertices; if u has two edges, the
proposition also trivially holds, because u is uncovered, and the only pair of
non-consecutive vertices on u are by definition non-adjacent.

Now suppose u consists of more than two edges. We prove (ii) by induction

on the length of u. The base case is that u has three edges: X —oY —o

42



Z —o W. Suppose for contradiction that a pair of non-consecutive vertices
on v is adjacent. Because u is uncovered, this pair must be X and W. By
CP2 (Lemma 7), the edge between X and W is not into X or W. It is not an
undirected edge either, for otherwise the circle at W on Z —o W should have
been oriented by R6. However, (X,Y, Z, W, X) forms an uncovered cycle, so at
least one of the o—o edges on the cycle should have been oriented as — by R5
before any —o edge appears. Contradiction. So X and W are not adjacent.
In the inductive step, suppose the proposition holds for those uncovered
circle-tail paths that have fewer than n edges. Consider an uncovered circle-
tail path with n+1 edges: Vy—o Vi ---V,,—oV,+1. By the inductive hypothesis,
the only pair of non-consecutive vertices that could be adjacent is V5 and V1.
But then the same argument applies. That is, the edge between Vy and V41
is not into X or W, nor is it an undirected edge. But we have an uncovered
cycle (Vo, Vi, -, Vo, Voy1, Vo), which means at least one of the o—o edges on
the cycle should have been oriented as — by R5 before any —o edge appears.

This yields a contradiction. So Vp and Vi1 are not adjacent. O
The main utility of Lemma 12 is to prove the next two lemmas.

Lemma 13. In Py, the following property holds:

CP3 For any three vertices A, B, C, if A—oBo—xC, then A and C' are adjacent.
Furthermore, if A—o B o—oC, then A —o C; if A—o Bo— C, then A - C
or Ao— C.

Proof. The first claim is obvious. If A —o B o—x«C, but A, C are not adjacent,
then the circle at B on B o—x*(C should have been oriented by R7.

Suppose, more specifically, that A —o B o—oC. Consider the edge between
A and C. Lemma 5 implies that it is not intc C. Lemma 7 implies that it is
not into A. It is not undirected either, for otherwise the circle at C' on B o—oC
could be oriented by R6. Hence it is either (1) A o— C; or (2) A o—oC} or (3)
A —o C. We now show that (1) and (2) are impossible.
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Suppose for contradiction that (1) or (2) is the case. By (i) in Lemma 12,
there is an uncovered tail-circle path u from an endpoint of an undirected edge
E to B that includes the edge A —o B. We claim that for every vertex V on
u, either V o-—o(C or V o— ( is present. The argument goes by induction.
Obviously B and A satisfy the claim. Suppose, starting from B, the n'th vertex
on u, Vy,, satisfies the claim. Consider the n+ 1'st vertex on U, V1. Since u is
a tail-circle path, we have V.1 —o¢ V},. By the inductive hypothesis, V,, o—C
or V,, o— C. So, as we have established, V,,11 and C must be adjacent. Again,
Lemma 5 implies that the edge between them is not into C. Lemma 7 implies
that the edge befween them is not into V,, ;1. The edge is not undirected either,
for otherwise the circle at C on B o—oC could be oriented by R6. Furthermore,
by (ii) in Lemma 12, Vj,41 and B are not adjacent. So the edge between V11
and C can’t be Vj,4.1 —o C, for otherwise the circle at C' on C' o—oB could be
oriented by R7. It follows that either Vp41 o—oC or Vi1 o— C. Therefore,
every vertex on u, in particular the endpoint E satisfies the claim. But E is
an endpoint of an undirected edge, and hence the circle at E on E o—oC' or
E o— C could be oriented. Contradiction.

So neither (1) nor (2) could be the case, which means A —o C' is the case.

Lastly, if it is A —o Bo— C, then Lemma 7 implies that the edge between
A and C has an arrowhead (due to the arrowhead on Bo— C), and that there
is no arrowhead at A (due to the presence of A —o B). So it is either A — C
or Ao— C. ' O

Lemma 14. In Py, the following property holds:

CP4 For any A —o B, there is no tail-circle path from B to A. That is, there

is no such cycle as A—o B —o C —o .- —o0 A.

Proof. We first argue that if there is any such cycle in Py, then there is a cycle
with only three edges, i.e., A—o B —o C —o A. To show this, note that for
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any such cycle ¢ = (W, Vi, Va,- -+, V4, Vo) with more than three edges, ¢ can't
be uncovered, otherwise every edge on ¢ would have been oriented as — by
R5. That means there is a consecutive triple on ¢ which is shielded. Without
loss of generality, suppose (Vo, V1, Va) is shielded, i.e., Vp and V5 are adjacent.
" The edge between Vy and V; can’t contain an arrowhead, as Lemma 7 shows;
it can’t be undirected, for otherwise some circle on ¢ should been oriented by
R6; it can’t be o—o, as implied by Lemma 13 (because V) —o V; —o V5 is
present). So it is either Vg —o V5 or V5 —o V;. In either case, there is a shorter
cycle than ¢ that consists of —o edges. Hence we have established that for any
such cycle with more than three edges, there is a shorter one. It follows that if
there is such a cycle at all, there must be one with only three edges.

So, to prove CP4, it suffices to show that A —o B —o (' —o A is impossible.
Suppose for contradiction that A —o B —o C' —o A appears in Ps. By (i)
in Lemma 12, there is an uncovered tail-circle path u from an endpoint of an
undirected edge E to B that includes the edge A —o B. We claim that for
every vertex V on u between A and F (including A and F), C —o V is present
in P4. The argument is by induction. The vertex A, by supposition, satisfies
the claim. Suppose, starting from A, the n’th vertex on u, Vj, satisfies the
claim. Consider the n 4+ 1% vertex on u, V1. Since u is a tail-circle path, we
have V11 —o V,,. By the inductive hypothesis, C —o V,,. So by Lemma 13,
Vis1 and C are adjacent. Lemma 7 implies that the edge between them is not
into either vertex. The edge is not undirected either, for otherwise the circle
at C on B —o C could be oriented by R6. Furthermore, by (ii) in Lemma 12,
Vat1 and B are not adjacent. Since B —o C, the edge between V41 and C
must be oriented as C' —o V1. Therefore, every vertex between A and F,
in particular the endpoint E, satisfies the claim. But E is an endpoint of an
undirected edge, and hence the: circle at E on C —o E could be oriented. This

is a contradiction. O
We now prove a lemma about Pyeeg analogous to Lemma 8,
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Lemma 15. Let Paaqqg be the AAG of Ps. In Pigag,

(i) (al)-(a3) (in Definition 1) and CP1 hold;

(i) there is no inducing path between two non-adjacent vertices;
(iii) there is no such triple as A —B o—oC'; and

(iv) every unshielded collider in Piaag is also in Py, i.e., arrowhead augmen-

tation does not create any new unshielded colliders.

Proof. We first demonstrate (i). For (al), suppose for contradiction that there
is a directed cycle in Pygqg. Since there is no directed cycle in Pysqy, as proved
in Lemma 8, at least one edge in the cycle must correspond to a —o edge in
P4 (because the treatment of o— edges is the same in both tail augmentation
and arrowhead augmentation). On the other hand, not all edges in the cycle
correspond to —o edges in Py, as implied by CP4 (Lemma 14). This means
at least one arrowhead in the cycle is already present in Ps. It follows that
there will be an arrowhead meeting a —o edge in P4, which contradicts CP2
(Lemma 7). So there is no directed cycle in Pygqq-

For (a2), suppose for contradiction that there is an almost directed cycle in
Piaag- Again, one edge therein must correspond to a —o edge in P4, since we
already showed that there is no almost directed cycle in Patqg (Lemma 8). Also,
because no new bi-directed edge is introduced by the arrowhead augmentation,
the bi-directed edge in the cycle is also in P4. Then it is easy to see that there

must be an arrowhead meeting a —o edge in Py, which contradicts CP2. So
| there is no almost directed cycle in Pygqq.

For (a3), note that no new undirected edge is introduced in the arrowhead
augmentation, and new arrowheads are introauced only by way of changing —o
into —. Since Py satisfies (a3), and no such pattern as —o — appears in Py
(for otherwise the circle could be oriented by R6), it obviously follows that (a3)
holds of Pigag-

The fact that CP1 also holds of Pygag follows directly from CP3 of Py
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(Lemma 13).

To see (ii) is true, it suffices to note the following: if there is an induc-
ing path in Py.,g between two non-adjacent vertices, the path must consist of
bi-directed edges (which follows from (al) and (a2), as we have seen). Every
bi-directed edge in Pyaqq is also in Py, so every vertex on the inducing path
would have an arrowhead into it in Py4. It follows that no edge on any directed
path from a vertex on the path to one of the endpoints corresponds to a —o
edge in Py, for otherwise CP2 would be violated. So if there is any inducing
path in Pygqq between two non-adjacent vertices, it would also be present in

Patag, Which we have shown to be impossible. Therefore (ii) is true in Pagqg.

(iii) is obvious because no new undirected edge is introduced in the arrow-

head augmentation.

(iv) follows from CP2 and CP3 of P4. Specifically, CP2 implies that the
extra colliders produced by the arrowhead augmentation can only come from

such patterns as —o o— in P4, but CP3 implies that they are shielded. |
This immediately leads to the following result, analogous to Lemma 9.

Lemma 16. Let Pagag be the AAG of Py. If we further orient Pf,,,, the circle
component of Paaag, into a DAG with no unshielded colliders, the resulting

graph is a MAG and is Markoz; equivalent to G.

Proof. Let H be the resulting MAG. Given Lemma 15, the exact same argument
as in Lemma 15 can be used to to argue that H is a MAG.

The argument for the Markov equivalence between M and G is also similar.
(iv) in Lemma 15 (plus the argument in Lemma 9) ensure that they have the
same unshielded colliders. So if they are not Markov equivalent, it must be that

there is a path u = (W, ..., X, Y, Z) that is discriminating for Y in both graphs,
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but the triple (X,Y, Z) is a collider in one of the graphs but a non-collider in
the other. By the same argument as in Lemma 9, we can show that it must be
a collider in G and a non-collider in H. If none of thg edges in u corresponds to
a —o edge in Py, obviously the same argument as in 9 can be applied to derive
a contradiction. So some edge on u must corresponds to a —o edge in P4. But
by CP2 (Lemma 7), this is only possible if no arrowhead on u is already in Py,
which means there is no vertex between W and X on u (for otherwise there
will be bi-directed edges), and either W —o0 X o— Y, or W o—o0X o— Y, or
W —o0 X 0o—oY appears in P4. In the first two cases, (X,Y, Z) are non-colliders
in both graphs. In the last case, by CP3 (Lemma 13), we have W —oY in Pq.
It must be oriented as W — Y in G, because (X,Y, Z) is a collider in G (and
hence it can’t be W —Y'). We also know that ¥ — Z is in H, since (X,Y, Z)
is a (discriminated) non-collider in H. But then (WY, Z) is an unshielded
collider in G but not in M, contrary to what we already established.
Therefore, H and G are Markov equivalent. O

Lemma 17. The circle component of Paaag, Plyaq, i chordal.
Proof. The proof is the same as the one for Lemma 10. O

Lemma 11, Lemma 16, Lemma 17 together confirm a remark we made
earlier: after R5 — R7 are done, the circles on the o—o and —o edges do not
hide any invariant tails. In other words, for any circle on o—o or —o, there is a
MAG belonging to [G] in which the circle is marked as an arrowhead. So what
is left to show is that R8 — R11 are sufficient to identify all the invariant tails
hidden in the o— edges.

Before we delve into the complicated demonstration of this last fact, we
note a corollary that follows from the foregoing arguments. It is the fact that
every Markov equivalence class of MAGs has a representative with the mini-

mum number of bi-directed edges and undirected edges, or put it differently,
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a representative whose bi-directed edges and undirected edges are all invariant

(and hence appear in every member of the class).

Corollary 18. For every MAG G, there is a MAG H Markov equivalent to
G such that all bi-directed and undirected edges in H are invariant, and every

directed edge in G is also in H.

Proof. If follows from Lemma 16 that as long as we orient Pf,,,, the circle
component of Pagqq, into a DAG with no unshielded colliders, we get a MAG
Markov equivalent to G such that all bi-directed and undirected edges therein
are invariant, because no additional bi-directed edges or undirected edges are
created in the arrowhead augmentation of Pq.

Let G* be the subgraph of G that corresponds to Pf,,,. It is easy to see that
all directed edges that belong to G but not G* are already in Pysqg. Hence, to
prove H as requested exists, it suffices to show that P§,,, can be oriented into
a DAG with no unshielded colliders that retains all the directed edges of G*.

This is not hard to show. Let G be the undirected component of G*. It is
chordal, otherwise it would have been oriented in P4 as undirected. So the part
of Pg,q, that corresponds to G can be oriented into a DAG with no unshielded
colliders. Orient it into any such DAG, D;.

The rest of P§,,, Will be oriented as follows. The ancestor relationship in G*
naturally induces a partial order over the vertices therein. Since G* is ancestral
(as it is a subgraph of an ancestral graph), no edge is into the vertices of Gy,
which implies that no vertex precedes any vertex of G, in the partial order.
Thus we can extend this partial order to a total order such that every vertex of
G precedes every vertex not in G;. Orient the rest of Pf,,, according to this
total order, and we get a DAG Ds. Ds obviously retains all the directed edges
of G*, as it respects the partial order induced by G*. So every arrowhead in D,
is also in G*, which implies that Dy does not contain any unshielded collider
(for otherwise G* would contain unshielded colliders too, which contradicts the

fact that it is a counterpart of Pg,,,)-
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Let D denote the resulting DAG orientation of Pg,,, i.e., the union of Dy
and Ds. This union will not create any unshielded collider, because every edge
between a vertex in D; and a vertex not in D; is out of the former, by our
construction of Da. So D is the desirable DAG orientation of Pf,,, that has no

unshielded colliders and retains all the directed edges of G*. |

A special case of this Corollary will be useful in proving a transformational
property of directed MAGs, analogous to the one for DAGs established by
Chickering (1995). We shall present that result in another paper. The following
related lemma, however, is useful for the purpose of the current paper. It gives
sufficient and necessary conditions under which changing a directed edge (—)

into a bi-directed edge (<) preserves equivalence.

Lemma 19. Let G be an arbitrary MAG, and A — B an arbitrary directed
edge in G. Let G' be the graph identical to G except that the edge between A
and B is A «— B. (In other words, G' is the result of simply changing the mark
at A on A — B from an tail into an arrowhead.) G' is a MAG and Markov
equivalent to G if and only if

(t1) A is not an endpoint of an undirected edge;
(t2) there is no directed path from A to B other than A — B;

(t3) For any C — A in G, C — B is also in G; and for any D < A in G,
either D — B or D <~ B is in G;

(t4) There is no discriminating path for A on which B is the endpoint adjacent
to A.

Proof. We first show that each of the conditions is necessary (only if). Obvi-
ously if (t1) or (t2) fails, G’ will not be ancestral. The failure of (t3) could be
due to one of the following two cases:

Case 1: there is a vertex C which is a parent of A but not a parent of B.

If B and C are not adjacent, then there is an unshielded collider in ¢’ but not
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in G, and hence the two graphs are not Markov equivalent. If B and C are
adjacent, then G can’t be ancestral (unless we have C — B).

Case 2: there is a vertex C' which is a spouse of A but not a parent or
spouse of B. Again, if B and C are not adjacent, the two graphs can’t be
Markov equivalent because there is an unshielded collider in G but not in G'.
If B and C are adjacent, the edge between them must be B — C by the
supposition. But then there is an almost directed cycle in G.

If (t4) fails, that is, there is a discriminating path u = (U,---,V, A, B) for
A. If the edge between V and A is into A, then G and G’ are not Markov
equivalent, because (e3) in Proposition 2 is violated. If, on the other hand,
the edge between V and A is not into A, then it must be A — V. By the
definition of discriminating path (Definition 7), V is a parent of B. So we have

A—V — B« Ain G, an almost directed cycle.

Next, we demonstrate the sufficiency of the conditions (if). Suppose (t1)-
(t4) are met. We first verify that G’ is a MAG, i.e., it is both ancestral and
maximal. Suppose for contradiction that G’ is not ancestral. Since G is ances-
tral, and G’ differs from G only regarding the edge between A and B, in G’ the
violation of the dgﬁnition of ancestral graphs (Definition 1) must involve the
edge between A and B. So it can’t be a violation of (al), because a directed
cycle would not involve A « B. If it is a violation of (a2), i.e., there is an
almost directed cycle in G’. That cycle includes A « B, which means either A
is an ancestor of B or B is an ancestor of A in G’. The former case contradicts
(t2), and the latter case yields a directed cycle in G. So there can’t be any
violation of (a2) in G’. Lastly, if there is a violation of (a3) in G/, it must be
that there is an undirected edge incident to A, which contradicts (t1). Hence
G’ must be ancestral.

To show that ¢’ is maximal, suppose for the sake of contradiction that there

is an inducing path u in G’ between two non-adjacent vertices, D and E. Then
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u must include A « B, otherwise u is also an inducing path in G. Furthermore,
A is not an endpoint of u, otherwise u is still an inducing path in G (in fact,
there will be an almost directed path in G in that case). Suppose, without loss
of generality, that D is the endpoint closer to A on u than it is to B. We show
that some vertex on u(D, A) other than A is B’s spouse. Suppose not; we argue
by induction that every vertex on u{A, D), and in particular D, is a parent of
B. By (t3), the vertex adjacent to A on u(D, A) is either a parent or a spouse
of B, but it is not a spouse by supposition, so it is a parent. In the inductive
step, suppose the first n vertices next to A on u(D, A) are B’s parents, then the
n+ 1% vertex V must be adjacent to B, otherwise the sub-path of u between
this vertex and B forms a discriminating path for A which contradicts (t4).
The edge between V and B obviously can’t be undirected. Furthermore, by
supposition, V is not a spouse of B, i.e., it isnot V « B. It can’t be V « B
either, because in that case there would be an almost directed cycle in G’ (as the
vertex before V, by the inductive hypothesis, is a parent of B), which we have
shown to be impossible. So V must be a parent of B. Thus we have shown that
every vertex on u(A4, D), and in particular D, is a parent of B. Then B must
be an ancestor of E, because by the definition of inducing path (Definition 4),
B is an ancestor of either D or E. So D is an ancestor of F, and it is obvious
that the vertex adjacent to E on u must be an ancestor of D, which implies
that there is an almost directed cycle in G’. which we have shown to be absent.
Hence a contradiction. So some vertex on u(D, A) other than A is a spouse of
B. Let C be such a vertex on u(D, 4). Replacing u(C, B) on u with C «~ B
yields an inducing path between D and E in G, which contradicts the fact that
G is maximal.

Having shown that G’ is a MAG, we now verify that G and G’ satisfy the
conditions for Markov equivalence in Proposition 2. Obviously they have the
same adjacencies, and share the same colliders except possibly A. But A will

not be a collider in an unshielded triple, for condition (t3) requires that any
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vertex that is incident to an edge into A is also adjacent to B. So the only worry
is that a triple (C, A, B) might be discriminated by a path, but (t4) guarantees
that there is no such path. Therefore, G’ is Markov equivalent to G. O

Let us turn to the final task of showing that for every o — edge in Pu,
there is a MAG equivalent to G in which the edge is oriented as <. The
argument is going to be a little roundabout, with two major steps. Let Jo—
K be an arbitrary o — edge in P4. In the first step, we show that we can
orient P§ — the circle component of P4, which is the same as Pf,,,, the circle

component of the AAG of Py — into a DAG with no unshielded colliders that

satisfies certain conditions relative to Jo— K. By Lemma 16, the arrowhead
augmentation together with this DAG orientation of P§ yield & MAG equivalent
to G. In the second step, we argue that this particular MAG can be transformed
into a MAG containing J «» K through a sequence of equivalence-preserving
changes of — to <. It then follows that the resulting MAG with J < K is
also equivalent to G.

The following definitions specify the conditions we want a DAG orientation

of P§ (Pfaaq) to satisfy.
Definition 13. Let Jo— K be an arbitrary o— edge in Py. For any Ac— B
in Py, it is said to be relevant to Jo— K if

(i) A= J or there is a p.d. path from J to A in Py such that no vertez on
the path (including the endpoints) is a parent of K; and

(ii) B = K or B is a parent of K (namely B — K) in Py.

If Ao— B is relevant to Jo— K, we say that A is circle-relevant to Jo— K,

and B is arrowhead-relevant to Jo— K.

Informally, relevant edges are those that may have to be changed to bi-

directed edges (<) before the edge between J and K can be so oriented. The
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rationale behind the formal definition above will be revealed by the proof of
Lemma 42. We use REL{Jo— K) to denote the set of o— edges relevant to
Jo— K in P4. Notice that Jo— K itself belongs to this set. It will also be
convenient to denote the set of circle-relevant vertices by CR(Jo— K), and

the set of arrow-relevant vertices by AR(Jo— K).

Definition 14. A DAG orientation of P§ — the circle component of Py — is
said to be agreeable to Jo— K if the following three conditions hold:

Cy For any Ao— B € REL(Jo— K) and Bo-oC in Py, if C ¢ AR(Jo— K),
then B o—oC is oriented as B — C in the DAG;

" Cy For any Ao— B € REL(Jo— K) and A o—oC in Py, if C is a parent
of B (namely C — B) in P4, then A o—oC is oriented as A « C' in the
DAG;

Cs For any Ao— B € REL(Jo— K) and Ao—oC in Py, if C is not adjacent
to B in Py, then A o—oC is oriented as A — C in the DAG.

Since we will henceforth refer to Cy; — Cg very frequently, some further
explanation of them is in order. Roughly they are all motivated as necessary
for a o— edge (relevant to Jo— K) to meet the conditions in Lemma 19. This is
especially clear in Cg and Cg. Regarding the relevant edge Ao— B (which will
be A — B after arrowhead augmentation), violation of Cg will fail condition
(t2) in Lemma 19, and violation of Cg will fail condition (t3) in Lemma, 19. For
Cy, notice that if the antecedent holds, we have either A — C or Ao— C in Py,
by the property CP1 (Lemma 5). In either case, A — C will appear in Pygqq.
So if Cy is violated, i.e., if Bo—oC is oriented as B « C, then (t2) in Lemma 19
fails. (It will not matter, however, if C € AR(Jo— K); because in that case,
as will become clear later, Ao— C is in Py. Then Ao— C € REL(Jo— K),
which can be dealt with before Ao— B.)

It is far less obvious, however, that Cy —Cg suffice to ensure the existence of

a sequence of equivalence-preserving changes that can eventually turn J — K

54



into J « K. The demonstration of this fact will be postponed until Lemma
42. Before that, we need to establish the even less obvious fact that P§ can be
oriented into a DAG with no unshielded colliders that satisfies C; — Cg relative
to Jo— K. ,

One way to orient a chordal graph into a DAG free of unshielded colliders
is given in Meek (1995):

Input: a chordal unoriented graph U
Output: a DAG orientation of U (with no unshielded colliders)
Repeat

1. choose a yet unoriented edge A o—oB in U;

2. orient the edge into A — B and close orientations under the following
rules:?
UR; If A— Bo—o(C, A and C are not adjacent, orient as B — C.
UR; If A— B — C and A o—oC, orient as A — C.
UR3 If A - B — C, Ao—oD o—o(, B o—oD, and A and C are not

adjacent, orient D o—oC as D — C.

Until every edge is oriented in H.

We now adopt the algorithm to fit our purpose. Given an arbitrary edge
Jo— K in Py, let Ex,n = 1,2,3 denote the set of o—o edges whose orienta-
tions are required by condition Cy in Definition 14. (Note that they are not

necessarily disjoint.)

Orientation Algorithm

Input: P§, Py, and an edge Jo— K therein

0There is ancther rule in Meek (1995) which will not be used in orienting a chordal graph into a
DAG with no unshielded colliders.

55



Output: a DAG orientation of P§ with no unshielded colliders

Let D = P§
Repeat

If some edge in Eq is yet unoriented in D
(a) choose such an edge A c;f—qB € Ei, and orient it as condition Cy
requires; | |
(b) close orientations undér URy, UR;, UR;.
Else If some edge in E2 is yet unoriented in D;
(a) choose such an edge A o—oB € Eg, and orient it as condition Cs
requires;
(b) close orientations under UR;, URjy, URa.
Else If sofne edge in Eg is yet unoriented in D;
(a) choose such an edge A o—oB € Eg, and orient it as condition Cs
requires;
(b) close orientations under URy, UR2, URa.
Else
(a) choose a yet unoriented edge A o—oB in D;

(b) orient the edge into A — B and close orientations under UR1, URg2, URa.

Until every edge is oriented in D

Return D

Given the correctness of Meek’s algorithm, the output from the above Ori-
entation Algorithm is obviously a DAG orientation of P§ with no unshielded
colliders. The question is whether it is also agreeable to Jo— K. We answer

this question affirmatively in Corollary 39, to which we now proceed.
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We begin by noting some facts about (uncovered) p.d. paths (see Definition

10) in Py.

Lemma 20. If u = (A,---,B) is a p.d. path from A to B in Py, then a

subsequence of u forms an uncovered p.d. path from A to B.

Proof. We prove it by induction on the length of u. If there is only one edge
on u, then it is trivially an uncovered p.d. path from A4 to B. If there are
two edges on u, namely u = {A,C, B), either it is already uncovered, or it is
covered so that A and B are adjacent. In the latter case, we show that the
edge between A and B constitutes an uncovered p.d. path from A to B, or in
other words, the edge between A and B is not into A or out of B.’

We first argue that it is not into A. Suppose for contradiction that the mark
at A on the edge between A and B is an arrowhead. Then the edge between
A and C can’t have a circle mark at A, for otherwise by CP1 (Lemma 5), the
edge between C and B has an arrowhead at C, which contradicts the fact that
u is potentially directed. It follows that the edge between A and C must have
a tail at A in P4. Since the edge between A and B is into A, it follows from
CP2 (Lemma 7) that the edge between A and C is A — C. Then the mark at
C on the edge between C and B must'be an arrowhead, as implied by R2, a
contradiction. So the edge between A and B is not into A.

Next we argue that it is not out of B either. Suppose for contradiction that
the mark at B on the edge between A and B is a tail. Then it is either A —B
or A o— B. The former implies that the edge between C and B has a tail at
B by R6, which contradicts the fact that v is potentially directed. So it must
be A o— B. It obviously follows, by CP2, that there can’t be any arrowhead
on u, so it is either A o—oC 0o—oB, or A o—o(C —o B, or A —o C o—oB or
A —o C —o B. The first three cases contradict CP3 (Lemma 13), and the last
case contradicts CP4 (Lemma 14).

Now the inductive step is very easy. Suppose the proposition holds when

the length of uw is n — 1 (n > 3). Consider the case where u has n edges.

57



Either u is already uncovered, or there is a triple (X,Y, Z) on the path which
is shielded. In the latter case, by the foregoing argument, the edge between
X and Z is not into X or out of Z. So if we replace (X,Y,Z) with the edge
between X and Z on u, we get a subsequence of u which is a p.d. path from A
to B with length n — 1. By the inductive hypothesis, a subsequence of the new
path, which is also a subsequence of u, forms an uncovered p.d. path from A

to B. This concludes our argument. O

Lemma 21. If u is an uncovered p.d. path from A to B in Py, then

(i) if there is an o— or —o edge on u, then any o—o edge on u is before that

edge, and any — edge on u is after that edge;
(ii) u does not include both a o— edge and a —o edge; and

(iii) there is at most one o— edge on u.

Proof. To see (i) is true, notice that since u is uncovered and potentially di-
rected, any edge after a o— edge or a — edge on u must be oriented as — by
R1. So no o—o can appear after a o— edge on u, and no — can appear before
a o~ edge on u. The same is true with a —o edge. Since u is uncovered, any
edge on u after —o will be oriented as —o or — by either R7 or R1.

(ii) and (iii) are evident given the argument for (i). For (iii), just note that
any edge after a o— edge on u must be oriented as a — edge. For (ii), Suppose
for contradiction that u contains both a o— edge and a —o edge. Then the —o
edge does not appear after the o— edge on u, because any edge after o— on
u must be oriented as — by R1. On the other hand, the o— does not appear
after the —o edge on u, because any edge after —o on u is either —o or —.

This is a contradiction. 0

Lemma 22. In Py, if there is a p.d. path from A to B, then the edge between
A and B, if any, is not into A.
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Proof. By Lemma 20, there is an uncovered p.d. path u from A to B. Suppose
for contradiction that there is an edge between A and B which is into A, namely
A =B is in P4. There can’t be a —o edge on u for the following reason: the
first —o edge, if any, is either incident to A or is connected to A by a circle
path, according to Lemma 21. In either case, by Lemma 6, there is an edge
into the tail endpoint of the —o edge, which contradicts CP2 (Lemma 7).

So, by Lemma 21, u is of the form: o—o-.-0—— ... —. It takes little effort
to see that Lemma 6 entails that there is an edge between B and an ancestor

of B which is into that ancestor. This contradicts the soundness of Pjy. [}

Lemma 23. In Py, if there is a p.d. path from A to B that is into B, then
every uncovered p.d. path from A to B is into B.

Proof. Suppose for contradiction that an uncovered p.d. path from A to B is
not into B. That is, the last edge on the path is not o— or —. The last edge
can’t be —o either, because there is a p.d. path into B. So the last edge must
be o—o, and hence by Lemma 21, the path must be a circle path. Let C be
the vertex adjacent to B on the p.d. path into B, which means Cx— B. Since
there is a circle path between A and B, it follows from Lemma 6 that C'+— A.

But there is a p.d. path from A to C, which contradicts Lemma 22. O

Corollary 24. In Py, if A, B are adjacent, and there is a p.d. path from A to
B that is into B, then the edge between A and B is either Ac— B or A — B.

Proof. By Lemma 22, the edge between A and B is not into A. It follows that
it is not out of B, because there is a path into B, which rules out the possibility
of A—B or Ao— B by Lemma 7. Hence the edge between A and B is an
uncovered p.d. path from A to B. By Lemma 23, it is into B, which means it

is either Ao— B or A — B. 0

Lemma 25. If there is a circle path between two adjacent vertices in P4, then

the edge between the two vertices is o—o.
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Proof. By Lemma 6, there is no arrowhead on the edge between the two ver-
tices. The edge obviously can’t be —. If it is —o, then it is easy to derive
a contradiction from CP3 (Lemma 13). So the edge between the two vertices

must be o—o in Py. : O

Lemma 26. Let u be an uncovered circle path in Py. If A and B are two

non-consecutive vertices on u, then A and B are not adjacent in Py.
Proof. 1t follows from Lemma 25 and the fact that Pf is chordal. O

The next a couple of lemmas establish two useful facts for the endpoints of

the edges in REL(Jo— K).

Lemma 27. For any Ao— B € REL{(Jo— K), there is an uncovered p.d.
path w from J to B in Py such that for every vertex V on u other than B, there
is an edge Vo— K.

Proof. By Definition 13, there is a p.d. path from J to A in P4 such that
no vertex on the path (including the endpoints) is a parent of K. This path
concatenated with Ac— B constitutes a p.d. path from J to B which is into
B. Lemma 20 implies that there is an uncovered p.d. path u from J to B such
that every vertex on u other than B is not a parent of K. This path, by Lemma
23, is into B. We now argue that for every vertex V on u other than B, there
is an edge Vo— K in P4. By Definition 13, either B = K or B is a parent of
K. We consider the two cases separately:

Case 1: B = K. Let X be the vertex adjacent to K (B) on u. Since u is
into K, and X is not a parent of K (because no vertex on u is a parent of B),
the edge between X and K must be Xo-— K. We prove by induction that for
every vertex V between J and X on u, there is an edge Vo— K in P4. The base
case is trivial, because for the first vertex on u, J, obviously we have Jo— K.
For the inductive step, suppose the n’th vertex, V,, on u satisfies the claim,

namely Vy0— K is in P4. Then the n + 1% vertex, Vj,4.1, must be adjacent to
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K, otherwise Vp0— K could be oriented by R10, because u is uncovered (and
hence the subpath of u between V;, and K is also uncovered). Since there is a
p.d. path from V41 to K which is into K, by Corollary 24, the edge between
Vi1 and K is either Vyp10— K or V41 — K. Since Viy1 is on u and hence
not a parent of K, we have V10— K in Pj.

Case 2: B is a parent of K, namely B — K is in P4. Let X be the vertex
adjacent to B on u. If X is not adjacent to K, the path u ® B — K is an
uncovered p.d. path from J to K which is intoc K. So we can do the exactly
same induction as in Case 1. If X is adjacent to K, then by Corollary 24, it is
either Xo— K or X — K. Since X is not a parent of K, it must be Xo— K

in w. Then, again, we are back to Case 1. O
Lemma 28. If Ao— B € REL(Jo— K), then there is an edge Ao— K in Py.

Proof. If A= J or B = K, there is obviously an edge Ao— K in P4. Suppose
A +# J and B # K. Since Ao— B € REL(Jo— K), by Lemma 27, there is
an uncovered p.d. path u from J to B in P4 such that for every vertex V on
u other than B, there is an edge Vo— K. By Lemma 23, we know that u is
also into B. Let X be the vertex adjacent to B on u. We have Xo— K in Py.
Also, because B # K, B — K is in Py, so the edge between X and B can’t
be X — B, for otherwise Xo— K could be oriented by R8. It follows that
Xo— B is in Py, because u is into B.

Now, suppose for contradiction that A is not adjacent to K. Then the path
(A,B, X, K) is a discriminating path for X (Definition 7). Hence the circle on
Xo— K could have been oriented by R4, a contradiction. So A is adjacent to
K. By Corollary 24, the edge between A and K is either A — K or Ao— K.
But by definition (Definition 13), A is not a parent of K, so it must be Ao— K
in Py. O

We are now ready to make important steps towards the proof that in the

course of the Orientation Algorithm, no violation of C; — Cg (Definition 14)
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would occur, and hence the output DAG orientation of P§ is agreeable to
Jo— K. For this purpose, we assume, without loss of generality, that UR; has
priority over URg and URj in the sense that whenever two or more different
rules can be fired, UR,; will always be applied first, if applicable. The following
series of lemmas will amount to showing that if we choose a o—o edge to orient
away from violation of C; — Cs (as the Orientation Algorithm does), that
orientation will not trigger any violation of Cy — Cg by applications of UR;
alone. Notice that the stereotype of a .chain of UR; firings is that the first edge
on an uncovered circle path o—o -+ o—o is oriented out of the first vertex,
which triggers repeated applications of UR; that orient the whole circle path.
That is why most of the next block of lemmas are concerned with an uncovered

circle path.

Lemma 29. For any two vertices B,C € AR(Jo— K), there is no uncovered

circle path between B and C consisting of more than one edge in Py.

Proof. If one of B and C is K, it is manifest in the definition of relevance
that there is a directed edge be_tween them, and hence there is no circle path
between them, as implied by Lemma 6. So we only need to consider the case
where neither of them is K, that is, both of them are parents of K. Suppose
for contradiction that in P4 there is an uncovered circle path u between B and
C that includes two or more o—o edges. It follows, by Lemma 26, that B and
C are not adjacent. Let A be such a vertex that Ao— B € REL(Jo— K). It
follows from Lemma 6 that either Ao— C or A — C is in P4. Furthermore,
because A is not a parent of K, it must be Ao— C. Now consider the edge
Ao— K, which is shown to be present by Lemma 28. It could be oriented by
R11, because Ao— B is an uncovered p.d. path from A to B, a parent of K;
Ao— C is an uncovered p.d. path from A to C, a parent of K; B and C are

not adjacent. Hence a contradiction. O

Lemma 30. Suppose Ao— B € REL(Jo— K). If Ao—oC and C is a parent
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of B in Py (i.e. the edge Ao—oC is required by condition Cg to be oriented as
A+ C), then C is a parent of K.

Proof. If B = K, it is trivial that C is a parent of K. Suppose B # K. Since
Ao— B € REL(Jo— K), B is a parent of K. By Lemma 28, Ao— K is
present in P4. It follows that C is adjacent to K, otherwise Ao— K could be
oriented by R9. The edge between C and K must be C — K, as required by
R8. Hence C is a parent of K. O

Lemma 31. Suppose Ao— B € REL(Jo— K), Ao—ocC and C is o parent of
B in Py (i.e. the edge A o—oC' is required by condition Cq to be oriented as
A~ C). Then

(1) if for some D € AR{Jo— K), C o—oD is in P4, then C € AR(Jo— K)
(so that the edge C o—oD is not subject to C1);

(2) If u = (C,A,...) is an uncovered circle path, no vertex (except possibly
C)onuisin AR(Xo—Y).

Proof. To show (1), note that if D € AR(Jo— K), then there is some vertex X
such that Xo— D € REL(Jo— K). By CP1 (Lemma 5), Xo— Cor X — C'is
in P4. By Lemma 30, C is a parent of K. So it is not X — C in Py, otherwise
Xo— K, which is shown to be present by Lemma 28, could be oriented as
X — K by R8. So it must be Xo— C in P4. Since Xo— D € REL(Jo— K)
and C is a parent of K, Xo— C obviously satisfies Definition 13, which means
C € AR(Jo— K).

To prove (2), suppose for contradiction that some vertex £ % C on u is in
AR(Jo— K). Obviously E # K, otherwise Ao— E would be present in P4 by
Lemma 27, which contradicts Lemma 6. So F is a parent of K. Now consider
the edge Ao— K, which is implied to exist by Lemma 27. A o—oC constitutes
an uncovered p.d. path from A to C, a parent of K, as implied by Lemma
30; u(A, F) is an uncovered p.d. path from A to E, a parent of K. Since u is

uncovered, Ao— K could be oriented as A — K by R11, a contradiction. [J
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Lemma 32. For any uncovered circle path v = (A,---E), either the edge
incident to A is not required by Ca to be oriented out of A, or the edge incident

to E is not required by C2 to be oriented out of F.

Proof. Suppose for contradiction that the contrary is true. By Lemma 30, both
A and E are parents of K. Let B be the vertex adjacent to A on u. By our
supposition, A o—oB is required by Cq to be oriented as A — B. This means,
by Definition 14, that there is a vertex C such that Bo— C € REL(Jo— K)
(and A is a parent of C'). Consider Bo— K, which is shown to be present by
Lemma 28. B o—oA constitutes an uncovered p.d. path from B to A, a parent
of K; u(B, E) constitutes an uncovered p.d. path from B to E, a parent of K.
Thus it is easy to see that Bo— K could be oriented as B — K by R11, a

contradiction. O

Lemma 33. If Ao— B € REL(Jo— K), and u = (A,C,--+) is an uncovered
circle path such that C is not adjacent to B in Py (so that the edge between A
and C is required by Cg to be oriented as A — C), then no vertex on u is a

parent of K in Py.

Proof. Since Ao— B € REL(Jo— K), by Lemma 28, Ao— K is present in Pj.
Suppose for contradiction that a vertex D (which could be C') on u is a parent
of K. By definition (Definition 13), either B = K or B is a parent of K. We
consider the two cases separately and derive a contradiction in each.

Case I: B = K, and hence K and C are not adjacent (which means D can’t
be C in this case). So u(A,D)® D — K is a p.d. path from A to K such that
the vertex adjacent to A on the path, namely C, is not adjacent to K. Let E be
the first vertex after C on the path which is adjacent to K (there must be one,
because D is adjacent to K). The edge between E and K, by Corollary 24, is
either Fo— K or E — K. It follows that (A,C,---, E, K) forms an uncovered
p.d. path from A to K such that C and K are not adjacent. Hence Ao— K
could be oriented as A — K by R10, a contradiction.
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Case 2. B — K is in P4. Then u(A4,D) is an uncovered p.d. path from
A to D, a parent of K, and Ao— B is an uncovered p.d. path from A to B,
a parent of K. Since C and B are not adjacent, the edge Ao— K could be
oriented as A — K by R11, a contradiction. O

Lemma 34. Suppose Ao— B,Co— D € REL(Jo— K), A # C and u ="
(A,-+,C) is an uncovered circle path in Py. Either the vertez next to A on
u 1s adjacent to B (so that Cs does not require orienting the edge out of A),
or the vertex next to C on u is adjacent to D (so that Cg does not require

orienting the edge out of C ).

Proof. Suppose for contradiction that the vertex next to A (which could be
C) is not adjacent to B, and the vertex next to C' (which could be A) is not
adjacent to D. We consider three cases separately and derive a contradiction
in each. o

Case I: B = D. In this case, obviously u & Co— B is an uncovered p.d.
path from A to B such that the vertex adjacent to A on the path is not adjacent
to B. Hence Ao— B could be oriented by R10 as A — B, a contradiction.

Case 2. B # D and one of them is K. Without loss of generality, suppose
B =K. Since Co— D € REL(Xo— Y), and D # K, by definition (Definition
13), D is a parent of K (B). Then u & Co— D constitutes an uncovered
p.d. path from A to D such that the vertex adjacent to A on the path is not
adjacent to B. This is exactly the same situation as Case I in the proof of
Lemma 33, which implies that Ao— B could be oriented as A — B by R10, a
contradiction.

Case 8 B # D and neither of them is K. By definition (Definition 13, both
B and D are parents of Y. Consider the edge Ao— K, which is shown to be
present by Lemma 28. Since Ao— B is an uncovered p.d. path from A to B,
a parent of K, u@® Co— D is an uncovered p.d. path from A to D, a parent of
K, and that the vertex next to A on u is not adjacent to B, the edge Ao— K
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could be oriented as A — K by R11, a contradiction. a

Notice that in our Orientation Algorithm, some o—o edges are explicitly
oriented to satisfy one of C; — Cs. Lemmas 29, 31, 32, 33, 34 ensure that
such orientations will not at the same time violate C; — C3 (and hence Ci,
C2 and Cg are consistent in themselves and with each other). Furthermore,
these lemmas imply that if we propagate such orientations with UR; alone, no
violation of C; — Cg would occur. (These claims will be formally demonstrated
in Lemma 35 and Lemma, 38.)

However, it is not yet clear whether propagations with UR; —URg3 together
will create violations of C; — C3. We resolve this worry in Lemma 35 and
Lemma 38, with which we establish the key fact that no violation of C; — C3
would occur in the Orientation Algorithm. Note that if any violation occurs, it
must occur by the end of the third stage of the Orientation Algorithm, namely
before all o—o edges in Eq U B2 U Eg get oriented. Let D* be the resulting
graph at the end of the third stage of the Orientation Algorithm — a partial
orientation of P§. Clearly the o—o edges left in D, if any, do not belong to
E; UE, UE3, and hence are not relevant to C3 — Cs. The next lemma states
two important properties of D. (We assume, without loss of generality, that

UR,; has priority over UR, and UR3.)
Lemma 35. Let D* be the resulting graph at the end of the third stage of the
Orientation Algorithm.
(i) for any vertex W € AR(Jo— K), there is no directed edge into W in D*;
(i3) for any three vertices X,Y, Z, if Xo— Y € REL(Jo— K), X o—oZ and

Z is a parent of Y in Py, then there is no directed edge into Z in D*.

Proof. We first demonstrate (i). Suppose for contradiction that some o—o
edge is oriented into a vertex in AR(Jo— K) by the end of the third stage of
the Orientation Algorithm. Let the first occurrence of such an orientation be

Ao—oB being oriented as A — B, where B € AR(Jo— K). We consider all the
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possible ways in which this orientation could occur and derive a contradiction
in each. '

Case I: A o—oB is oriented as A — B to satisfy one of C; — C3. Since
B is in AR(Jo— K), C1 does not dictate this orientation. It can’t be Cs,
as entailed by (2) in Lemma 31. So it must be Cgz, which means there is a
vertex E such that Ao— E € REL(Jo— K) and E, B are not adjacent. Then
Lemma 33 implies that B is not a parent of K. Furthermore, by Lemma, 28,
Ao— K is present in P4, which implies that B # K (because the edge between
A and B is A o—oB in Py). It follows that B is not in AR(Jo— K), which is
a contradiction.

Case 2: A o—oB is oriented as A — B by an application of URp. That is,
there is an C such that A o—oB o—o( is in P, and is oriented as A - C — B
before A o—oB is oriented. Then C o—oB being oriented as C — B would
be an earlier occurrence of orientation into B. This contradicts our choice of
Ao—oB.

Case 8 A o—oDB is oriented as A — B by an application of UR3. Again,
it is easy to see that this contradicts the assumption that A — B is the first
orientation into B.

Case 4: Ao—oB isoriented as A — B by an application of UR;. Then there
is a chain of applications of UR; (which could consist of just one application)
that leads to A — B where the first edge on the chain is not oriented by UR;.
So there are three subcases to consider:

Case 4.1: the first edge is oriented to satisfy one of Cy — C3. If it is Cy,
then in P§ there is an uncovered circle path with more than one edge between
two vertices in AR(Jo— K), which contradicts Lemma 29. It can’t be Cg, as
entailed by (2) in Lemma 31. So it must be Cgs, but in that case Lemma 33
implies that B is not a parent of K and Lemma 28 implies that B = K, which
contradict the membership of B in AR(Jo— K).

Case 4.2: the first edge is oriented by URy. That is, there are three vertices
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X,Y and Z (Z could be A) such that X o—oY 0—oZ is in P, and is oriented
as X. — Y — Z, which in turn orients the edge X o—oZ as X — Z. And
X — Z initiates a chain of UR; applications on an uncovered circle path
u=(X,Z,---,B) that eventually leads to the orientation of A — B. Now we
argue that for every vertex V on u beﬁween Z and B, there is an edge between
Y and V already oriented as Y — V before X — Z is thus oriented. The
argument is by induction. Let V; be the first vertex next to Z on u (V1 is B if
Z is A). Y and Vi must be adjacent in P§, for otherwise Z o—oV; would be
oriented as Z — V; by URy before X o-oZ is oriented By URg, according to our
convention of the priority of UR;. Since X and Vj aré not adjacent (because u
is uncovered), Y o—oV; should be oriented as ¥ — V3 by UR before X — 7 is
thus oriented. In the inductive step, suppose Y — V,, is oriented as such before
X — Z is thus oriented, where V, is the n’the vertex after Z on u. Consider
the n + 1% vertex V1. Again, it must be adjacent to Y, étherwise the edge
V,, 0—0Vp11 should be oriented by UR; before X o—oZ is oriented by our
convention of the priority of UR;. Furthermore, by Lemma 26, X and Vi
are not adjacent, so the edge Y o—oV,,11 should be oriented as ¥ — V11 by
UR,; before X o—oZ gets oriented. Hence, in particular, Y — B is already
present before X o—oZ gets oriented, and hence before A o—oB gets oriented.
This contradicts our choice of A o—oB.

Case 4.3 the first edge is oriented by URg3. That is, there are four vertices
XY, Z,W (Z could be A) such that W o—oY 0—0Z, W 0—0X 0—0Z, X o—oV
are in P§, and that W, Z are not adjacent. Furthermore, W o—oY o—oZ is
oriented as W — Y — Z, which in turn orients the edge X o—o0Z as X — Z.
This then initiates a chain of UR, applications on an uncovered circle path
u = (X, Z, -, B) that eventually leads to the orientation of A — B. Notice
that W, Z are not adjacent, so (W, X, Z,---, B) is also an uncovered path. By
the exact same argument as in Case 4.2, we can show that for every vertex V

between Z and B on u, there is an edge between Y and V already oriented as
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Y — V before X — Z is thus oriented. So in particular, Y — B is already
present before X o—oZ gets oriented, and hence before A o—oB gets oriented.
This contradicts our choice of 4 o—oB.

Thus we have established (i).

The proof of (ii) is completely parallel to the proof of (i). The only notable
difference is that in the counterparts of Case I and Case 4.1, we need‘to cite
some different lemmas. Take Case I for example. We need to argue that an
orientation to satisfy one of Cy; — C3 will not be an orientation that violates
(ii). For Cy, it suffices to cite (1) in Lemma 31; for Ca, we need to cite Lemma,
32; for Cg, we need Lemma 33. Other details are virtually the same as the

arguments for (i). 0

Corollary 36. In the course of the Orientation Algorithm, no violation of C1

occurs.
Proof. This follows trivially from (i) in Lemma 35. O

Corollary 37. In the course of the Orientation Algorithm, no wviolation of Ca

occurs.
Proof. This follows trivially from (ii) in Lemma 35. |

Lemma 38. In the course of the Orientation Algorithm, no violation of Cg

OCCUTS.

Proof. Suppose for contradiction that such an violation occurs. Let the first
occurrence be A o—o(C oriented as A «— C. This means there is a vertex
B such that Ac— B € REL(Jo— K), but C,B are not adjacent. Again,
this orientation must occur by the end of the third stage of the Orientation
Algorithm, so the following are all the possible ways in which this orientation

could occur. We derive a contradiction in each.
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Case 1: Ao—o( is oriented as A «— C to satisfy one of C3 — C3. Lemma 33
implies that it is not Cy or Ca. So it must be Cg, which, however, contradicts
Lemma 34.

Case 20 A o—oC is oriented as A «— C by an application of URgy, which
means there is a D such that C'o—oD o—o0A is in P§ and is already oriented as
C —-) D — A (before A « C is thus oriented). Then D must be adjacent to B,
otherwise A «+ D would be an earlier violation of C3. Furthermore, because

-Do—-oAo— Bisin Py, the edge between D and B is either D — B or Do— B by
Corollary 24. It can’t be the former, for otherwise (ii) of Lemma 35 implies that
there should not be any orientation iﬁto D (by the end of the third stage of the
Orientation Algorithm), which contradicts C — D. In the latter case, we argue
that D is not a parent of K, and hence Do— B € REL(J o— K). Suppose on
the contrary that D is a parent of K. Obviously Ao— K, which is shown to be
i)resent in P4 by Lemma 28, belongs to REL(Jo— K). Since Ao—oD — K, (ii)
of Lemma 35 implies that there should not be any orientation into D (by the
end of the third stage of the Orientation Algorithm), which contradicts C — D.
Therefore, D is not a parent of ‘K, and hence Do— B € REL(Jo— K). But
then C — D is an earlier violation of Cg than C' — A, a contradiction.

Case & Ao—oC is oriented as A «+ C by an application of UR3. That is,
there are two vertices D, F such that Do—oFo—o0A, Do—-o(Co—-oA, Co—oF arein
P§ and D, A are not adjacent. Furthermore, D o—oE 0—oA is already oriented
as D — E — A (before A « C is thus oriented). By the same argument as in
Case 2, there must be an edge Fo— B in P4. Furthermore, D and B must be
adjacent, otherwise D — E would contradict (ii) of Lemma 35. Corollary 24
implies that the edge between D and B is either D — B or Do— B. But then
the edge Ao— B could be oriented as A — B by R10 because (4,C, D, B)
is an uncovered p.d. path from A to B such that C and B are not adjacent.
Hence a contradiction.

‘ Case 4: Ao—oC is oriented as A « C by an application of UR;. Then there

70



is a chain of applications of UR; (which could consist of just one application)
that leads to C' — A where the first edge on the chain is not oriented by UR;.
So there are three subcases to consider:

Case 4.1: the first edge is oriented to satisfy one of C; — C3. Lemma 33
implies that it is not Cq or Ca. So it must be Cg, which, however, contradicts
Lemma 34.

Case 4.2: the first edge is oriented by UR5. That is, there are three vertices
X,Y and Z (Z could be C) such that X o—oY 0—oZ is in P§, and is oriented
as X — Y — Z, which in turn orients the edge X o—oZ as X — Z. And
X — Z initiates a chain of UR; applications on an uncovered circle path
u=(X,Z,---,A) that eventually leads to the orientation of C — A. By the
same induction as in Lemma 35, it is easy to show that for every vertex V on
u after Z, there is an edge Y o—oV in P§, oriented as ¥ — V before X o—o0Z
is oriented. So in particular, Y is adjacent to A in P§ (and hence the edge
between them is Y o—oA in Py), and the edge between them is oriented as
Y — A before X o—oZ is oriented. Then Y must be adjabent to B in Py,
for otherwise Y — A would be an earlier violation of Cg than C — A. By
Corollary 24, the edge between Y and B is either Y — B or Yo— B in Py.
If it is Y — B, then according to (ii) of Lemma 35, there should not be any
orientation into Y (by the end of the third stage of the Orientation Algorithm),
which contradicts X — Y. So it must be Yo— B in P4. Furthermore, Y is not
a parent of K, for otherwise there should not be any orientation into Y by (ii)
of Lemma 35 (because Ao— K € REL(Jo— K)), which contradicts X — Y.
Furthermore, since Ao— B € REL(Jo— K), there is a p.d. path from J to
A such that no vertex on the path is a parent of K. This path appended by
Ao—oY is a p.d. path from J to Y with no parent of K on it. Hence Yo— B is
in REL(Jo— K). This implies that X and B are adjacent in P4, for otherwise
X — Y would be an earlier violation of C3. The edge between X and B,
furthermore, is either X — B or Xo— B by Corollary 24. Then consider the
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path (A,C,---, X, B), which is a p.d. path from A to B such that C is not
adjacent to B and the segment between A and X is uncovered. It is easy to
see that Ao— B could be oriented as A — B by R10, a contradiction.

Case 4.3 the first edge is oriented by URj3. That is, there are four vertices
X,Y,Z,W (Z could be C) such that W o—oY 0—0Z, W o—0X 0—0Z, X 0o—oY
are in P§, and that W, Z are not adjacent. Furthermore, W o—oY o—oZ is
oriented as W — Y — Z, which in turn orients the edge X o—oZ as X — Z.
This then initiates a chain of UR; applications on an uncovered circle path
u=(X,Z,---,A) that eventually leads to the orientation of C — A. Notice
that W, Z are not adjacent, so (W, X, Z,---, B) is also an uncovered path. The

rest of the argument is extremely similar to that of Case 4.2. O

Let D j—x be the DAG output of the Orientation Algorithm. We have

thus proved the following proposition:

Corollary 39. Dy_.x is a DAG orientation of P§ free of unshielded colliders

and agreeable to Jo— K.

Proof. Tt follows from Corollary 36, Corollary 37, Lemma 38 and the correctness

of Meek’s algorithm. |

Let H jo—x be the graph resulting from orienting Py, — the circle compo-
nent of the arrowhead augmented graph of P4, which is the same as the circle
component of Py — into Dp_x. By Lemma 16 and Corollary 39, Hjp—xk is
a MAG equivalent to G. Note that in H p_,x there is the edge J — K. As
planned earlier, what is left to show is that Hj—x can be transformed into
a MAG where J «— K appears through a sequence of equivalence-preserving
changes of — to > (recall Lemma, 19).

First we mention two simple facts about Py.

Lemma 40. For any Ao— B in Py, if there is a p.d. path u other than Ao— B

from A to B, then some vertex on u s adjacent to both A and B.
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Proof. The argument is an induction on the length of u. If u consists of two
edges, the interior vertex on u (i.e., other than A or B) is obviously adjacent
to both A and B. Suppose u consists of three edges. If it is covered, then
obviously one of the two interior vertices is adjacent to both A and B. If it is
uncovered, then the vertex adjacent to A on w must also be adjacent to B, for
otherwise Ao— B could be oriented by R10. In the inductive step, suppose the
proposition holds if u consists of less than n edges. Consider the case where
u consists of n edges. If it is covered, then a subsequence of u constitutes a
p.d. path from A to B with less than n edges, and hence by the inductive
hypothesis, a vertex on u is adjacent to both A and B. If u is uncovered, then
the vertex adjacent to A on u must also be adjacent to B, for otherwise Ao— B

could be oriented by R10. a

Lemma 41. Suppose C «—oAo— B is in Ps. If C and B are not adjacent,
then Ao— B ¢ REL(Jo— K) or Ao— C ¢ REL(Jo— K).

Proof. Suppose for contradiction that Ao— B € REL(Jo— K) and Ao— C €
REL(Jo— K). By Lemma 28, Ao— K is in Ps. However, by Definition 13,
both B and C are parents of K, which implies that Ao— K could be oriented

by R11 because C and B are not adjacent, a contradiction. |

Now we present the key lemma, of which we provide an informal explanation
here. Note that in H 5,k all o— edges in P4 are oriented as —. So in particular,
all edges in REL(Jo— K) are oriented as —. Let M be any MAG identical to
H ok except possibly that some o— edges in REL(Jo— K) are oriented as
« (instead of —). The lemma below shows that if all edges in REL(Jo— K)
are not oriented as < in M, then some — in M corresponding to some o—
edge in REL(Jo— K) satisfies the conditions in Lemma 19, and hence can be
changed into « while preserving equivalence. As a special case, for example,
in H -k some — edge corresponding to a o— edge in REL(Jo— K) can be

changed into <. After this change, some remaining — corresponding to a o—
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edge, if any, can be further changed to «— while preserving equivalence. This
process can be continued until every edge in REL(Jo— K), and in particular

Jo— K, can be oriented as J «» K while preserving the Markov equivalence

with G.

Lemma 42. Let M be any MAG identical to H jo— i except possibly that some
o— edges in REL(Jo— K) are oriented as < (instead of —). Let

RREL = {A — B in M|Ao— B is in Py and Ao— B € REL(Jo— K)}

If RREL is not empty, then some edge therein can be changed to < while

preserving Markov equivalence with M.

Proof. Suppose RREL is not empty. Let
W = {B|Z4 s.t.A —» B € RREL}

Let Y be a minimal vertex in W, that is, Y € W and no proper ancestor of
D in M belongs to W. Let X be a vertex such that X — Y € RREL and no
proper descendant of X in M has this property. We show that X — Y satisfies
the conditions (t1)-(t4) of Lemma 19. '
Suppose, contrary to (t1), that X is an endpoint of an undirected edge
X —V in M. Since any undirected edge in M is also in Hjo—x, X —V is also
in P4 (see Definition 12). On the other hand, since X —» Y € RREL, Xo— Y
is in P4. But then Xo— Y could be oriented by R6, a contradiction.
v Suppose, contrary to (t2), that there is a directed path from X to Y in
M that does not contain X — Y. The corresponding path in P4 must be
potentially directed. It follows from Lemma 40 that some vertex Z on the
path is adjacent to both X and Y. Since M is a MAG, it must be the case
that X —» Z — Y is in M, and so the corresponding path (X, Z,Y) in Py is
potentially directed. Notice that the edge between Z and Y can’t be Z —o Y
in P4 according to Lemma 7, because Xo— Y is present. So, by the definition

of p.d. path, the edge between X and Z is either X o—oZ or X — Z or Xo— Z
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or X —o Z, and the edge between Z and Y is either Z o—oY or Z — Y or
Zo— Y. We enumerate the possibilities below and derive a contradiction in
each:

Case I: X o—oZ o—oY appears in P4. This contradicts property CP1
(Lemma 5) because Xo— Y is present in Pj.

Case 2: X o—oZ — Y appears in P4. Because Xo— Y € REL(Jo— K),
and X o—oZ is oriented as X — Z, D is not agreeable to Jo— K, which
contradicts Corollary 39.

Case 8 X o—oZo— Y appears in Py. If Z is not a parent of K, then
Zo— Y € REL(Jo— K). But Z is a proper descendant of X in M, which
contradicts our choice of X. So Z must be a parent of K. Notice then that
Xo— K — which is shown to be present in P4 by Lemma 28 — belongs to
REL(Jo— K), but X o—oZ is oriented as X — Z, which means that Dj_x
is not agreeable to Jo— K. This contradicts Corollary 39.

Case 4: X — Z o—oY appears in Pq. Then Z is not a parent of K, for
otherwise Xo— K — which is implied to be present by Lemma 28 — could be
oriented as X — K by R8. Furthermore, since Xo— K is shown to be present
in Py by Lemma 28, Z # K. So Z ¢ AR(Jo— K). It follows that Dyp_x
is not agreeable to Jo— K, because Z o—oY is oriented as Z — Y, which
contradicts Corollary 39.

Case 5 X — Z — Y appears in P4. Then Xo— Y could be oriented by
R8, a contradiction.

Case 6: X — Zo— Y appears in Py. Then Z is not a parent of K,
for otherwise Xo— K could be oriented by R8. It follows that Zo— Y €
REL(Jo— K). But Z is a proper descendant of X in M, which contradicts
our choice of X.

Case 7. Xo— Z o—oY appears in Py. Then Z ¢ AR(Jo— K), for
otherwise Xo— Z € REL(Jo— K), but Z is a proper ancestor of Y in M,

which contradicts our choice of Y. However, Zo-eY is oriented as Z — Y, which
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means that D j_x is not agreeable to Jo— K. This contradicts Corollary 39.

Case 8& Xo— Z — Y appears in Py. Then Z must be adjacent to K,
otherwise the edge Xo — K could be oriented by R9. Furthermore, since
Z - Y — K is in Py, the edge between Z and K is Z — K in Ps. So
Xo— Z € REL(Jo— K). But Z is a proper ancestor of Y in M, which
contradicts our choice of Y.

Case 9: Xo— Zo— Y appears in Ps. If Z is not a parent of K, then
Zo— Y € REL(Jo— K). But Z is a proper descendant of X in M, which
contradicts our choice of X. So Z must be a parent of K. But then Xo— Z €
REL(Jo— K), and Z is a proper ancestor of Y in M, which contradicts our
choice of Y.

Case 10: X —o Z o—oY appears in Py. This contradicts Lemma 13, because
Xo—Y is present.

Case 11: X —o Z — Y appears in Ps. Then Xo— K could be oriented as
X — K by either R8 or R9, a contradiction.

Case 12: X —o Zo— Y appears in Py. Z is not a parent of K, for otherwise
Xo— K could be oriented by R8. So Zo— Y € REL(Jo— K). But Z is a
proper descendant of X in M, which contradicts our choice of X.

Next, we show that condition (t3) holds as well. For any W — X in M,
it corresponds to either W — X or Wo— X or W o—oX or W —o X in Py.
We argue that in any case W and Y are adjacent. In the former two cases, by
Lemma 5, W and Y are adjacent. In the case of Wo—o0X, since it is oriented as
W — X in M, W must be adjacent to Y, for otherwise D s,k is not agreeable
to Jo— K, which contradicts Corollary 39. In the case of W —o X, by Lemma
13, W and Y are adjacent. Furthermore, the edge between W and Y must be
W —Y in M, because W — X — Y is in M and M is a MAG.

For any W + X in M, it corresponds to either Wx— X or W «oX in
P4. In the former case, W and Y are adjacent by Lemma 5. In the latter case,

W «o0X € REL(Jo— K) by our assumption. It then follows from Lemma. 41

76



that W and Y are adjacent. So W and Y are adjacent in M. Furthermore,
since M is a MAG, the edge between W and Y iseither W — Y or W & Y in
M.

Lastly, we show that condition (t4) in Lemma 19 is also satisfied. Sup-
pose otherwise, that is, in M there is a path u = (W,U,.-., X,Y) which is
discriminating for X. We derive a contradiction below.

We first argue that if the edge between W and U is not Wx— U in Py (i.e.,
the arrowhead at U is not already in P,), then it (together with the next edge
on u) can be substituted by a *— edge such that the resulting path is still
discriminating for X in M.

Here is the argument. First of all, the edge between W and U can’t be
W «—oU in Ps. Suppose otherwise; then in M the edge between W and
U must be W < U by the definition of discriminating path (Definition 7).
According to our assumption about M, W «oU € REL(Jo— K). It follows
that both W and Y are parents of K, and Uo— K is present in P4 by Lemma
28. Furthermore, notice that U — Y is in M by the definition of discriminating
path, which means the edge between U and Y in P, constitutes an (uncovered)
p.d. path from U to Y. Since W and Y are not adjacent by the definition of
discriminating path, it is easy to see that Uo— K could be oriented as U — K
by R11, a contradiction.

So, if the edge between W and U is not Wx— U in Py, it is either W —o U
or W o—oU. By the definition of discriminating path, the next edge on u in
M must be bi-directed, say U < V. If it is W —o U that appears in Py, then
U < V is not in P4 by Lemma 7. So it must be Uo— V in Py4. It then follows
from Lemma 13 that Ws— V is in P4. So substituting Wx— V for (W,U,V)
yiélds another discriminating path for X (on which Y is the endpoint adjacent
to X) in M. On the other hand, suppose it is W o—oU that appears in Py. If
U < V is already in Py, then by Lemma 6, W < V also appears in P, (and
hence also in M). So (W, U, V) could be replaced by W « V. If U + V is not
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already in Py, then by our assumption about bi-directed edges in M, either
Uo— V or Vo— U appears in Py and belongs to REL(Jo— K). In the former
case, W must be adjacent to V, otherwise the orientation of W o—olU (into
W — U) is not agreeable. By Corollary 24, the edge between W and V is either
W — V or Wo— V in Py, and so (W, U, V) could be replaced by Wx— V.
In the latter case, by Lemma 6, either V -—— W or Vo-s W is in Py. Now if
W is not a parent of K, which means W ¢ AR(Jo— K) (W # K because
Y belongs to AR(Jo— K) but is not adjacent to W), then the orientation of
W o—oU (into W — U) is not agreeable. So W is a parent of K, but then the
edge Vo— K — which is implied to be present in P4 by Lemma 28 — could be
oriented as V — K by R11, because W and Y are not adjacent (and the edge
between V and Y constitutes an uncovered p.d. path in Py), a contradiction.
Therefore, without loss of generality, we can safely assume that the edge
between W and U is Wx— U in Py, i.e., the arrowhead at U is already in Py.
Now consider the subpath between W and X, u(W, X). Let the vertex
adjacent to X on u(W,X) be ). By the definition of discriminating path,
Q — Y is in M, and Q is a collider on u. Since we have shown that (t2) holds
of X - Y in M, the edge between @ and X is not @ « X. So it must be
@ « X. Therefore, every edge on u{W, X) other than Wx— U is bi-directed.
It is easy to see that not all of these bi-directed edges are in Py, for otherwise
u is already a discriminating path for X in P4, and hence Xo— Y could be
oriented by R4. Let P; < P, be the closest edge to W on u(W,X) such
that P, + P, does not appear in Ps. Then by our assumption about the bi-
directed edges in M, it is either Pyo— P, or Pyo— P; in P4. Without loss of
generality, suppose it is Pjo— Ps, whfch, according to our assumption, belongs
to REL(Jo— K). Note that, by our choice of P; « P, all the arrowheads
between Py and W are already in P4, so the edge between P; and Y should be
oriented as Py — Y by either R1 (if Py is U) or R5. Since Y is a parent of K,

Pyo— K, which is shown to be present in P4 by Lemma 28, could be oriented
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by R8, a contradiction.
Therefore, all the conditions in Lemma 19 are met. Thus changing X —» Y

to X < Y will yield a MAG Markov equivalent to M. O

Corollary 43. Gp_,x can be transformed via a series of equivalence-preserving

changes into a MAG where J < K appears.

Proof. Using Lemma 42, a simple induction on the number of edges in REL(Jo—

K) would do. O

Theorem 3. Py is complete with respect to invariant tails. That is, for every
circle in Py, there is a member of [G] in which the circle is oriented as an

arrowhead.
Proof. 1t follows readily from Lemma 16, Corollary 39 and Corollary 43. O
The main result of this paper thus follows.

Theorem 4. Py = Pg, i.e., Ps is the CPAG for the Markov equivalence class
of G.

Proof. 1t follows from Theorems 1, 2 and 3. O

3.3 A Characterization of CPAGs

The completeness result leads to a syntactic characterization of CPAGs by the
orientation rules. To borrow a term from Andersson et al. (1997), we say a
non-circle mark in a partial mixed graph is protected by an orientation rule if
it could be introduced by that orientation rule, given all other marks in the
graph. The next theorem gives the necessary and sufficient conditions for a
partial mixed graph — that is, a graph consisting of —, <, ——, 0—, 0—0, o—

— to be a CPAG for some Markov equivalence class of MAGs.

Theorem 5. A partial mized graph is a CPAG for a Markov equivalence class

of MAGs if and only if
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(i) (al)-(a8) (in Definition 1) and CP1—CP4 hold; and there is no inducing

path between two non-adjacent vertices;
(i1) the circle component is chordal;
(iii) it is closed under R8 — R11; and

(iv) every non-circle mark is protected by one of RO — R11.

Note that the characterization of essential graphs — graphs that represent
Markov equivalence classes of DAGs — given in Andersson et al. (1997) is
essentially of the same sort. A proof of the theorem is not hard to construct
given what we have shown in the last section. In particular, we can construct
a MAG by tail augmenting (or arrowhead augmenting) the given partial mixed
graph and orienting the circle component as a DAG with no unshielded colliders.
The resulting MAG is a member of the Markov equivalence class of which the

given graph is the CPAG.

4 Conclusion

In this paper we provided a characterization of Markov equivalence classes of
ancestral graphical models. We did this by defining a complete representation
of Markov equivalence classes of MAGs — CPAGs, and introduced a set of
orientation rules by which one can construct a CPAG from a given MAG. This
work is thus analogous to, and can be regarded as an extension of, the results
presented in Meek (1995) and Andersson et al. (1997), since DAGs are special
cases of MAGs.

As discussed earlier, two existing representations of equivalence classes of
MAGs in the literature are PAGs and JGs. The former is simply a less in-
formative version of CPAGs, which only requires to include non-circle marks
enough to cépture all the m-separation features. The latter ignores the distinc-

tion between circles and tails, and hence only aims to represent the common
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arrowheads shared by all the members of an equivalence class. Interestingly, to
capture all the m-separation features of an equivalence class, it is not necessary
to make the tails explicit. So, as shown in Ali (2002), a global Markov prop-
erty can be defined in a JG that corresponds exactly to the m-separations of
the equivalence class of MAGs represented. Therefore, a JG is automatically a
PAG, save the difference in symbols. It is thus clear that to characterize PAGs
orJ Gs, RO — R4 (or a slightly modified version in the case of JGs) would do.

Although the tails do not contribute to represent m-separations, they do
have very intuitive causal interpretations, which renders CPAGs a more desir-
able formalism for the purpose of causal inference. Under the standard causal
interpretations of MAGs (Richardson and Spirtes 2003), invariant tails can sig-
nify qualitative causal relationships between variables, and some of them are
even crucial for making quantitative predictions about the strength of causal
effects. In fact, the foremost reason for dealing with equivalence classes is the
need of causal discovery and inference.

The bearing of the results presented here on causal inference is obvious.
There are two major approaches to search of causal models: independence-
based search and score-based search. The canonical algorithms of the former
sort are the PC algorithm (Spirtes et al. 1993) and the FCI algorithm (Spirtes
et al. 1999); the canonical algorithm of the latter sort is the GES algorithm
(Meek 1996, Chickering 2002). PC and GES both assume no latent confounding
and selection bias, while FCI does not need the assumption. The current paper
shows how to make the FCI algorithm complete. We speculate that it may
also prove important in the design of a GES algorithm in the presence of latent
confounding and selection bias.

We end with noting an open problem at this point. It is the one of causal
discovery given background knowledge. More specifically, how can we construct
a CPAG with some orientations given as ”invariant”, that is, a CPAG for a

subset of a Markov equivalence class of MAGs? This is of course closely related
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to the task of characterizing an arbitrary set of Markov equivalent MAGs, for

which Ali (2002) presented some interesting results.
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