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1. Introduction

The field known today as epistemic logic is almost fifty years old.
The philosopher Georg von Wright proposed the study of the logics
of knowledge and belief in a celebrated essay published in 1951 (von
Wright, 1951). Eleven years later Jaakko Hintikka wrote an important
book in the field (Hintikka, 1962). Hintikka’s essay remains one of the
best sources for understanding the nature of the enterprise in spite
of the considerable amount of work done in this area during the last
four decades. Hintikka was keenly aware of the special foundational
problems that affect this branch of modal logic and devised formal
solutions sensitive to these problems.

During the 60’s and early 70’s there was an explosion of work in
epistemic logic. This work is summarized in (Lenzen, 1978). Many sys-
tems were studied both logically and conceptually and the adequacy
of several special axioms scrutinized. During the last two decades of
the past century a considerable amount of work in epistemic logic has
been done in computer science and related areas. In fact, epistemic
logics looked as ideal ‘domain independent’ tools for representing the
knowledge of artificial or human agents. Many of the ideas proposed by
Hintikka (and also by Dana Scott in his seminal ‘Advice in modal logic’
(Scott, 1970)) have been studied carefully. Hintikka and Scott insisted
on the need to study both multi-modal and multi-agent logics. Single
agents can be certain that something is the case or merely believe that,
or they can claim that they know a proposition, or only judge it highly
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likely. In addition an agent can claszm to have an attitude towards a
proposition or it can attribute the attitude to a different agent. Finally
a group of agents can commonly known something, etc. Multi-modal
logics of belief, knowledge and certainty have been recently studied in
detail and this study revealed interesting things about each attitude in
isolation. By the same token, we have today a fairly firm grasp of multi-
agent logics of knowledge and belief, and these formalisms have found
interesting applications in distributed Artificial Intelligence ((Fagin et
al., 1995)) and the Logic of Games ((Parikh, 1998), (Pauli, 1998)).
This fact is, without doubt, a sign of progress that should be welcome.
Nevertheless, many researchers agree that the most basic foundational
problems that affected the logics of belief and knowledge since their
inception are still with us. The following section will be devoted to
providing a list of some of these problems. Then we will begin to ar-
ticulate a solution extending the ideas first proposed by Montague and
Scott in (Montague, 1970) and (Scott, 1970). Although this solution
is well-known we will suggest that it offers more than it is commonly
assumed.

1.1. SOME FOUNDATIONAL PROBLEMS IN EPISTEMIC LOGIC

Most modal semantics start with a space of ‘possible worlds’ or possible
states of affairs. Informally the idea is to have a stock of primitives
standing for all the ways the world might be. The metaphysics sus-
taining this idea can get rather subtle. Here we will only focus on the
epistemological problems it poses.

In many applications even when the worlds in the model are posited
as logical unstructured primitives, they are informally understood as
composite entities. For example, it seems quite intuitive to consider
worlds as structured n+1-tuples containing the nature state and n other
coordinates specifying the epistemic states of the n agents. The nature
state can have different encodings, depending on the considered appli-
cation. In game theory it could be a strategy, in multi-agent systems
an environment state of some form, etc.! What about the epistemic
states of the agents? In fields like Economics knowledge is represented
by a partition of worlds. Alternatively the epistemic state of each agent
can be represented by the set of propositions that the agent believes.
In turn, each of these propositions is usually constructed as a set of
worlds.

It is quite clear that the idea of interpreting worlds as composite
entities (i.e. containing epistemic contexts as components) cannot be

! See (Fagin et al., 1995) chapter 4 on runs and systems for applications in multi-
agent systems. An informal explanation can be found in section 4.1.
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taken at face value on pain of circularity. In fact, the worlds used in the
model would have worlds as components.? Jon Barwise (Barwise, 1988),
has recently suggested that the circularity can be seen as non-vicious by
adopting an underlying set theory without the axiom of foundation.®
This use of non-well founded set theory has been recently explored in
detail by several researchers.

In epistemic logic there is a genuine need for a representation capable
of keeping track of the epistemic state of the agent(s) that inhabit this
or that world. But it seems that as long as such an epistemic state is
encoded propositionally this type of representation cannot be taken at
face value. Or it can be taken at face value only by giving up some
important axioms of set theory.

Worlds can be construed as composite entities encoding the local
states of agents together with the environment state as long as neither
representation is propositional. For example, in multi-agent systems
the local states might be encoded as sets of actions taken by agents at
some point in time, or messages passed from agent to agent, or pairs of
truth assignments and sets of formulas, etc.* But, local states cannot be
encoded as propositions (or sets of propositions) without circularity, as
long as we construe (as usual) propositions as sets of worlds themselves.

There is yet another alternative. The idea is to associate a neigh-
borhood of propositions to each world. The intuition is that the set of
propositions in the neighborhood of world I" is the set of propositions
accepted or believed by certain agent at I'. Now the propositions in
question are no longer part of I, they are associated with I'. This
is enough to break the circularity. At the same time the solution is
expressive enough to keep track of the epistemic states of agents at
worlds. This is the solution that we will explore in this essay. Of course,
it is not a new solution to this and related problems in modal logic.
Nevertheless, we will try to persuade the reader of the fruitfulness of
this old idea. But before plunging into these arguments we should try
to make explicit other problems of rival approaches.

The dominant tool in modal semantics is the so-called Kripke se-
mantics. Roughly the idea of this semantics is to add to a set of worlds
(understood as primitives or points) an accessibility relation. A frame F
is a pair (W, R) where W is a set of worlds and R an accesibility relation
over W. A Kripke model M is a triple ((W, R), |=) where (W, R) is frame
and [= is a valuation, i.e. a relation between worlds and propositional
letters. The valuation is extended beyond the propositional letter level

% Or sets of sets of such worlds, i.e. sets of propositions.

3 See the chapter on Modal Logic in (Barwise-Moss, 1988) for a detailed account
of this issue.

* See (Fagin et al., 1995) section 4.4 for several examples.
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in a standard manner for Boolean connectives. Then a proposition P is
declared known at a certain point I' € W in a model M = ((W, R), =) as
long as P comes out true in all points accessible from I'" — in the frame
(W, R). Relevant properties of the resulting knowledge operator will
then be correlated to relevant properties of the accessibility relation.
For example, the idea that knowledge entails truth would correspond
to reflexivity, etc.

But according to this semantic account all knowledge operators
should have certain properties and some of these properties have been
found objectionable. We will focus here on the properties that corre-
spond to what has been commonly called logical omniscience - the
problem was first observed (and named) by Hintikka in (Hintikka,
1962). First notice that since a tautology holds true in every world
we have that any tautology is known at every world. Secondly if P is
known and P entails Q, then QQ should be known as well. Finally if P
is known and Q is known, then their conjunction P A Q is also known.
The latter property is usually called Adjunction.

Many researchers think that those properties of knowledge are too
strong. The reasons for this vary but before entering this let’s first point
out rapidly that none of them needs to be postulated as essential in
neighborhood semantics.

A frame in neighborhood semantics is a pair (W, N) where W is a
set of worlds and N a function from elements of W to sets of sets of
worlds. When we have a world I and an associated neighborhood N(T")
there is a very simple manner of determining if a proposition P C W
is known at I' in the corresponding model. We just check whether P is
in N(I'). If the answer is yes, then P is indeed known. Otherwise it is
not known. But then it is rather simple to see that none of the forms of
logical omniscience previously considered is now obligatory.> Nothing
requires that the set of worlds W is part of N(I'). On the other hand if
a proposition P is in a neighborhood, and Q is a superset of P, Q need
not be in the neighborhood. Finally even of both P and Q are in N(I")
P N Q need not be in the neighborhood.

It is a rather contentious issue under the philosophical point of view
whether a knowledge operator should or should not obey the properties
that determine logical omniscience. With some provisos some authors
think that none of these properties should be required, others think
that all of them should be imposed and, finally, some think that only a
subset of these properties are required. More importantly these judge-
ments vary considerably depending on the studied attitude (knowledge,

5 A weak form of logical omniscience, not considered above, continues to hold.
When A and B are logically equivalent, A should be known if and only if B is known.
The status of this form of logical omniscience will be discussed below in section 5.
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belief, likelihood, etc) and depending on whether the formalized concept
intends to capture either epistemic attributions made about a third
agent or epistemic clatms made by the agent himself.

It is perhaps less controversial that some of the properties in question
are problematic for some epistemic notions, under all interpretations of
the operator. For example, Adjunction is an inadequate property for a
monadic epistemic operator capturing the property of ‘high probability’
- or ‘the probability of P is greater than a certain threshold #. It is
clear that even when the probability of propositions P and Q surpasses
the threshold #, their conjunction might bear a probability below t.
We will argue below that only a minor modification of the standard
presentation of neighborhood semantics suffices to provide an adequate
tool to encode a family of monadic notions of likelihood.®

So, the model that we are about to present has two main features. On
the one hand it facilitates the study of useful epistemic models where
Logical Omniscience fails. On the other hand it offers a solution to
the problem we mentioned at the beginning of this section, namely the
need of keeping track of epistemic states of agents in possible worlds.”
Summing up: we will argue that the proposed model makes possible
the study of an interesting family of epistemic notions.

An important part of this article will be devoted to argue that
the use of neighborhood semantics makes possible the study of the
interesting role of the so-called Barcan formulas in epistemic logic. The

® The term ‘likelihood’ here could be confusing. Strictly speaking the likelihood
- of a hypothesis H on data e (L(¥H/e)) is P(e/H) - where P is a standard probability
function. Nevertheless, as (Halpern-Rabin, 1987) suggest, ‘probability theory is not
the only way to reason about likelihood’ (see (Halpern-Rabin, 1987), page 381). Our
use of the term is neutral with respect to the standard use and a series of alternative
manners of characterizing likelihood. These alternative accounts usually introduce
some primitive notion like degrees of possibility (Dubois-Prade, 1992), or degrees of
potential surprise, or degrees of expectation (Gardenfors-Makinson, 1994) and then
they proceed to provide a qualitative structure in order to further articulate this
primitive notion. On the other hand these theories are seen as providing an account
of inductive inference (Spohn, 1988), (Levi, 1996). Potentially the models offered
here can be enriched in order to reflect some of these different accounts of likelihood,
but we are focusing on very fundamental properties of such operators — shared
by several of these accounts. Our model also diverges from accounts like Savage’s
(Savage, 1972), who focuses on clarifying the two-place operator ‘the event p is more
likely than q. Logics of these type have been recently studied by modal logicians
((Gardenfors, 1975) presents an interesting analysis of the notion of probability
as an intensional operator, as well as references to previous work in this area).
Nevertheless, in these formalisms there is no direct way of saying “p is likely’. In this
paper we will consider first order extensions of a family of classical modal logics that,
we argue, can be used to encode several monadic notions of qualitative likelihood.

" To be more precise, it allows to keep track of propositional representations of
epistemic states of agents in possible worlds.
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use of neighborhood semantics is particularly useful for studying the
role of those formulas in logics of certainty and likelihood. We will also
argue that this study is beyond the expressive power of Kripke models.
Establishing the result will require to extend Montague-Scott’s models
to the first-order case. We will do this in the following sections after
providing some background.

From a logical point of view we will show that the Barcan formulas
correspond to fundamental properties of neighborhood frames. We will
also show that these properties are quite different from the equally
fundamental, but differently motivated, properties that the Barcan
formulas induce in Kripke frames. From an applied point of view we
will argue that such properties reveal interesting aspects of epistemic
logics where logical omniscience fails.

2. Propositional modal logic

We will introduce here the basis of the so-called neighborhood semantics
for propositional modal logics. We will follow the standard presentation
given in Part III of (Chellas, 1980).

A warning about nomenclature is needed at this juncture. Chellas’
name for Montague-Scott structures is minimal models rather than
neighborhood models. In order to keep the terminology simple we
will continue to refer to Montague-Scott’s structures as neighborhood
models.

DEFINITION 2.1. M = (W, N, k=) is a neighborhood model if and
only if:

(1) W is a set
(2) N is a mapping from W to sets of subsets of W

(3) F= is a relation between possible worlds and propositional letters.

Of course the pair F = (W, N) is a neighborhood frame. The notation
M, T |= A is used to state that A is true in the model M at world I".
The following definition makes precise the notion of truth in a model.

DEFINITION 2.2. Truth in a neighborhood model: Let I be a world
in a model M = (W, N, |=). |= is extended to arbitrary formulas in the
standard way for Boolean connectives. Then the following clauses are
added in order to determine truth conditions for modal operators.

(1) M, I' = OA if and only if |A|M € N(T')
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(2) M, T |= OA if and only if |- AJM ¢ N(T)
where, |[A/M = {T € W: M, T E A}

|A|M is called A’s truth set. Intuitively N(I') yields the proposi-
tions that are necessary at I'. Then OA is true at I' if and only if
the ‘true set’ of A (i.e. the set of all worlds where A is true) is in
N(T'). If the intended interpretation is epistemic N(T') contains a set of
propositions understood as epistemically necessary. This can be made
more precise by determining the exact nature of the epistemic attitude
we are considering. N(I') can contain the known propositions, or the
believed propositions, or the propositions that are considered highly
likely, etc. Then the set P ={A € W: |= 0A} determines the space of
epistemic possibilities with respect to the chosen modality - knowledge,
likelihood, etc.

Clause (2) forces the duality of possibility with respect to necessity.
It just says that QA is true at T if the denial of the proposition expressed
by A (i.e. the complement of A’s true set) is not necessary at I'. As we
said above, N(I') is called the neighborhood of T.

3. Augmentation

The following conditions on the function N in a neighborhood model
M = (W, N, =) are of interest. For every world I in M and every
proposition (set of worlds) X, Y in M:

(m) If X N'Y € N(I'), then X € N(T'), and Y € N(T).
(c) fX € N(T'), and Y € N(T'), then X N Y € N(I).
(n) W € N(T)

When the function N in a neighborhood model satisfies conditions
(m), (c) or (n), we say that the model is supplemented, is closed under
intersections, or contains the unit respectively. If a model satisfies (m)
and (c) we say that is a quasi-filter. If all three conditions are met it
is a filter. Notice that filters can also be characterized as non-empty
quasi-filters - non-empty in the sense that for all worlds I' in the model

N(T) # 0.

DEFINITION 3.1. A neighborhood model M = (W, N, =) is augmen-
ted if and only if it is supplemented and, for every world T in it:

N NT)e NT).
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Now we can present an observation (established in (Chellas, 1980),
section 7.4), which will be of heuristic interest in the coming section.

OBSERVATION 3.1. M is augmented just in case for every world T’
and set of worlds X in the model: (BS) X € N(T) if and only if N N(T')
C X.

3.1. EPISTEMIC INTERPRETATION OF AUGMENTATION

In recent work in epistemic logic it is quite usual to represent agents by
acceptance sets or belief sets, obeying certain rationality constraints. It
the representation is linguistic the agent is represented by a logically
closed set of sentences. If the representation is done in a sigma-field
or relative to a universe of possible worlds, the agent is represented by
a set of points such that all propositions accepted (believed) by the
agent are supersets of this set of points. Adopting either representation
is tantamount to impose logical omniscience as a rationality constraint.

When a neighborhood frame is augmented we have the guarantee
that, for every world I', its neighborhood N(I') contains a smallest
proposition, composed by the worlds that are members of every propo-
sition in N(T'). In other words, for every I' we know that N(I") always
contains NN(I") and every superset thereof.

We will propose to see the intersection of the neighborhood of a
world as an acceptance set for that world, obeying the rationality con-
straints required by logical omniscience. The following results help to
make this idea more clear.

OBSERVATION 3.2. If M is augmented, then for every I' in the
model: (1) T = OA iff and only if N(T) C |AM, and (2) )T = -
O A iff and only if N(T') € |AIM.

Proof.

Assume I' = O A. Then we have |A|™ € N(I"). But if the model is
augmented:

(BS) X € N(I') if and only if N N(T) C X

So, by (BS), we have N N(T') C |A|™ as desired. The converse also
follows immediately from (BS). (2) also follows immediately from (BS).

Epistemic possibility is, in this setting, understood in terms of com-
patibility with the belief set NN(I"). In other words =4 QA if and only
if |JAPM N (N N(T)) # 0. This in turn means that, when the model M is
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augmented, x4 OA holds whenever |A|M is logically compatible with
every epistemically necessary proposition in the neighborhood.

4. Epistemic possibility and likelihood

When the notion of epistemic necessity is understood as ‘highly likely’
(or ‘probable enough’) many authors have recommended not using
augmented models in order to represent those judgements. Here is an
example, adapted from a similar one presented by Henry Kyburg in
(Kyburg, 1990), that can help us illustrate the motivations of such
authors.

Suppose your job is measuring items produced by a certain machine.
They are OK or they are not. Of course measurements cannot be error-
free. But it can be demanded that false assessments of OK be less
than (say) .0001. You should therefore consider highly likely, of each
inspected piece, that it is OK.

It is also clear that you ought to consider highly likely that of a large
number of items at least one will not be OK. Thus if we represent the
judgements of likelihood in terms of membership to a neighborhood
N we are in a situation in which if the neighborhood were augmented
it would be inconsistent (in the sense in which the falsity would be
judged likely). Proposed solutions to the problem are, in this framework
tantamount to giving up condition (c) - this is, in essence, the solution
proposed in (Kyburg, 1961).

What is the notion of epistemic possibility that is appropriate in
this situation? We propose to apply here the same criterion which
clearly applies when the model is augmented, namely that A is possible
(seriously possible) as long as it overlaps every judgement of likelihood
in the neighborhood. In other words, the proposition |A|M expressed
by A is seriously impossible at T' as long as it fails to overlap some
member X of the neighborhood N(I').

This seems to be Kyburg’s own idea about this matter. Say that K
is the set of sentences receiving high probability.® Then, commenting
on the previous example Kyburg points out in (Kyburg, 1990):

The deductive closure of K contains all the statements of the lan-
guage. Yet I have no difficulty using this (unclosed!) set of state-
ments K for planning, or as a standard for serious possibility. Even
though the conjunction of statements in K is impossible, K can serve
as a standard of serious possibility in the sense that if a statement

& For each world T', the set K would be construed in our setting as the set of
sentences such that 2A holds true at some point I.

likelihood.tex; 18/09/2000; 18:44; p.9



10

contradicts a member of K, it is not to be regarded as a serious
possibility. That one of the pieces has passed my inspection is not
OK is not a serious possibility. And at the same time, it is not a
serious possibility that all the inspected pieces are OK.

Notice that if we officially define for a model M:

DEFINITION 4.1. (Poss) M, T' = QA if and only if for every X in
N(T), |AM 0 X # 0

then if the model in question is augmented the previous definition
collapses with the standard definition provided above (2.2.2). This is
easy to see. We can sketch one half of the proof to make things trans-
parent. Say that the underlying model is augmented and that |A|™
overlaps all members of the neighborhood N(I'). Then it also overlaps
the intersection of the neighborhood. As a result |- A|™ cannot be a
superset of N N(T'). So, |~ A[™ is not in N(T') and this entails that A
is possible in the standard sense.

Nevertheless the previous definition of possibility does not collapse
with the standard one when the model fails to be augmented. A variant
of our example on measurement will suffice to make this clear. Say that
the universe of worlds encompasses all possible combinations of failures
and OK cases. We have an ‘extreme’ world where all pieces are faulty.
If there are n pieces call this world fn. The world where all the pieces
are OK can be called OKn. Assume in addition that the neighborhood
of the actual world contains all propositions of the form ‘piece i is OK’
for i between 1 and n. This reflects the fact that it is highly likely that
each piece is OK. We can have as well the proposition ‘at least a piece
is not OK’ in the neighborhood.

We might also have the proposition ‘at least a piece is OK’ in the
neighborhood. But for some subsets S of the total set of n pieces the
neighborhood might lack propositions of the form ‘at least a piece in
S is OK’. This is one of the prices that has to be paid for the lack of
logical omniscience.

Take now one of these subsets S of the total set of n pieces and
consider the proposition ‘all pieces in S are faulty’ = P. One does not
want to consider such proposition as seriously possible - when S is
large. Nevertheless the standard definition of possibility will make P
seriously possible independently of how large S is - just because the
complement of P does not happen to be in the neighborhood. Our
definition improves on the standard one in this and other cases. Notice
that P will be seriously impossible according to (Poss). In fact it will
not be compatible with any of the propositions ‘piece i is OK’ for pieces
iin S - such propositions are constructed as sets of worlds all of which
make true the sentence stating that i is OK.
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The sentence stating that all pieces in S are faulty is not possible
for Kyburg either. In fact, this sentence is inconsistent with several
members of the set K used by Kyburg. Just take any sentence in K
stating that a piece in S is OK.

The conclusion is that the standard definition of possibility in clas-
sical neighborhood semantics seems inadequate. In fact, the definition
of possibility and necessity should work well in the cases where logical
omniscience fails. It turns out that the standard definition is adequate
exactly when logically omniscience does not fail. We therefore propose
to adopt our own definition 4.1 instead. Of course the standard defi-
nition has been proposed without considering the particular epistemic
interpretation we have been focusing on. But, taking into account the
centrality that the epistemic interpretation seems to have in this case,
it seems advisable to reform the definition of possibility in the general
case.

5. Classical systems of modal logic, logical omniscience and
duality

Neighborhood semantics characterizes a family of so-called classic sys-
tems of modal logic (see PART III of (Chellas, 1980)).

DEFINITION 5.1. A system of modal logic is classical if and only if
it contains the aziom OA < —O- A, and is closed under the rule of
inference RE, according to which OA < OB should be inferred from A
+ B.

Standard neighborhood semantics characterizes the smallest classi-
cal system of modal logic E. It is worth observing that neighborhood
semantics does sanction a weak principle of logical omniscience ac-
cording to which any agent who knows (believes, etc) A should also
know (believe, etc) B, as long as A and B are logically equivalent. The
syntactical clothing adopted by the proposition expressed by either A
or B is irrelevant.®

It is unclear how much of logical omniscience should be abandoned
when part of it has already been abandoned. A careful analysis of
these issues is beyond the scope of this piece. Nevertheless it should

® If the principle is adopted to represent commitments to knowledge (belief) of
rational agents, then it seems adequate. But one might argue that all forms of
logical omniscience are adequate for this type of normative modeling. 'The status
of the principle is more precarious for syntactical representations of the epistemic
performance of bounded agents.
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be said that closure under logical equivalence is not a form of logical
omniscience questioned by researchers interested in studying logics of
likelihood. Not even closure under logical implication is a worry. The
main target is Adjunction. So, for our main purposes here neighborhood
semantics will do, even when it does not manage to deactivate all forms
of logical omniscience.

Seven systems of classical modal logic are weaker than the weakest
system characterizable in Kripkean semantics (the system K). As we
explained above the weakest system is E. Then three classical sys-
tems are obtained by adding supplementation, closure under (finite)
intersection, and the unit principle to the basic semantics. When sup-
plementation is added we have the system EM by adding the following
axiom to E:

(M) o(A A B) — (DA A OB)

When closure under finite intersections is added we have the system
EC validating: :

(C) (O(A) A O(B)) — o(A A B)

Finally if the neighborhood contains the unit we have EN by adding
the following axiom to E:

(N) O(True)

Finally we also have the systems EMC, EMN and ECN, all of
which are weaker than the weakest Kripkean system, which, in this
hierarchy is EMICN.

5.1. DuaLITY

Of course, the adoption of (Poss) will make a difference when it comes
to characterize classical systems of modal logic. The standard definition
of possibility establishes the duality of possibility and necessity by fiat.
Our definition only preserves half of the bi-conditional establishing this
duality at the syntactic level. In fact we have the axiom:

(DEF-Poss) 0 A —» -0 - A

So, our semantics characterizes the smallest system that contains
(DEF-Poss) and that is closed under RE. We will call this system
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EP. Such system is clearly weaker than the weakest system of classical
modal logic E.

In the previous sections we presented a principled argument in favor
of adopting a modified definition of possibility in neighborhood seman-
tics, especially for epistemic applications. We can rewrite our definition
as follows:

DEFINITION 5.2. (DEF-Poss) M,T = QA if and only if VX € N(T),
JAe X, M, A=A

Nothing has been said about the intuitiveness of the semantic char-
acterization of necessity, which we left unchanged. For applications
where it makes sense to preserve the duality of necessity and possibility,
and where our characterization of possibility is reasonable, the semantic
characterization of necessity can be changed accordingly:

DEFINITION 5.3. (DEF-Nec) M, T = OA if and only if 3X € N(T'),
VA e X, M, A=A :

The latter definition of necessity has been proposed in passing in
(Chellas, 1980) - see Exercise 7.9, page 211 ~ as an alternative to the
classical truth conditions for minimal models presented above (Def-
inition 2.2). Chellas does not provide, nevertheless, further intuitive
support for these alternative truth conditions. In the light of the above
arguments one might consider that they are required in epistemic ap-
plications, provided that the duality of necessity and possibility is also
motivated. In this article we will focus on first order extensions of the
standard minimal operators (characterized semantically in Definition
2.2). We will also consider some effects of adopting the classical def-
inition of necessity and DEF-Poss in the first order setting. It would
be also interesting to study the first order extension of the operators
characterized via DEF-Poss and DEF-Nec, but this issue will not be
considered here.

6. Minimal models for first order modal logic

A considerable amount of work has recently been done studying first
and higher order extensions of modal logic (see (Cresswell, 1996) as well
as (Fitting-Mendelsohn, 1999) for recent textbook presentations of this
work). At the same time the classical definability of modal formulas
(viewed as relational principles) has also been studied in detail. Nev-
ertheless less work has been done studying the first order extensions
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of epistemic logics. Most of the developed extensions of modal logic
focus on other interpretation of the modals (alethic, temporal, etc).
In addition neighborhood semantics has not been extended in order
to deal with the phenomenon of quantification. The recent work on
first order modal logics focuses instead on the first order extensions of
Kripkean systems of modal logic.

A notable exception is Hintikka’s own essay, which devotes its last
chapter to the problems posed by existence and epistemic modality. Se-
mantically Hintikka does not appeal either to possible world semantics
or to neighborhood semantics. He offers his own analysis, which can be
seen as a precursor to a disproof procedure (anticipating recent work on
tableaux systems). Hintikka does tackle some issues of special interest
for epistemic applications, although his agenda of open problems in
this field does not overlap with ours. In the area of computer science
the interest in first order extensions of epistemic systems is also quite
marginal (the entire reference to this issue in (Fagin et al., 1995) is
reduced to section 3.7).

Our goal in this final part of the article is to present a first order
extension of neighborhood semantics and to apply it to consider the
epistemic role of the so-called Barcan schemas. We will argue that the
extension provides interesting insights both about the epistemic uses of
these schemas and about the nature of likelihood operators. Moreover
it will allow us to formulate necessary and sufficient conditions for the
representation of closed belief sets in neighborhoods.

6.1. CONSTANT DOMAIN MODELS AND THE BARCAN SCHEMAS

We introduce first the basic definitional apparatus needed to extend
neighborhood semantics to the first order case. We follow the basic ter-
minology proposed by Fitting and Mendelsohn in (Fitting-Mendelsohn,
1999).

DEFINITION 6.1. A structure (W, N, D) is a constant domain neigh-
borhood frame if (W, N) is a neighborhood frame and D is a non-empty
set, called the domain of the frame.

In this case all the worlds in W have the same domain. The alterna-
tive would be to build models where the domains vary across worlds.
The resulting varying domain models will be briefly considered below.

The following schemas have an interesting pedigree in first-order
modal logic. They implement some basic forms of quantifier/modality
permutability.

DEFINITION 6.2. All formulas of the following form are Barcan for-
mulas:
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(Vz)Os — O(Vz)p.
O(Fz)p = (Fz)0¢

The implications going the other way give us:

DEFINITION 6.3. All formulas of the following form are Converse
Barcan formulas:

O(Vz)$ — (Vz)Oé

(Az)0¢ — O(3z)¢

Why are the Barcan schemas important? When Ruth Barcan Mar-
cus first studied them in (Barcan Marcus, 1946) modal semantics (in
any of the forms previously mentioned here) had not yet been invented.
So Barcan Marcus studied them under a purely syntactic point of view.
In recent years we have learnt interesting things about the role that
these schemas play in Kripkean semantics. In fact it turns out that the
Barcan and Converse Barcan schemas correspond to simple conditions
on Kripke frames (see (Fitting-Mendelsohn, 1999), section 4.9).

Call locally constant a varying domain Kripke frame such that if a
pair of worlds are in the in the domain of the accessibility relation of
the frame, then their domains coincide. It turns out that the validity of
both the Barcan and Converse Barcan schemas corresponds exactly to
the locally constant domain condition on Kripke frames. So, the Barcan
schemas seem to correspond to fundamental semantic properties of
Kripke frames. In fact, the Barcan schemas (and Converse Barcan) go
much beyond the issue of quantifier/modal permutation. They really
make explicit important existence assumptions in Kripkean semantics.
Fitting and Mendelsohn put this in a crisp way:

The Converse Barcan formula says that, as we move to an alterna-
tive situation, nothing passes out of existence. The Barcan formula
says that, under the same circumstances, nothing comes into exis-
tence. The two together say the same things exist no matter what
the situation ((Fitting-Mendelsohn, 1999), page 114).

What is the role of the Barcan and Converse Barcan formulas in
Montague-Scott’s semantics? Do they correspond to interesting condi-
tions in neighborhood frames? We will tackle this question first. We
will see that Barcan and Converse Barcan do correspond to interesting
conditions in neighborhood frames. Although Barcan and Converse
Barcan are really schemas we will follow standard terminology and
we will call them formulas, unless a explicit clarification were needed.
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6.2. THE ROLE OF THE BARCAN FORMULAS IN NEIGHBORHOOD
SEMANTICS

We need some introductory definitions first. Inessential details are skip-
ped. We will only comment on novel definitions.

DEFINITION 6.4. A constant domain neighborhood frame (W, N, D)
is augmented if (W, N) is augmented.

CDN will stand from now on for ‘constant domain neighborhood’.
Now we can move from frames to models by introducing the classical
notion of interpretation:

DEFINITION 6.5. Z is an interpretation in a CDN (W,N,D) if T
assigns to each n-place relation symbol R and to each point (in W),
some n-place relation on the domain D of the frame.

DEFINITION 6.6. A CDN model is a structure (W, N, D, I), where
the triple (W, N, D) is a CDN frame and Z is an interpretation in it.

DEFINITION 6.7. Let M = (W, N, D, Z) be a CDN model. A val-
uation in the model M is a mapping v that assigns to each variable
some member v(z) of D. w is a z-variant of a valuation v if w and v
agree on all variables except possibly the variable z.

Now we can introduce the crucial notion of truth in neighborhood
models. The last two conditions deal with (a classical characterization
of) quantification. For the moment we will not modify the standard
definition of possibility. After presenting two central results about the
conditions imposed by Barcan schemas in neighborhood frames, we
will consider the impact of reforming the characterization of epistemic
possibility (via the adoption of Definition 4.1 (Poss)).

DEFINITION 6.8 (Truth in a model). Let M = (W, N, D, I) be a
CDN model. For each T" in W and valuation v in the model:

(1) IfRisan n-place relation symbol, M, T' vy R(z1, ..., Z,) provided
(U(xl)a ey ’U(iL‘]_)) € I(R7 P)

(2) Standard valuations for negation and binary connectives.
(8) M, T =, DA if and only if |A|M¥ € N(I)
(4) M, T =, OA if and only if [AMY ¢ N(T)
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(5) M, T =, (Vx) ¢ if and only if for every x-variant w of v in M; M,
I'l=w ¢

(6) M, T &, (3x) ¢ if and only if for some x-variant w of v in M; M,
I'Ey ¢

We follow here the standard notations and conventions presented in
(Fitting-Mendelsohn, 1999), section 4.6. We make explicit only some
basic extensions of the notion of truth set used above in the proposi-
tional case.

IR(z1, --'y2p)|M? = {T € W: M, T =, R(1, .., Zn)}

More about terminology. Call non-trivial a frame whose domain
contains more than one object.

OBSERVATION 6.1. A non-trivial constant domain neighborhood fra-
me 1s supplemented if and only if every model based on it is one in
which the Converse Barcan formula is valid.

Proof: Assume M, T’ =, O(Vx)F(x). Given the assumption, we have
that N{|F(x)|M¥: w is a x-variant of v } = |(Vx) F(x)["¥ € N(T'). So,
for each x-variant w of v, supplementation guarantees that |F(x)*®
€ N(T"). Therefore, M, T' =, (Vx)OF(x). Since in order to establish
this argument F(x) could have been any formula, this proves the LTR
part of the observation.

Suppose now that the frame (W, N, D) is not supplemented. There-
fore we have truth sets X and Y such that X N'Y € N(I'), but either X
is not in N(T') or Y is not in N(I'). We also assume non-triviality of the
domain, which guarantees that there are at least two distinct objects a
and b in D. We will construct a family of models based on such frame
where one particular Converse Barcan formula is not valid. The models
in question satisfy the following constraints:

(1) For every world A in X N'Y, and for all ¢ in the domain of the
frame, (c) € Z(F, A).

(2) For every world T in X - (X N'Y) there is ¢’ in D such that (¢') €
Z(F, T'), but there is no other ¢ in D, such that (c¢) € Z(F, T'). For
every world T'in Y - (X N'Y) there is ¢” # ¢’ in D such that (¢”)
€ Z(F, I'), but there is no other ¢ in D, such that (¢) € Z(F, I").

(3) Z(F, I) is empty for worlds IV in W - (X U Y).

N{|F(x)|M": w is a x-variant of v } = |(¥x) F(x)|"* € N(T), but
it is not true that for all x-variants w of v we have:
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M, T =, OF(x)

In fact, without loss of generality we can assume that X ¢ N(T').
Then, for w(x) = ¢, |F(x)|"¥ = X ¢ N(I'). But, the above constraints
guarantee that:

M, T =y O(VX)F(x)

In fact, X N'Y = |(Vx) F(x)[M¥ € N(T). Non-triviality is used when
we assumed that the underlying domain contains at least two distinct
objects ¢” and c’e

A frame is consistent if and only if for every T in W, N(T') # 0
and {0} ¢ N(T'). In other words a frame is consistent as long as the
agent represented by the frame does not believe the falsity - and the
neighborhoods of the frame are not empty. Call regular any frame that
is consistent and non-trivial.

OBSERVATION 6.2. A regular constant domain neighborhood frame
is closed under finite intersections'’ if every model based on it is one
in which the Barcan formula is valid.

Proof.

As in the previous observation we will assume that a regular frame
is not closed under finite intersections. Then we will construct a family
of models based on such frame where a particular Barcan formula is
not valid. The models in question satisfy the following constraints:

Focus then on two arbitrarily chosen beliefs X and Y in N(T'), where
Y # Xand X NY ¢ N(T'). Since we are assuming that the frame is
not closed under finite intersections we know that these two beliefs (X
and Y) exist. Then for every A in each X - Y pick an object c¢® in the
domain and establish that (¢*) € Z(F, A), while for every other object
c different from c*, (c¢) ¢ Z(F, A). Establish in addition that for every
AinY, (c®) ¢ Z(F, A), while for every other object ¢ different from
c®, (c) € Z(F, A). So, if X N'Y is non-empty, every world in X N'Y is
such that F is true of every object of the domain at that world. Finally
let Z(F, A’) be empty for any other world A’ in W.

Regularity (non-triviality) guarantees that there are at least two
distinct constants in the domain of the model, which is enough to
carry out the correspondent part of the previous construction. Since
we assumed that X N'Y is not in N(I'), O(Vx)F(x) fails to be true at
I'. Nevertheless, for every x-variant w of v, we have that:

M, T |= OF (%)

19" See condition (c) in section 3 above.
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There are two cases we can consider. Either w(x) = ¢® or w(x) = c,
with ¢ # ¢®. In the first case, w(x) = %, |[F(x)|"¥ = X € N(T). In the
second case, w(x) = ¢, |[F(x)|["¥ =Y € N(I'). f X NY is empty then
also O(Vx)F(x) fails to be true at ', because |(Vx) F(x)|™*® ¢ N(T) -
in virtue of the assumed consistency of the frame.

OBSERVATION 6.3. If a finite constant domain neighborhood frame
is closed under intersections then every model based on it is one in
which the Barcan and Converse Barcan schemas are valid.

Proof.

We will show that if (W, N, D) is a finite constant domain neighbor-
hood frame then:

If NN(T') € N(T') then M, T’ |, (Vx)OF(x) — O(Vx)F(x).

Assume that M, I" =, (Vx)OF(x). Therefore for all x-variants w of
v we have that |F(x)|% € N(T'). Since the neighborhood is assumed
to be closed under intersections N{|F(x)|M¥: w is a x-variant of v }
= |(vx) F(x)|™¥ € N(I'). The last equality establishes the desirable

result, namely that M, I' =, O(Vx)F(x).

The following observations are now easy corollaries.

OBSERVATION 6.4. A regular and finite constant domain neighbor-
hood frame is a quasi-filter if and only if every model based on it is one
in which the Barcan and Converse Barcan schemas are valid.

And since filters can be characterized as non-empty quasi-filters,
and a regular CDN frame is non-empty - because regularity entails
consistency.

OBSERVATION 6.5. A regular and finite constant domain neighbor-
hood frame is a filter if and only if every model based on it is one in
which the Barcan and Converse Barcan schemas are valid.

Now, since every filter containing finitely many worlds is augmented
we have:

OBSERVATION 6.6. A regular and finite constant domain neighbor-
hood frame is augmented if and only if every model based on it is one
in which the Barcan and Converse Barcan schemas are valid.

For most applications this result is of some significance, even when
it only applies to finite models. In section 6.3 we will offer a stronger
result for infinite models. On the other hand it is easy to see that the
following result holds without restrictions.
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OBSERVATION 6.7. If a constant domain neighborhood frame is aug-
mented then the Barcan and Converse Barcan schemas are valid in all
models based on it.

6.3. BARCAN FORMULAS, EPISTEMIC POSSIBILITY AND DUALITY

We remind the reader that, all formulas of the following form are Barcan
formulas:

DEFINITION 6.9.
(B-schema-00) (Vz)O¢ — O(Vz)p.
(B-schema-0) O (3z)p — (Fz)0¢

If we focus on instances of Barcan schemas where ¢ is replaced by
a monadic predicate F, we obtain the following formulas:

DEFINITION 6.10.
(Barcan-0) (Vz)OF(z) — O(Vz)F(x).
(Barcan-0) ¢ (Az)-F(x) — (3z)0-F(x).

These two sorts of formulas are logically equivalent in first order
Kripke semantics. They are also equivalent in the (clasical) extended
version of neighborhood semantics presented in the previous section.
The O-operator and the {-operator are duals in this extension, due to
an unmodified use of the characterization of {-operator. And, of course,
the universal and existencial quantifiers are duals as well. This is enough
to guarantee the logical equivalence of Barcan-O and Barcan-¢.

So, all results formulated in terms of Barcan-00 can be equivalently
formulated in terms of Barcan-¢. But we argued above that the 0/¢
duality in standard neighborhood models is purchased at a high cost.
In fact, the definition of possibility guaranteeing the duality seems
inappropriate for many applications. '

We proposed above a different definition of possibility (Poss) and we
explained that only one half of the biconditional expressing the [1/¢
duality is preserved when this definition is adopted. This asymmetry
would be carried to the first order case if Defintion 4.1 were adopted.
In fact, we will show immediately that neither version of Barcan entails
the other if (Poss) is adopted.

COUNTEREXAMPLE: Consider a regular model M such that W
={I, A, Q},D = (a, b) and N(T') = {{T'}, {A}}. Assume also that
I(F, T) = {{a)}, Z(F, A) = {(b)}, and Z(F, Q) = {(b), (a)}. Notice
that in this case
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M, T &, (Vx)OF (x)

in fact, for no x-variant w of v we have |F(x){™*% in N(T'). Therefore
we have that:

M, T |y (¥x)0F(x) — O(Vx)F(x)

Consider now M, I' =, 0(3x)-F(x). |(3x) = F(x)|M? = {T, A} is
compatible with all members of N(I'), making true the antecedent
of Barcan-0. But M, T &, (3x)0-F(x). In fact, either |-F(x)|M¥
is {T'}, when w(x) = b; or |[-F(x)/M¥ is {A}, when w(x) = a.
Therefore |-F(x)|""¥ is never compatible with all members of N(T').

The entailment from Barcan-{ to Barcan-0O is also severed. The
following counterexample deals with this case:

COUNTEREXAMPLE: Consider a regular model M such that W
= {I', A}, D = (a, b) and N(T') = {{T'}, {A}}. Assume also that
Z(F,T) = {{(a)} and let Z(F, A) be empty. Set also v(x) = a.

M, T k=, (Vx)OF(x)

This is so in virtue of the fact that |[F(x)|*? = {T'}. But M, T |4,
0O(Vx)F(x). This is so because |(¥x) F(x)[*? = {T' € W: T |=, (Vx)
F(x)} is empty. Nevertheless we have that M, T =, (3x)0-F(x).
In fact, for the x-variant w of v, assigning b to x, we have that
|-F(x)|"* = {T', A}, which is compatible with all members of the
neighborhood.

Of course the main theorems proved about necessary and sufficient
conditions for augmentation of regular and finite frames continue to
hold. They are formulated for the schemas (Vx)O¢ — 0(Vx)$ and
O(vx)¢ — (Vx)O¢ and nothing about the notion of possibility has
been assumed in the proofs of the main observations presented above.
It is also possible to show that closure under infinite intersections of a
neighborhood is characterizable in terms of the validity of B-schema-¢
for models of certain type. We will proceed to show this fact now.

A frame (W, N, D) is monotonic if and only if the number of objects
in its domain is as large as the number of sets in the neighborhood
with the largest number of sets in the model. The intuitive idea behind
monotonicity is that an agent represented by a monotonic model is
capable of discerning at least as many objects in the universe as beliefs
he is capable to entertain.

OBSERVATION 6.8. A monotonic constant domain neighborhood fra-

me s closed under infinite intersections if and only if every model based
on it is one in which B-schema-{ is valid.
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Proof. First we will show that if (W, N, D) is a constant domain
neighborhood frame then:

If NN(T') € N(T') then M, T |, ¢(Ix)F(x) — (Ix)OF(x).

Assume both closure under arbitrary intersections and M, I' |=,,
O(Ix)F(x). Therefore |(Ix)F(x)|M* N X # 0, for every X in N(T).
Now, since we are assuming closure under interesections, we have that:

|EF)FE)M 0 (NN(T)) # 0
Therefore we know that there is A in NN(T') such that:
M, A =y (IX)F(x)

This means that there is a x-variant v of w, such that: M, A |=,
F(x). So, A € [F(x)|[M? = {Z: M, ¥ |=, F(x)}. Therefore:

|F(x)|™? N X # 0, for every X in N(T).

This indicates that there is a x-variant v of w such that:
M, T =, OF(x)

which, in turn, guarantees that:

M, T =y (Ix)0OF(x)

Monotonicity is not needed in order to establish the previous result.
The property will, nevertheless, be needed in order to establish the
converse. As in previous observations we will assume that a monotonic
frame is not closed under finite intersections. Then we will construct
a family of models based on such frame where a particular instance of
Barcan-schema-¢ is not valid.

Since NN(T') ¢ N(I'), we can select a world AX in X - NN(T) for
every X € N(I'), making sure that AX # AY for X # Y. Select now
for each AX an element ¢X of D, in such a manner that ¢X # ¢¥ for
AX £ AY. Monotonicity guarantees that there are enough constants
in D in order to make the previous selection.

Let now (cX) € Z(F, AX) for each X in N(I") and make sure there
is no other c in D, such that (c) € Z(F, AX), for each AX in W. Let, in
addition, Z(F, A) be empty for any world A different from some AX
in W.

Now notice that for an arbitrary valuation w:

M, T =y 0(3x) F(x)

To see this notice that the set |(3x)F(x)|** contains all the worlds
AX for each X in N(I'). In fact, we know that it is always possible to
find a x-variant v of w such that, for an arbitrarily chosen world AX:
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M, AX =, F(x)

the valuation v is the one assigning c¢* to the variable x. Therefore
the set |(Ix)F(x)[M¥ intersects all sets X in N(I'). Nevertheless:

M, T [ (3X)0 F(x)

This is so in virtue of the fact that there is no x-variant v of w such
that |F(x)|™" is compatible with all sets in N(T").

Now it is simple to establish the following observation, characterizing
augmentation for infinite models.

OBSERVATION 6.9. A regular and monotonic constant domain neigh-
borhood frame is augmented if and only if every model based on it is
one in which the Barcan-schema-{ and Converse Barcan schemas are
valid.

6.4. THE ROLE OF THE BARCAN FORMULAS IN FIRST ORDER
EPISTEMIC SEMANTICS ‘

The previous results shade some light on a family of interesting issues.
Let’s focus first on consequences for likelihood operators. In the previ-
ous sections we began to articulate some of the interesting relationships
between lack of logical omniscience and likelihood, but this analysis
depended on the limited expressive power of the (modal) propositional
language.

DEFINITION 6.11. A neighborhood N(T') is weakly inconsistent if and
only if it is consistent (the empty set is not in the neighborhood) but
NN(T ) is empty.

DEFINITION 6.12. A constant domain neighborhood frame (W, N, D)
is weakly consistent if and only if it does not contain weakly inconsis-
tent neighborhoods.

One of the advantages of neighborhood semantics is its capacity
to encode weakly inconsistent neighborhoods. Let’s consider again the
‘lottery’ examples briefly reviewed when we dealt with the notion of
epistemic possibility. Say that you consider a lottery with a large num-
ber of tickets. Focus, in adddition, on a particular neighborhood N(T').
Say that at his world the represented agent considers highly likely that
each ticket in the lottery will not win. This gives us a consistent neigh-
borhood which is also weakly consistent. Nevertheless, in this situation
the agent might also consider highly likely that some ticket will win.
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Now the neighborhood is weakly inconsistent. Situations of this sort
are common if one wants to have a logic of ‘high likelihood’.

Examples of this sort give a prima facie indication of the inade-
quacy of Kripke semantics to represent the notion of likelihood via
the O operator. To be more precise what is clearly inadequate is to
use a O operator with its usual semantic characterization via constant
domain Kripke frames. The reason is that such frames are pointwise
equivalent to augmented neighborhood frames. And, according to the
results presented in the previous section, this means that the cor-
respondent neighborhood frames cannot contain weakly inconsistent
neighborhoods. .

Things could be made clearer by noticing that the Barcan formula
admits an interpretation encoding the lottery paradox itself. In fact,
assign the interpretation ‘ticket x does not win’ to ‘F(x) in the Barcan
formula. Assume also that the O operator in the Barcan formula is
interpreted as a ‘high likelihood’ operator. Then the intended meaning
of the Barcan formula carries the content of the paradox itself. It says -
that if every ticket is highly likely to be a loser then it is highly likely
that the lottery has no winning ticket. If one attempts to represent the
notion of likelihood via a O operator and the operator is semantically
characterized via regular frames with constant domains, this leads to
a clearly undesirable situation. Of course, this applies to any O opera-
tor characterized via its classical truth conditions in constant domains
Kripke frames.

Of course, there might be another manner of characterizing the
notion of likelihood in constant domain Kripke frames. Some authors
have proposed different truth conditions (see (Halpern-Rabin, 1987)).
Nevertheless the truth conditions already explored in the literature
seem equally inadequate for different reasons. Halpern and Rabin, for
example, proposed using an operator sharing important features with
a classical ¢ operator. We will comment on this alternative below.

Finally one can appeal to Krikpe frames with varying domains. In
this case the Barcan and Converse Barcan formulas are not necessar-
ily validated. Perhaps this can be developed as a principled solution.
Nevertheless, constant domain Montague-Scott models can indeed be
used to represent (quite naturally) likelihood operators via a O operator
endowed with its classical truth-definition (in neighborhood semantics).
Perhaps there are reasons for representing some epistemic operators by
appealing to varying domains. It is less clear that such type of first order
structure were required for the representation of all types of likelihood
operators.

Summing up. We showed that the validity of both the Barcan and
Converse Barcan schemas correspond to interesting conditions on nei-
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ghborhood frames. With some provisos they provide necessary and
sufficient conditions for the formation of augmented neighborhoods.
The constancy of the domain does not force, nevertheless, the validity
of the formulas. There are constant domain neighborhood frames where
the formulas fail to be validated. And this is beneficial given that in
this setting the formulas might carry the paradoxical content of the
so-called lottery paradox.

We showed that regular neighborhood frames can be naturally used
in order to represent a monadic operator of likelihood. Moreover this
can be done by using (a conveniently constrained) standard 0 operator.
It should be also be said that, since augmented frames are point-
wise equivalent to Kripke frames, the Barcan and Converse Barcan
formulas provide conditions for representing Kripke frames as neigh-
borhood frames. Therefore the formulas provide interesting conditions
for comparing both semantics.!!

A final remark about the use of first order neighborhood semantics
in order to represent other epistemic notions (aside from likelihood
or high likelihood). Many authors have argued on normative grounds
that the representation of notions like certainty and knowledge require
logical omniscience. This has been articulated in different manners in
terms of the internal consistency of the represented agent.

Suppose a man says to you: ‘I know that p but I do not know whether
q’.}? To what extent is he inconsistent if q does follow (logically) from
p? Hintikka has argued that in this case the agent is not necessarily
inconsistent in any psychological or quasi-psychological sense of the
word. But, according to his terminology the agent has put himself in
an indefensible position. I.e. a position that is not immune to certain
kind of criticism. So, he proposed to use the notions if defensibility and

11 The abstract issue of what operators should be considered modal operators is
difficult to delimit. There are nevertheless some interesting attempts to do so. The
structuralist account offered in (Koslow, 1992) is one of these attempts. According to
this account the modal operators determined by sub-augmented (classical) models
are not modal operators. Perhaps this view is too stringent. On the one hand under
a pre-systematic point of view the notion of ‘probable enough’ seems to be a modal
notion. On the other hand the techniques used both by the structuralist and the
algebraic accounts of modality seem to be ‘close neighbors’ of the Montague-Scott
approach. One can conjecture that some of the results presented here do have inter-
esting structuralist counterparts. So, perhaps Koslow’s account of modality can be
generalized. Otherwise, a reformulated version of our results can perhaps be used in
this setting in order to state the necessary and sufficient conditions (in quantified
models) that a ‘classical’ operator should satisfy in order to be a modal operator (in
Koslow’s sense).

'? See (Hintikka, 1962), page 31. According to the nomenclature in (Hintikka,
1962), ‘p’, ‘q’, etc. are formulas, not propositions.
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indefensibility in epistemic logic, rather than the notions of consistency
and inconsistency.

Arguing from a different point of view, Isaac Levi has proposed to
see (logically closed) belief sets as representing not our explicit beliefs,
but our commitments to belief or knowledge - see (Levi, 1980). When
the person described in the previous situation says: ‘I know that p but
I do not know whether q’, she is not aware of what she is committed to

- know. She should be capable of self-correction by the mere articulation
of her commitments.

This is not the place to discuss these issues in detail. It is enough to
observe that a theoretical commitment to represent belief (knowledge)
via closed and consistent bodies of sentences is tantamount in our set-
ting to be committed to the validity of the Barcan and Converse Barcan
formulas. In fact, regular frames containing augmented neighbors are
sufficient to determine the validity of these formulas. This, nevertheless,
is not a problem in our setting. In fact, the validity of the Barcan and
Converse Barcan formulas for other epistemic notions beside likelihood
is clearly unproblematic. If the O operator is interpreted as a certainty
operator in the lottery example presented above, we do not have a
puzzling situation. If you are certain that each ticket will not win the
lottery, you better be certain that no ticket will win. The same applies
to the notion of knowledge.

7. Halpern and Rabin’s logic of likelihood

As we explained above Halpern and Rabin presented in (Halpern-
Rabin, 1987) a Kripkean account of a monadic likelihood operator.
Their proposal has many interesting features. Among others, they pre-
sent a multi-modal logic, combining a likelihood operator (L) and a
certainty operator (G). The paper is also a precursor of the excellent
work on multi-agent systems done by the Halpern in collaboration
with Fagin, Moses and Vardi (Fagin et al., 1995). The L-operator has,
nevertheless, certain controversial properties which we will examine in
a moment. Let’s first introduce the basic features of what the authors
call the LL model.

Kripke structures are used to provide semantics for the logic of
likelihood and certainty proposed by the authors. An LL model is a
quadruple M = (S, £, C, II), where S is a set of states, £ and C
are binary relations on S with L reflexive. II is a mapping from the
primitive propositional letters to 25. Intuitively II is a valuation, which
according to the authors, ‘associates with each primitive proposition
the set of states of which it is true’. This seems standard and simple,
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but we will see immediately that the latter intuitive description should
be taken ‘cum grano salis’. £ and C are the accessibility relations used
in the characterization of the operators L and G. The truth condi-
tions for these operators provide a first intuitive idea of the intended
interpretation of £ and C.

IT is extended to a mapping from the entire set of LL formulas to
25, The crucial clauses of the extension are:

(G) I(Gp) = {s : for all t reachable!® from s, t € II(p)}
(L) I(Lp) = {s : for some t with (s,t) € £, t € TI(p)}

As usual the authors write M, s |= p instead s € II(p). Surprisingly,
and against the previously quoted interpretation of II, s = p should
not be read as ‘p is true at state s’. The following quotation makes this
issue clear:

We emphasize that if s contains the formula p (i.e. if M, s |= p),
this does not mean that p is actually true at s, but rather that p is
one of the hypotheses that we are taking to be true at this state.

Here we are facing one of the foundational problems mentioned in
the introduction of this paper. Namely, the problem related to the need
of encoding the epistemic states of agents as components of possible
worlds. Sometimes worlds themselves are understood as idealized epis-
temic states of agents. I.e. worlds are understood as ways of encoding
the facts taken as true by idealized agents who are not only logically
omniscient but also epistemically omniscient. This is the intended in-
terpretation of worlds in a LL-model. A state s is seen as consisting of ‘a
set of hypotheses that the agent takes to be ‘true for now”. The authors
are aware of the extreme idealization involved in their modeling.

The assumption that s is complete is an idealization. In practice we
imagine that s is a finite set consisting of all formulas ‘relevant’ to
the discussion, and perhaps all their sub-formulas.

Although the actual formalism implements a strong form of om-
niscience, which is both logical and epistemic, the authors have in
mind implementations which lack both forms of omniscience. On the
other hand the cautionary notes about omniscience have no formal
counterpart. So, for example the L operator has properties like:

(AX5) A — L(A)

13 A state t is reachable from s if, for some finite sequence so,..., s;, we have sg =
s, sy = t, and (s;, s;41) € LUC, fori < k.
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Axiom 5, when interpreted literally says that true facts should be
considered likely (taking likelihood as some undetermined epistemic
property weaker than knowledge and certainty). This literal interpre-
tation of the axiom is of course problematic. Nevertheless, when Ax5 is
interpreted by taking into account the (informal) epistemic role played
by worlds in the LL model, the axiom says something like: ‘if A is taken
as true by a rational agent, he should consider A likely as well’. And
this interpretation seems more adequate.

Notice that if we only take into account formal definitions and we
ignore completely any intended interpretation of the LL logic, then
the truth definition of the L-operator coincides with the definition of
(ontological) possibility in alethic modal logic.

Now, the notions of epistemic and alethic (or ontological) possibility
should not be conflated. For example, Ax5 is a perfectly good axiom
for the notion of ontological possibility. Under this interpretation the
axiom just says that every true event is (objectively) possible. In con-
trast, the axiom is inadequate for any epistemically motivated notion
of possibility. The mere fact that an event is objectively true does not
determine that a rational agent must judge it epistemically possible.
The notion of epistemic possibility is always relative to some stock of
assumed background knowledge. An event is epistemically possible if
compatible with that body of assumed knowledge, quite independently
of whether this corpus of assumed knowledge is or not true.

Of course, as we explained above, when we add the informal in-
terpretation that the authors have in mind Ax5 is less problematic
both as a constraint on epistemic possibility and as a constraint on
likelihood. Nevertheless, as the authors themselves point out, there
are other properties of the notion of alethic possibility that cannot be
reconciled at all with a notion of likelihood understood as ‘probability
greater than a threshold’. The problem is the axiom:

(AX6) L(A V B) ¢ (L(A) V L(B))

Halpern and Rabin provide a counterexample and concluded that
‘it is inappropriate to think of L as meaning ‘with probability greater
or equal than one half”. The problem is easy to see. If you are wait-
ing for a subway at 72 street you might consider highly likely that
the next subway will be either a local or an express train (because
you think trains are running) but you might assign probability 1/2
to the event that the next train is a local and 1/2 to the event that
is a local. The authors propose to capture the notion of ‘A is highly
likely’ via LG(A). Nevertheless the motivation for this translation is
not completely transparent.
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Summing up. The authors start with an (informal) epistemic in-
terpretation of worlds as sets of assumed hypotheses of agents which
are both epistemically and logically omniscient. Then and L-successor
of any state s (under the corresponding L relation) describes a set of
hypotheses that the agent judges as reasonably likely. C-successors of s,
in contrast, are points that are judged as conceivable from the point of
view of s, but not necessarily reasonably likely. Then the sentence L(A),
saying that A is likely, is true at s whenever there is a L-reachable state
t from s where A holds true. G(A) holds true at s when A is true at
all states reachable from s. In other words, G(A) holds true at s when
A is true at all states deemed as conceivable from the point of view of
g 14

The proposal has many problems, which we summarized above.
Encoding epistemic states as worlds is too strong an idealization and
the L-operator shares too many properties with the alethic notion of
possibility to reflect qualitatively a probabilistic construal of likelihood.
Constructions in terms of neighborhood semantics seem more appropri-
.ate. They circumvent the problem of epistemic omniscience by neatly
separating what is true, i.e. what holds true at a world, from what is
Judged as true by an agent, i.e. the propositions in the neighborhood
of that world. In addition, logical omniscience is also circumvented be-
cause the neighborhood needs not be augmented. Moreover, as Kyburg
has pointed out in several occasions, the development of a logic of
likelihood seems to require the ability of encoding weakly inconsistent
scenarios. Also, as Kyburg pointed out in (Kyburg, 1995) the latter
fact does not seem to require the use of some form of paraconsistency.
The underlying notion of logical consequence in all the constructions
studied in this paper is perfectly classical.
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