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Preface

The Seventh International Symposium on Imprecise Probability: Theories and Applications is held in Innsbruck,
Austria, 25–28 July 2011.

The ISIPTA meetings are a primary forum for presenting and discussing advances in imprecise probability
and are organized once every two years. The first meeting was held in Gent in 1999, followed by meetings
in Ithaca (Cornell University), Lugano, Pittsburgh (Carnegie Mellon University), Prague, and Durham (UK).
In the decade since the first meeting, imprecise probability has come a long way, which is reflected by the
wide range of topics presented at the 2011 meeting, but particularly also in the wider acceptance of imprecise
probability in journals and at other conferences.

As with previous ISIPTA meetings, we have avoided parallel sessions. In total, 40 papers are presented by a
short talk and poster, which guarantees ample time for discussion of each contribution. The papers are included
in these proceedings and are also available on the SIPTA webpage (www.sipta.org). Submitted papers have
undergone a high quality reviewing process by members of the Program Committee. The selectivity resulting
from the review process provides trust in the quality of the presented research results.

Nevertheless, it has long been acknowledged that, at the ISIPTA meetings, some good quality papers could
not be accepted due to the limited number of papers that can be presented at the meeting. To provide a
platform for novel ideas and challenging applications for which the research is not yet completed, poster-only
presentations have been introduced at ISIPTA’09. We continue with this tradition; short abstracts of these
poster-only presentations will be distributed at the conference and are available on the SIPTA webpage.

As with previous ISIPTA meetings, a wide variety of theories and applications of imprecise probability will
be presented. New application areas and novel ways for dealing with limited information prove the increasing
success of imprecise probability. For ISIPTA’11, engineering applications have been emphasized. In engineering,
information on risk and uncertainties usually lies in the triangle spanned by probability, intervals, and expert
opinion. Methods of imprecise probability thus are especially apt to modelling uncertainties in this field. This
fact is increasingly acknowledged in the engineering community, as evidenced by the growing number of papers
in engineering journals using methods from imprecise probability.

Two tutorial sessions are devoted to engineering applications. We thank Alberto Bernardini and Fulvio
Tonon for preparing and presenting a tutorial on random set methods in civil engineering. An additional
overview tutorial is given by Michael Oberguggenberger. The material is available at the SIPTA webpage.

A special historical and scientific session will be devoted to Bruno de Finetti. Bruno de Finetti, the founder
of subjective probability theory, was born in Innsbruck in 1906, where he spent the first six years of his life.
His father and his grandfather were engineers and both were involved in railway construction in Tyrol, the
western parts of Austria and in Northern Italy at that time. The year 2011 marks the eightieth anniversary of
the publication of the famous “De Finetti Theorem” in Funzione caratteristica di un fenomeno aleatorio (Atti
della R. Academia Nazionale dei Lincei, Serie 6. Memorie, Classe di Scienze Fisiche, Mathematice e Naturale,
4:251–299, 1931). An early essay on subjective probability appeared in 1931 as well: Sul significato soggettivo
della probabilità (Fundam. Math. 17, 298–329, 1931). The special session will be followed by a visit to Bruno
de Finetti’s birth place where a memorial tablet will be unveiled in the presence of representatives of the City
of Innsbruck and the University of Innsbruck.

We are grateful to the speakers who agreed to contribute to the special session: Fulvia de Finetti, Bruno
de Finetti’s daughter, who will give a historical account on Bruno de Finetti, an Italian on the border, Gert
de Cooman, who will speak about Exchangeability: A case study of how Bruno de Finetti’s ideas thrive in
indeterminate soil, Paolo Vicig and Teddy Seidenfeld, who will venture into Bruno de Finetti and Imprecision,
and Reinhard Viertl, who will collect historical relations of Bruno de Finetti with Austria and also talk about
Bruno de Finetti and fuzzy probability distributions. The contributions of Fulvia de Finetti, Paolo Vicig and
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Teddy Seidenfeld as well as a short abstract of the contribution of Reinhard Viertl are gathered in a special
section of this volume, together with historical photographs from the collection of Fulvia de Finetti, with her
kind permission.

During the conference two prizes will be awarded: the Best Poster Award, sponsored by Springer-Verlag,
and the IJAR Young Researcher Award, granted by the International Journal of Approximate Reasoning.

We believe that, in the twelve years since ISIPTA’99, imprecise probability has found a solid place in
research on uncertainty quantification and related fields. Because applications are increasing, both in number
and success, we are optimistic about the future impact of imprecise probability. We think that the current
format of ISIPTA is successful, and we hope that all participants will find the meeting pleasant, informative,
and beneficial. We hope that ISIPTA’11 provides a good platform to present and discuss work, and also leads
to new ideas and collaborations.

Finally, we wish to thank several people for their support. Teddy Seidenfeld, the SIPTA President, regularly
supported us with useful information and cheerful encouragement, and ensured that this conference benefits
from previous experiences. In addition, he volunteered to chair the IJAR Award Committee. We thank Seraf́ın
Moral for his extensive and expert help in maintaining the electronic system and webpage of the conference.
Thanks also to Serena Doria for joining the IJAR Award Committee.

We thank the members of the Program Committee for their excellent reviewing activities. Special thanks
also to the Local Organizing Committee, in particular, to Anna Bombasaro, Bernhard Schmelzer and Reinhard
Stix, as well as to Reinhold Friedrich for advice on matters of local organization. Thanks to Anton Bodner and
Klaus Marcher of Studia-Verlag for their supportive handling of the publication of the proceedings. We thank
all our sponsors; we are particularly grateful to the chair of the Center for Italian Studies of the University
of Innsbruck, Barbara Tasser, and to Lukas Morscher of the Cultural Office of the City of Innsbruck for their
support of the memorial tablet.

Finally, we thank all who have contributed to the success of ISIPTA’11, be it by submitting their research
results, presenting them at the conference, or by attending sessions and participating in discussions. We hope
that these proceedings will convey the state of the art of imprecise probability, raise interest and contribute to
the further dissemination of the fascinating ideas of this active and highly relevant research field.

Frank Coolen
Gert de Cooman

Thomas Fetz
Michael Oberguggenberger

Innsbruck, July 2011
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7th International Symposium on Imprecise Probability: Theories and Applications, Innsbruck, Austria, 2011

Bruno de Finetti, an Italian on the Border
Fulvia de Finetti

Rome, Italy
fulvia.definetti@teletu.it

The German translation of my work on probability
means a lot to me because both my parents and grand-
parents were Italians but Austrian citizens. My father,
engineer Walter von Finetti, planned and directed the
construction of the Stubaitalbahn Innsbruck–Fulpmes,
and I was born at that time in 1906 in Innsbruck where
I lived for 5 years.

The first book I read on Probability was German: Czu-
ber’s “Wahrscheinlichkeitsrechnung”.

Because of my attitude and my way of thinking Ital-
ians consider me a German. On the contrary Germans
consider me Italian and in fact I feel so.

The conflicts between these two populations went on for
many centuries and this should never be forgotten, but
remembering it must never be bitter. On the contrary
it must be an advice so that the tragic events of the
past will not be repeated and will at most be heroically
idealized like the Trojan wars. Both players: Andreas
Hofer and Cesare Battisti and many others on the north
and south of Brenner will not have died in vain because
Independence and Rights of People were their common
concern.

This is the preface written by Bruno de Finetti in 1981 for
the German edition of his Theory of Probability. Probably
somebody may find these words difficult to accept even
today and probably it took him a whole life to arrive at
writing these words.

On the border between two nations

If we analyze the 79 years of his life we discover that
he spent 44 years in Innsbruck, Trento, Trieste and under
Austro–Hungarian Empire, for the first 12 years of his life.

The origins of the Finetti family seem to be found in Siena,
but the von Finetti appears as a noble family in a draft
dated 1672–1777. On December 17, 1770 Maria Theresa
conferred in Vienna knighthood on one of the ancestors for
merits deserved “in jure publico” and precisely for the tax
reform she promoted.

When after the First World War the existing and function-
ing administration was changed to the inefficient Italian
bureaucracy, patriots began to regret Austria in this respect.

Bruno was of course educated to love Italy and as he will
recall, irredentism was especially alive in his grandmother
Anna Radaelli, a niece of Carlo Alberto Radaelli, who par-
ticipated in the defence of Venice in 1848–49. So the lit-
tle Bruno who spoke both Italian and German started his
personal war against Franz Joseph refusing to answer his
German nurse when she spoke German to him.

In 1869 Anna Radaelli married Giovan Battista de Finetti,
a civil engineer, member of the Association of Hungarian
Engineers, working in Austria and Hungary at the railways
Trieste–Fiume and Trieste–Pola. In the years 1880–1884
he worked for the Arlbergbahn. In the following years he
will have worked mostly in Trieste. His first son (the fa-
ther of Bruno) who was born in Fiume in 1871 studied
in Innsbruck and then at the University of Graz becoming
an engineer. In this way he learned a perfect German and
could start working for the Ybbstalbahn. Then in 1899 he
returned to Innsbruck and started working for the Stubaital-
bahn. He became a friend of Francesco Menestrina a young
man approximately of his same age, that had studied at
Graz University and was appointed a professor of law at the
newly opened Italian University in Innsbruck (1901). The
day of his prolusion there were incidents caused by young
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Austrians against the Italian University and confronted by
Italian students coming from Graz headed by Cesare Bat-
tisti. Before being dismissed in 1904 he was visited by his
sister Elvira who then met Walter de Finetti. They married
in 1905.

The very day of the birth of Bruno his father started a diary.
It gives us a very complete and detailed story of his physical
and intellectual development but also states the attention
paid by his parents to their son.

The five years spent in Innsbruck were the happiest for the
family: they walked in the Hofgarten or along the Inn River
to reach the theatre; sometimes they went to Trento and
Trieste to meet Bruno’s grandparents. In Trento Bruno was
very much impressed by the big statue of Dante and he
used to imitate his posture: for sure he knew the story of
the statue and the meaning of the right hand pointing to
Italy. In Trieste he saw the sea for the first time and easily
learned how to swim. Once he was taken to Bruneck to
give the first strike to the construction of one of the many
railways that his father Gualtiero (Walter), an appreciated
civil engineer working for the Joseph Riehl (1842–1907)
enterprise operating in Tyrol, was going to build. It seems
that Bruno took very seriously his job and that he would
have liked to continue the excavation . . . He was 4 years
old when a Hungarian man travelling on the same train
decided to take note of his name convinced that . . . he will
become a great man: “Der wird ein großer Mann werden”.

In 1911 Gualtiero moved his family to Trieste to be near
his parents who were becoming old but there he died in
1912. His wife Elvira, pregnant again, decided to move to
Trento where her family lived to get their support. Bruno
was admitted to the second class thanks to the many things
he had learned from his father and he did very well in
school.

Because of the First World War he had to leave Trento and
the school and kept studying by himself. At the end of the
war in 1919 he returned to Trento and was admitted to the
third class of gymnasium. Owing to a very serious infection
he had to be operated and he got one leg shortened by 7
centimetres. He was out of school for the whole year but
kept in pace with the program by himself. Before he had just
time to see the arrival in Trento of the tenth Giro d’Italia
(Tour of Italy) with his idol Girardengo, and enrolled in the
Boy Scouts Association headed by Giggino Battisti, the son
of Cesare Battisti, the Italian martyr he admired both for
his socialist ideals and for his fierceness at execution.

The economic situation of his family became even worse
owing to the unfavourable exchange rate of Austrian crowns
into liras. To gain one year Bruno studied in summer 1923
the program of the last year of high school and in October
he passed the examination and immediately enrolled at
Politecnico di Milano to become an engineer like his father
and grandfather.

On the border of many branches of science

After finishing the first two years, he attended some lectures
of Analysis and discovered to be more interested in the
courses of the faculty of Mathematics. He immediately
wrote a letter to his mother asking the permission to shift to
Mathematics but he got a negative answer, she was worried
about his future. Two more moving letters

. . . Mathematics is not by now a field already explored,
just to learn and pass on to posterity as it is. It is always
progressing, it is enriching and lightening itself, it is a
lively and vital creature, in full development and just
for these reasons I love it, I study it and I wish to devote
my life to it . . .

did not have the desired effect. Bruno sent to his mother a
very eloquent one-word cable

OBBEDISCO

same answer given by Garibaldi to Vittorio Emanuele II in
1866 when ordered to stop the conquest of Trento. Sure the
disappointment was the same but he stayed at the Politec-
nico for one more year.

It was during this third year that he wrote a work on popu-
lation genetics that was examined by a biologist, a mathe-
matician, a statistician and finally published in Metron in
1926. His first publication was immediately appreciated on
the other side of the Atlantic Ocean:

I have noted with interest your important paper . . .

writes Alfred J. Lotka to “Professor” de Finetti who an-
swered to be still a student.

The promise of a position in Rome at the Italian Central
Statistical Institute founded and directed by Corrado Gini
convinced his mother to give her permission, so Bruno
graduated in Applied Mathematics in 1927 and immediately
went to Rome accepting the promised job at the Italian
Central Statistical Institute: it was too important for him to
start earning to sustain his family. Rome was at that time a
centre of attraction for scientific research and Bruno’s hope
was to have the opportunity to get in touch with it.

In fact, the three years he spent in Rome were the only ones
for a long time when he could contact the big outstanding
professors of the University of Rome like Enrico Fermi and
his group of assistants at that time working at the exper-
iments that would earn them the Nobel prize, like Guido
Castelnuovo, who in a letter dated July 28, 1928 writes

I feel sure that you will be able to give important con-
tributions to Probability Calculus and its applications

4 Fulvia de Finetti



and in September that same year Bruno would present Fun-
zione caratteristica di un fenomeno aleatorio at the Inter-
national Congress of Mathematicians held in Bologna. A
summary of his presentation was published already in 1929
in the U.M.I. Bulletin, but the full version appeared in 1931
so this is why you celebrate this year the 80 years of his
representation theorem.

This International Congress gave him the opportunity to
meet many important foreign mathematicians, including,
Jacques Hadamard, Maurice Fréchet, Aleksandr Khinchin,
Paul Lévy, Jerzy Neyman, Octave Onicescu and George
Polya. In 1929 Hadamard in a letter to Giulio Vivanti will
write:

. . . je suis tout convaincu de son valeur. Je serai très
heureux de le voir à Paris avec nous.

With Fréchet the young Bruno had a polite dispute in the
30s that did not prevent him to be invited in Paris on May
1935 to give five lectures on probability at the Institut
Poincaré.

In 1937 most of them will meet again in Geneva for the
famous Colloquium on Probability.

Even if his job at the Central Statistical Institute did not
completely satisfy him (at the end of 1929 he started to
contact Assicurazioni Generali) the three years in Rome
were decisive for his future . . . also because there he met
Renata, his future wife, and sure less important he became
a fan of the Rome soccer team.

In 1931 he moved to Trieste and started working for the
"Assicurazioni Generali", an insurance company. There
he worked as an actuary and also on the mechanisation
of some actuarial services. This probably contributed to
make him one of the first mathematicians very aware of
the possibilities offered by computing machinery. In the
following years, he supplemented his work with several
academic appointments, both in Trieste and Padua.

Then, starting from 1946, he dedicated himself to the aca-
demic activity as full professor at the University of Trieste,
initially in the Faculty of Science and then in that of Eco-
nomics. Even if World War II was over it was a very painful
period of time for Trieste, that became a Free Territory ruled
by the Allies while waiting to know the final destination.
A condition particularly painful for my father worrying to
become again an Italian citizen in a foreign country.

In 1950 Bruno got a Fulbright grant to visit the United
States for three months. At this occasion he studied English
with a young officer of the U.S. Army stationed in Trieste.
He visited several places: in Cambridge, Massachusetts, at
the International Congress of Mathematicians, in Berke-
ley at the second Berkeley Symposium to present a paper
on Recent suggestions for the reconciliation of theories of

probability. Neyman received him with great friendship and
promoted his membership to the International Statistical
Institute. Neyman was one of the three names; the others
were Castelnuovo and Frechét who, beside Jimmy Savage,
my father mentioned in his Farewell Lesson. At important
occasions they gave him the possibility to explain his ideas
even when in contrast to their own. This is what my father
appreciated the most.

In 1954, he moved to the Faculty of Economics at La
Sapienza University in Rome.

When in 1961 the Faculty of Science decided to resume
the chair of Probability for him that had been created for
Guido Castelnuovo but discontinued when he retired, the
main concern of my father was that the same thing might
happen when he would leave. Luckily that wasn’t the case.

For his enthusiastic involvement in the teaching of mathe-
matics he was appointed President of Mathesis and became
Director of Periodico di Matematiche in 1972; he invited
Polya for a conference and during the stay of Polya in
Rome they prepared a documentary to teach mathematics
at school. The protagonist was an animated pupil who got
the name of Giorgetto (Little George) after George Polya.
While Polya himself acted in the movie asking questions,
Giorgetto animated by de Finetti answered by means of
a succession of slides illustrating the steps to reach the
solution.

Up to now I have mentioned his relationship with the mathe-
maticians he met in Bologna, but it is time now to talk about
another mathematician that I mentioned before and that he
met on the occasion of the second Berkeley Symposium
(1950): Jimmy Savage.

Recent suggestions for the reconciliation of theories of prob-
ability was the title of de Finetti’s communication at the
Symposium. I presume that Savage must have found some-
thing interesting and to better understand and deepen the
ideas of Bruno he invited him to Chicago. Chicago was
not a foreseen stop in Bruno’s itinerary in USA, but to find
somebody interested to discuss his ideas was an opportu-
nity not to be lost because at that time there were not many
people who paid attention to his view about probability.
By the way this gave my father the pleasure to meet again
Fermi and sadly enough that was also the last one.

That first encounter started an intense correspondence and
frequent meetings. In 1957 de Finetti was again in Chicago
as visiting Professor and this time also his family joined
him. I remember how the Savages took care of us to make
our stay as pleasant as possible. More often were the Sav-
ages to come to Europe especially for sabbatical years and
Jimmy started to learn Italian to better communicate with
my father. This gave rise to very amusing mistakes like for
instance carta bollata (marked paper) becoming carta bol-
lita (boiled paper). All contributed to create a very friendly
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atmosphere between the two families and of course espe-
cially between Bruno and Jimmy. I remember their end-
less conversations and also our meeting in Bucharest in
September 1971 at the Congress on Logic, Methodology
and Philosophy of Science where Savage was an invited
lecturer. The title of his talk was Probability in Science:
A Personalistic Account. In Bucharest we met also Octav
Onicescu, the founder of the Romanian school of probabil-
ity theory and of the school of statistics. Onicescu and de
Finetti first met in Rome at the beginning of their career
when both lived there. Later they saw each other in 1937 in
Geneva and again in Rome in the 60s.

Few months after the Congress in Bucharest the sudden
news of the death of Savage came as a shock to my father,
who lost the only person able to fully understand his view
on probability and to adhere to it, and ended a twenty years
long and fruitful correspondence.

In April 1973 my father received an invitation from the
University of Michigan for the year 1973–74. I think it
may be of interest to read part of the answer of my father
declining the invitation:

. . . I am very pleased and honoured for such attracting
invitation and for the interest in my research . . . and in
my point of view about subjective probability. I would be
surely willing to support it, especially in your University
where L.J. Savage spent several years of his admirable
activity . . . I am involved in many programs here, highly
depending on myself (my collaborators are too young
to be fully responsible for the courses).

In the already mentioned 1976 Farewell Lesson, Bruno
evaluates the importance of Savage for the acceptance of
his ideas:

I must stress that I owe to him if my work is no longer
considered a blasphemous but harmless heresy, but as a
heresy with which the official statistical church is being
compelled, unsuccessfully, to come to terms . . .

It is also worth considering his vital interest in economics
and social justice, as well as his struggle against bureau-
cracy.

Bruno de Finetti’s interest in economics was innate and led
him, during his first year at Politecnico di Milano, to attend
the lectures given there by Ulisse Gobbi. These, in turn,
confirmed him in his radical position, which he himself
summarised as follows in an autobiographic note:

. . . the only directive of the whole of economics, freed
from the damned game and tangle of individual and
group egoisms, should always be the realisation of a
collective Pareto optimum inspired by some criterion of
equity.

His longing for social justice caused him, in the 1970s, to
be candidate in several elections and also arrested for his
antimilitarist position. On the other hand, for his work in
the field of economics in 1982 he was awarded a degree
honoris causa in Economics by the LUISS University of
Rome and received a broad international appraisal. In 1985
the Nobel Prize winner Franco Modigliani was asked which
Italians would deserve the same prize, he indicated Paolo
Sylos Labini and Bruno de Finetti.

More recently it came in the words of Mark Rubinstein:

it has recently come to the attention of economists in the
English speaking world that among de Finetti’s papers
is a treasure trove of results in economics and finance
written well before the work of the scholars that are tra-
ditionally credited with these ideas . . . de Finetti’s 1940
paper anticipating much of mean variance portfolio
theory later developed by Harry Markowitz.

Markowitz himself, the 1990 Nobel Prize laureate in Eco-
nomics and founder of modern finance recognized:

it has come to my attention that, in the context of choos-
ing optimum reinsurance levels, de Finetti essentially
proposed mean variance portfolio analysis using corre-
lated risks.

His last participation at an International Conference was
the one on Exchangeability in Probability and Statistics,
held in Rome in 1981 to honour his 75th birthday. At that
occasion professor Reinhard Viertl who was born in Hall
discovered that Bruno was born in Innsbruck and so devised
to organize an International Symposium on Probability and
Bayesian Statistics in Innsbruck to honour his 80th birthday
in 1986. On January 1985 the first announcement arrived
and my father filled in the form indicating he would submit
a paper and he will be accompanied by Frau and Tochter.
He could not maintain the promise; he died on July 20,
1985. My mother and I were there and the Symposium
became in Memoriam of Bruno de Finetti.

The last time he was in Innsbruck was in 1973. He had to
move to Vienna in August to present his paper Bayesian-
ism: its unifying role for both the foundations and the ap-
plications of statistics at the Session of the International
Statistical Institute. We decided to drive there by car and
the first stop was in Trento to visit our relatives and then in
Innsbruck. We saw the house in Adolf-Pichler-Straße and
took the train to Fulpmes and then we were in Igls and went
to Hungerburg, where at Easter 1911 Bruno got lost, and
then to Hall, Salzburg, Lienz and finally Vienna, the Capi-
tal of the Austro–Hungarian Empire that for centuries had
organized a fruitful synergy among multiple ethnics con-
curring in the commonwealth. For my father it was really a
travel in the past.

6 Fulvia de Finetti
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Abstract

We review several of de Finetti’s fundamental con-
tributions where these have played and continue to
play an important role in the development of impre-
cise probability research. Also, we discuss de Finetti’s
few, but mostly critical remarks about the prospects
for a theory of imprecise probabilities, given the lim-
ited development of imprecise probability theory as
that was known to him.
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1 Introduction

Researchers, especially members of SIPTA, approach-
ing the theory of imprecise probabilities [IP] may eas-
ily deduce that Bruno de Finetti’s ideas were influen-
tial for its development.

Consider de Finetti’s foundational Foresight paper
(1937), which is rightly included in the first volume
of the series Breakthroughs in Statistics [16]. In that
paper we find fundamental contributions to the now
familiar concepts of coherence of subjective probabil-
ities – having fair odds that avoid sure loss – and
exchangeable random variables – where permutation
symmetric subjective probabilities over a sequence of
variables may be represented by mixtures of iid sta-
tistical probabilities. Each of these concepts is part
of the active research agendas of many within SIPTA
and have been so since the Society’s inception. That
is, we continue to see advances in IP that are based on
novel refinements of coherence, and contributions to
concepts of probabilistic independence as those relate
also to exchangeability. For instance, 7 of 47 papers
in the ISIPTA’09 Proceedings include at least one ci-
tation of de Finetti’s work. And it is not hard to
argue that another 7, at least, rely implicitly on his
fundamental contributions.

Regarding origins of SIPTA, consider for instance

Walley’s book [42], nowadays probably the best
known extensive treaty on imprecise probabilities.
Key concepts like upper and lower previsions, their
behavioural interpretation, the consistency notions of
coherence and of previsions that avoid sure loss, ap-
pear at once as generalizations of basic ideas from de
Finetti’s theory. In the preface to [42], Walley ac-
knowledges that

‘My view of probabilistic reasoning has been
especially influenced by the writings of Ter-
rence Fine, Bruno de Finetti, Jack Good,
J.M. Keynes, Glenn Shafer, Cedric Smith
and Peter Williams’.

In their turn, most of these authors knew de Finetti’s
theory, while Smith [36] and especially Williams [45]
were largely inspired by it.

For another intellectual branch that has roots in de
Finetti’s work, consider contributions to SIPTA from
Philosophy. For example, Levi [24, 25] generalizes
de Finetti’s decision–theoretic concept of coherence
through his rule of E–admissibility applied with con-
vex sets of credal probabilities and cardinal utilities.

However, a closer look at de Finetti’s writings demon-
strates that imprecise probabilities were a secondary
issue in his work, at best. He did not write very
much about them. In fact, he was rather skeptical
about developing a theory based on what he under-
stood IP to be about. To understand the incongruity
between the incontrovertible fact that many SIPTA
researchers recognize the origins for their work in de
Finetti’s ideas but that de Finetti did not think there
was much of a future in IP, we must take into account
the historical context in the first half of the last cen-
tury, and the essentially marginal role in the scientific
community of the few papers known at the time that
treated imprecision by means of alternatives to precise
probability.

Our note is organized as follows: In Section 2 we dis-
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cuss de Finetti’s viewpoint on imprecision. After re-
viewing some historical hints (Section 2.1), we sum-
marize what we understand were de Finetti’s thoughts
on IP (Section 2.2). In Section 3 we respond to some
of de Finetti’s concerns about IP from the current
perspective, i.e., using arguments and results that are
well known now but were not so at the earlier time.
We review some key aspects of the influence of de
Finetti’s thought in IP studies in Section 4. Section
5 concludes the paper.

2 Imprecise Probabilities in de
Finetti’s Theory

2.1 A Short Historical Note

De Finetti published his writings over the years 1926–
1983, and developed a large part of his approach to
probability theory in the first thirty years. In the
first decade (1926–1936) he wrote about seventy pa-
pers, the majority on probability theory. At the
beginning of his activity, measure–theoretic proba-
bility was a relatively recent discipline attracting a
growing number of researchers. There was much in-
terest in grounding probability theory and its laws
(Kolmogorov’s influential and measure–theoretic ap-
proach to probability was published in 1933), and few
thought of other ways of quantifying uncertainty. Yet,
alternatives to probability had already been explored:
even in 1713, more or less at the origins of probabil-
ity as a science, J. Bernoulli considered non-additive
probabilities in Part IV of his Ars Conjectandi, but
this aspect of his work was essentially ignored (with
the exception of J.H. Lambert, who derived a special
case of Dempster’s rule in 1764 ([32], p. 76).

In the time between Bernoulli’s work and the six-
ties of last century, some researchers were occasionally
concerned with imprecise probability evaluations, but
generally as a collateral problem in their approaches.
Among them, de Finetti quotes (in [14], p. 133, and
[15]) B.O. Koopman and I.J. Good, asserting that the
introduction of numerical values for upper and lower
probabilities was a specific follow–up of older ideas by
J.M. Keynes [22].

Starting from the sixties, works focusing on various
kinds of imprecise probabilities appeared with slowly
increasing frequency. Their authors originally ex-
plored different areas, including non-additive mea-
sures (Choquet, whose monograph [2] remained virtu-
ally unknown when published in 1954 and was redis-
covered several years later), Statistics [7], Philosophy
[23, 24, 37, 41], robustness in statistics [20, 21], be-
lief functions [32]. See e.g. [19] for a recent historical
note.

Among these, de Finetti certainly read two papers
which referred to his own approach, [36] and [45].
While Smith’s paper [36] was still a transition work,
Williams’ [45] technical report stated a new, in-depth
theory of imprecise conditional previsions, which gen-
eralized de Finetti’s betting scheme to a conditional
environment, proving important results like the enve-
lope theorem. De Finetti’s reaction to Smith’s paper
was essentially negative and, as he explained, led to
the addition of two short sections in the final version
of [14]. We discuss de Finetti’s reactions below.

As for Williams’ paper, de Finetti read it in a
later phase of his activity, the mid-seventies, and
we are aware of no written comments on it. How-
ever Williams commented on this very point many
years later, in an interview published in The SIPTA
Newsletter, vol. 4 (1), June 2006. In his words:

De Finetti himself thought the 1975 paper
was too closely connected to “formal logic”
for his liking, which puzzled me, though he
had expressed interest and pleasure in the
earlier 1974 paper linking subjective proba-
bility to the idea of the indeterminacy of em-
pirical concepts.

Throughout his career de Finetti proposed original
ideas that were often out of the mainstream. For
example, he championed the use of finite additivity
as opposed to the more restrictive, received theory of
countably additive probability, both regarding uncon-
ditional and conditional probability. Criticism from
the prevailing measure theoretic approach to probabil-
ity often dubbed finitely additive subjective probabil-
ity as arbitrary. It might have been too hard to spread
the even more innovative concepts of imprecise prob-
abilities. This may be a motivation for de Finetti’s
caution towards imprecise probabilities. It certainly
contributes to our understanding why Williams’ re-
port [45] was published [46] only in 2007, more than
thirty years later. (See [40].)

2.2 Imprecision in de Finetti’s Papers

In very few places in his large body of written work
does de Finetti discuss imprecise probabilities, and
nowhere does he do so exclusively. Discussions of
some length appear in [12, 14, 15]. De Finetti’s basic
ideas on imprecision appear already in the philosophi-
cal, qualitative essay [12] Probabilismo. Saggio critico
sulla teoria delle probabilità e sul valore della scienza,
which de Finetti quotes in his autobiography in [17]
as the first description of his viewpoint on probability.
In this paper, he acknowledges that an agent’s opin-
ion on several events is often determined up to a very
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rough degree of approximation, but observes that the
same difficulty arises in all practical problems of mea-
suring quantities (p. 40). He then states (p. 41) that
under this perspective probability theory is actually
perfectly analogous to any experimental science:

In experimental sciences, the world of feel-
ings is replaced by a fictitious world where
quantities have an exactly measurable value;
in probability theory, I replace my vague, elu-
sive mood with that of a fictitious agent with
no uncertainty in grading the degrees of his
beliefs.

Continuing the analogy, shortly after (p. 43) he points
out a disadvantage of probability theory, that

measuring a psychological feeling is a much
more vaguely determined problem than mea-
suring any physical quantity,

noting however that just a few grades of uncertainty
might suffice in many instances. On the other hand,
he observes that the rules of probability are intrinsi-
cally precise, which allows us to evaluate the proba-
bility of various further events without adding impre-
cision.

In an example (p. 43, 44, abridged here), he notes
that P (A ∧ B) = P (A|B)P (B) is determined pre-
cisely for an agent once P (A|B) and P (B) are deter-
mined. By contrast, when starting from approximate
evaluations like P (B) ∈ [0.80, 0.95] and P (A|B) ∈
[0.25, 0.40], imprecision propagates. Then P (A ∧ B)
can only be said to lie in the interval [0.80 · 0.25 =
0.20, 0.95 · 0.40 = 0.38].

If B is the event: the doctor visits an ill patient at
home, and A: the doctor is able to heal the ill patient,
approximate evaluations – he notes – are of little use,
as they do not let us conclude much more than the fol-
lowing merely qualitative deduction, which we para-
phrase: If it is nearly sure that the doctor will come,
and fairly dubious that he can heal his patient, then
it is slightly more dubious that the doctor comes and
heals his patient.

Further, de Finetti notes that probabilities can often
be derived from mere qualitative opinions. For in-
stance, in many games the atoms of a finite partition
are believed to be equally likely. This remark sug-
gests a reflection on the role of qualitative uncertainty
judgements in de Finetti’s work. Interestingly, he
displayed a different attitude towards this definitely
more imprecise tool than to imprecise probabilities.
In fact, in the same year 1931 he wrote Sul significato
soggettivo della probabilità [13], discussing rational-
ity conditions, later known as de Finetti’s conditions,

for comparative (or qualitative) probabilities, showing
their analogy with the laws of numerical probability.
This paper pointed out what became an important
research topic, concerning existence of agreeing or al-
most agreeing probabilities for comparative probabil-
ity orderings. (See [18] for an excellent review.)

The ideas expressed in [12] were not substantially
modified in later writings. For instance, in [14], p.
95, de Finetti and Savage quote E. Borel as sharing
their thesis, that

the vagueness seemingly intrinsic in cer-
tain probability assessments should not be
regarded as something qualitatively different
from uncertainty in any quantities, numbers
and data one works with in applied mathe-
matics.

The jointly authored 1962 paper [14], Sul modo di
scegliere le probabilità iniziali, adds some arguments
to de Finetti’s ideas on imprecise probabilities while
discussing Smith’s then recently published paper [36].
Recall that Smith proposed a modification of de
Finetti’s betting scheme, introducing a one–sided
lower probability P (A) and a one–sided upper prob-
ability, P (A) ≥ P (A), for an event A, rather than a
single two–sided probability, as we explain next. In
Smith’s approach, the agent judges a bet on A (win-
ning 1 if and only if A obtains) at a price p < P (A) to
be favorable over the status quo, which has 0 payoff for
sure. Such a favorable gamble has a positive lower ex-
pected value, hence greater than 0. And for the same
reason the agent prefers to bet against A (paying 1
if and only if A obtains) in order to receive a price
p > P (A) over the status quo. For prices p between
the lower and upper probability, P (A) ≤ p ≤ P (A),
the agent is allowed to abstain from betting and re-
main with the status quo.

In de Finetti’s theory, by contrast, the agent is obliged
to give one two-sided probability P (A) for betting
on/against the event A. At the fair price p = P (A)
the de–Finetti–agent is indifferent between a gamble
on/against A and abstaining, and may either accept
or reject the bet. For prices p < P (A) the de–Finetti–
agent judges a bet on A favorable, etc. Thus, de
Finetti’s theory is the special case of Smith’s theory
when P (A) = P (A) = P (A), modulo the interpreta-
tion of how the agent may respond to the case of a
fair bet.

After expressing perplexity about the idea of avoiding
stating one exact fair value P (A) by introducing an
indecision interval I = [P (A), P (A)], with two differ-
ent exact (one-sided) values as endpoints, de Finetti
and Savage focus on two questions: first, existence of
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the indecision interval I and second, consistency of
the agent’s betting using the interval I.

As for the first question, de Finetti and Savage agree
that nobody is actually willing to accept all of the
bets required according to the idealized version of de
Finetti’s coherence principle. They concede that the
betting model introduced by de Finetti in order to
give an operational meaning to subjective probability
requires that an idealized, rational agent is obliged to
have a real–valued probability P (A) and, thus, to ac-
cept bets at favorable odds – betting on A for any
price less than P (A) and betting against A for any
price greater than P (A).1 The real agent is com-
mitted to behave according to the idealized theory
in hypothetical circumstances where he/she has re-
flected adequately on the problem. In other words,
de Finetti’s opinion, expressed on this point also in
other papers, seems to be that the betting scheme
should not be taken literally. Rather it is a way of
defining the subjective probability concept in ideal-
ized circumstances. Hence, intervals of indecision ex-
ist in practice, but only where the real decision agent
has not thought through the betting problem with the
precision asked of the idealized agent.

As for the second question, de Finetti and Savage
argue that, rather than allowing the indecision in-
terval, from the perspective of coherence it may be
better to employ the precise two–sided probability
P = (P + P )/2. They report the following intrigu-
ing example as evidence for their view.

Example (de Finetti and Savage, 1962, p. 139).
An agent may choose whether to buy or not any com-
bination of the following 200 tickets involving varying
gambles on/against event A. The first 100 tickets are
offered for prices, respectively, of 1, 2,. . ., 100 Euros2

and each one pays 100 Euros if event A occurs, and
0 otherwise. The remaining 100 tickets are offered,
respectively, at the same prices but on the comple-
mentary event, Ac. Each of these 100 tickets pays
100 Euros if Ac occurs and 0 otherwise. If the agent
assesses a two–sided personal probability for A as in
de Finetti’s theory, e.g., P (A) = 0.63, he/she will
maximize expected value by buying the first 63 tick-
ets on A with prices 1,. . ., 63, for a combined price 1
+ 2 +. . . + 63 = 2016 Euros, and buying the first 37
tickets on Ac for a combined price 1 + 2 +. . . + 37
= 703 Euros. (The agent is indifferent about buying
the 63rd ticket from the first group and, likewise, the
37th ticket from the second group.) The agent’s total
expense for the 100 tickets, then, is 2719 Euros. The

1As recalled in [14], such agents were termed Stat Rats (by
G.A. Barnard) in the discussion of [36].

2We introduce an anachronism, here and in later examples,
updating the monetary unit to 2011.

agent gains 6300 − 2719 = 3581 Euros if A occurs;
he/she gains 981 Euros otherwise, when Ac occurs.

Suppose, instead the agent fixes a lower probability
P (A) = 0.53 and an upper probability P (A) = 0.73,
as allowed by Smith’s theory. De Finetti and Savage
interpret this to mean that the Smith-agent will buy
only the first 53 tickets for A and only the first 27
tickets for Ac – those gambles that are individually
(weakly) favorable. Then the Smith–agent will gain
only 5300 − 1809 = 3491 Euros if A occurs, and will
gain only 2700−1809 = 891 Euros if Ac occurs. Their
conclusion is that in this decision problem it is bet-
ter for the agent to assess the real–valued, two–sided
probability 0.63 = P (A) = (P (A) + P (A))/2 than to
use the interval I = [0.53, 0.73]. The decision maker’s
gain increases by 90 Euros, whatever happens, using
this two-sided, de Finetti–styled probability. We re-
spond to this example in the next section. �
De Finetti and Savage continue their criticism of IP
theory on pp. 140 ÷ 144 of [14]. To our thinking, the
most interesting argument they offer is perhaps that
imprecision in probability assessments does not give
rise to a new kind of uncertainty measure, but rather
points out an incomplete elicitation by a third party
and/or even incomplete self–knowledge. They write,

Even though in our opinion they are not fit
for characterizing a new, weaker kind of co-
herent behaviour, structures and ideas like
Smith’s may allow for important interpre-
tations and applications, in the sense that
they elicit what can be said about a behaviour
when an incomplete knowledge is available of
the opinions upon which decisions are taken.

They continue with a clarifying example.

What is the area of a triangle with largest
side a and shortest side b? Any S such that
S ≤ S ≤ S, with S: area of the triangle with
sides (a, b, b), S: area of the triangle with
sides (a, a, b). This does not mean: there ex-
ists a triangle whose area is indeterminate
(S: lower area, S: upper area); every trian-
gle has a well determined area, but we might
at present be unable to determine it for lack
of sufficient information.

In the Appendix of [15], while mainly summarizing
ideas on imprecise probabilities already expressed in
[12, 14], de Finetti adds other examples support-
ing the same thesis. One is particularly interesting
because it does not resort to the analogy between
probabilities and other experimental measures but in-
volves his Fundamental Theorem of Prevision. As well
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known, that theorem ensures that, given a coherent
probability function P (·) defined on an arbitrary set
of events D, all of its coherent extensions that include
a probability for an additional event E /∈ D belong to
a non-empty closed interval IE = [P (E), P (E)]. This
interval IE of potential (coherent) values for P (E) is
defined by analogy with how one may extend a mea-
sure µ to give a value for a non-measurable set us-
ing the interval of inner and outer measure values.
In de Finetti’s theorem, the interval IE arises by ap-
proximations to E (from below and from above) using
events from the linear span of D. But, de Finetti ar-
gues, the fact that prior to the extension, we can only
affirm about P (E) that it belongs to IE rather than
having a unique value

does not imply that some events like E have
an indeterminate probability, but only that
P (E) is not uniquely defined by the starting
data we consider.

De Finetti’s thinking about imprecise personal proba-
bility is unchanged from his early work. In his classic
([31], p. 58) Savage quotes de Finetti’s [16] view on
this question.

The fact that a direct estimate of a probabil-
ity is not always possible is just the reason
that the logical rules of probability are useful.

Revealing of Savage’s subsequent thinking on this
question of existence of unsure, or imprecise (per-
sonal) probabilities is the footnote on p. 58, added
for the 1972 edition of [31], where Savage teases us
with these guarded words.

One tempting representation of the unsure is
to replace the person’s single probability mea-
sure P by a set of such measures, especially
a convex set. Some explorations of this are
Dempster (1968), Good (1962), and Smith
(1961).

3 Rejoinder from the Perspective of
2011

Many of the objections raised by de Finetti (and oth-
ers) towards the use of imprecise probabilities have
been discussed at length elsewhere. (See especially
[42], Secs. 5.7, 5.8, 5.9). Of course, some recently for-
mulated arguments in favor of IP, e.g., some relating
to group decision making [34] or IP models for fre-
quency data [10], were not anticipated by de Finetti.
Here, we offer brief comments, including responding

to the challenges against IP raised in the previous sec-
tion.

The first of de Finetti’s arguments supporting precise
rather than imprecise probabilities is roughly that –
barring e.g., Quantum Mechanical issues – ordinary
theoretical quantities that are the objects of experi-
mental measurement are precise. In practice however,
when the process for eliciting a precise personal prob-
ability is not sufficiently reliable, impractical, or too
expensive, the use of imprecise probabilities seems ap-
propriate. By modeling the elicitation process, e.g.,
by considering psychometric models of introspection,
we may be able to formalize the degree of impreci-
sion of the assessment [27]; a first, intuitive measure
of imprecision is of course the difference P (A)−P (A).

De Finetti hits the mark with his second observation,
basically that inferences with imprecise probabilities
may be highly imprecise. This is unquestionably true,
but there are different levels: highly imprecise mea-
sures like possibilities and necessities typically ensure
many vacuous inferences [44], while standard, less im-
precise instruments are (now) available in other in-
stances, e.g., the Choquet integral for 2–monotone
measures [3], the imprecise Dirichlet distribution [43],
etc..

De Finetti and Savage’s [14] example, which we
summarized in Section 2.2, merits several responses.
First, it is not clear what general claim they make.
Are they suggesting that a decision maker who
uses Smith’s lower and upper IP betting odds al-
ways makes inferior decisions compared with some de
Finetti–styled decision maker who uses precise betting
odds but has no other advantage – no other special in-
formation? Is their claim instead that sometimes the
IP decisions will be inferior? What is their objection?

De Finetti and Savage’s example uses particular val-
ues for P, P , and P , combined with a controversial
(we think unacceptable) interpretation of how the IP
decision maker chooses in their decision problem. It
is not difficult to check that the same conclusion they
reach may be achieved by varying the three quantities
P, P , and P subject to the constraint that P < P < P
and these belong to the set {0, 1/100, 2/100, . . . , 1}
while retaining the same ticket prices, and the same
seemingly myopic decision rule for determining which
tickets the IP decision maker purchases. That is, it
appears to us that what drives de Finetti and Savage’s
result in this example is the tacit use of a decision rule
that is invalid with sets of probabilities but which is
valid in the special case of precise probabilities.

We think they interpret Smith’s lower and upper bet-
ting odds to mean that when offered a bet on or
against an event A at a price between its lower and
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upper values, the IP decision maker will reject that
option regardless what other (non-exclusive) options
are available. That is, we think they reason that, be-
cause at odds between the lower and upper probabili-
ties it is not favorable to bet either way on A compared
with the one option to abstain, therefore the IP deci-
sion maker will abstain, i.e. not buy such a ticket in
their decision problem.

The familiar decision rule to reject as inadmissible any
option that fails to maximize expected utility reduces
to pairwise comparisons between pairs of acts when
the agent uses a precise probability. That is, in the
example under discussion where utility is presumed to
be linear in the numeraire used for the gambles3, a de
Finetti–styled decision maker will maximize expected
utility by buying each ticket that, by itself, has posi-
tive expected value: Buy each ticket that in a pairwise
comparison with abstaining is a favorable gamble and
only those. But this rule is not correct for a decision
maker who uses sets of probabilities. De Finetti and
Savage’s conclusion about which tickets the IP deci-
sion maker will buy is incorrect when she/he uses an
appropriate decision rule.

As members of SIPTA know, there is continuing de-
bate about decision rules for use with an IP theory.
However, for the case at hand, we think it is non-
controversial that the IP decision maker will judge
inadmissible any combination of tickets that is sim-
ply dominated in payoff by some other combination of
tickets. That is, in the spirit of de Finetti’s coherence
condition, particularly as he formulates it with Brier
score, the decision maker will not choose an option
when there is a second option available that simply
dominates the first. Then, in this example, it is per-
missible for such an IP decision maker to buy the very
same combination of tickets as would any de Finetti–
styled decision maker who has a precise personal prob-
ability for the event A. That is because, in this finite
decision problem, all and only Bayes–admissible op-
tions are undominated. Thus, it is impermissible for
the IP decision maker to buy only the 80 = (53 + 27)
tickets that de Finetti and Savage allege will be pur-
chased.

Call House the vendor of the 200 tickets. House is
clearly incoherent. In fact, an agent can make arbi-
trage without needing to consider her/his uncertainty
about the event A: buying the first 50 tickets for A
and the first 50 for Ac produces a sure gain of 2450
Euros! See [35] for different indices for the degree

3Linearity of utility is no real restriction, because coherence
is equivalent to constrained coherence, where an arbitrary up-
per bound k > 0 is set a priori on the agent’s gains/losses in
absolute value (see [30], Sec. 3.4). Just choose k such that the
utility variation is to a good approximation linear.

of incoherence displayed by House, what strategies
maximize the sure gains that can be achieved against
House, and how these are related to different IP mod-
els for the events in question.

There is a related point about IP-coherence that we
think is worth emphasizing. Consider making a single
bet in favor of A. If the decision maker adopts a
precise probability P (A), her/his gain per Euro staked
on a bet on A will be G = A − P (A). However, if
the decision maker’s judgment is unsure and she/he
uses Smith’s lower betting odds with P (A) < P (A),
her/his gain increases to G = A−P (A) > G. It is true
that in this latter case the decision maker will abstain
from betting when the price for A is higher than P
and lower than P , and provided there are no other
options to consider. But this results only in the loss
of some additional opportunities for gambling. There
is no loss of a sure gain.

The role of the Fundamental Theorem in relation to
IP theory is also of worth discussing. Let us accept
de Finetti’s interpretation of the interval IE as giving
all coherent extensions of the decision maker’s current
probability P (·), defined with respect to events in the
set D, in order to include the new event E. Suppose,
however, that we consider extending P to include a
second additional event F as well. To use the Fun-
damental Theorem to evaluate probability extensions
for both E and F we must work step–by–step. Extend
P (·) to include only one of the two events E or F us-
ing either interval IE or IF defined with respect to the
set D. For instance, first extend P to include a precise
value for P (E) taken from IE . Denote the resulting
probability PE(·) defined with respect to the set D∪
{E}. Then iterate to extend PE(·) to include a pre-
cise value for PE(F ). Of course, the two intervals IF

and IE
F usually are not the same. We state without

demonstration that, nonetheless, if the step–by–step
method allows choosing the two values P (E) = c and
PE(F ) = d, then it is possible to reverse the steps
to achieve the same pair, P (F ) = d and PF (E) = c.
Then the order of extensions is innocuous.

If instead we interpret the starting coherent probabil-
ity P (defined on the linear span of D) as a special
coherent lower probability, and look for a lower prob-
ability which coherently extends it, we can avoid the
step–by–step procedure, simply by always choosing the
lower endpoint from the intervals based on the com-
mon set D and using these as 1-sided lower proba-
bilities. We obtain what Walley [42] calls the nat-
ural extension of P , interpreted as a coherent lower
probability (actually, it is even n–monotone) on all
additional events. The correctness of such a proce-
dure depends also on the transitivity property of the
natural extension.
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There is a second consideration relevant to de Finetti’s
preferred interpretation of the interval IE from the
Fundamental Theorem relating to IP theory, which is
particularly relevant in the light of Levi’s [26] dis-
tinction between imprecision and indeterminacy of
interval–valued probabilities. Levi’s distinction is il-
lustrated by Ellsberg’s well known challenge [9].

In Ellsberg’s puzzle [9] the decision maker faces de-
cisions under risk and decisions under uncertainty si-
multaneously. The decision maker contemplates two
binary choices: Problem I is a choice between two
options labeled 1 and 2, and Problem II is a choice
between two options labeled 3 and 4. The payoffs for
these options are determined by the color of a ran-
domly drawn chip from an urn known to contain only
red, black, or yellow chips.

In Problem I, option 1 pays off 1,000 Euros if the
chip drawn is red, 0 Euros otherwise, i.e. if it is black
or yellow. Option 2 pays off 1,000 Euros if the chip
drawn is black, 0 Euros otherwise, i.e, if the chip is
red or yellow. In Problem II, option 3 pays off 1,000
Euros if the chip drawn is either red or yellow, 0 if
it is black. Option 4 pays off 1,000 Euros if the chip
drawn is black or yellow, 0 Euros if it is red. In addi-
tion, the urn is stipulated to contain exactly 1/3rd red
chips, with unknown proportions of black and yellow
other than that their total is 2/3rds the contents of
the urn. Thus, under the assumptions for the prob-
lem, options 1 and 4 have determinate risk: they are
just like a Savage gamble with determinate (personal)
probabilities for their outcomes. However Ellberg’s
conditions leave options 2 and 3 as ill–defined gam-
bles: the personal probabilities for the payoffs are not
determined.

Across many different audiences with varying levels of
sophistication, the modal choices are option 1 from
Problem I and option 4 from Problem II. Assum-
ing that the agent prefers more money to less, that
there is no moral hazard relating the decision maker’s
choices with the contents of the urn, and that the
choices reveal the agent’s preferences, there is no ex-
pected utility model for the modal pattern, 1 over 2
and 4 over 3.

In a straightforward IP–de–Finetti representation of
this puzzle, the decision maker has a precise proba-
bility for the events {red, black or yellow}: P (red) =
1/3, P (black or yellow) = 2/3. But the agent’s uncer-
tainty about black or yellow is represented by the com-
mon intervals Iblack = Iyellow = [0, 2/3]. Under these
circumstances the agent’s imprecise probabilities do
not dictate the choices for either problem. However,
if after reflection the agent decides for option 1 over
option 2 in Problem I, then (as in the Fundamen-

tal Theorem) this corresponds to an extension of P (·)
where now P (black) < 1/3. But then P (yellow) > 1/3
and option 3 has greater expected utility than option
4 relative to this probability extension. Likewise, if
the agent reflects first on Problem II and decides for
option 4 over option 3, this corresponds to an exten-
sion of P (·) where now P (yellow) < 1/3. Then in
Problem I option 2 has greater expected utility than
option 1.

In short, under what we understand to be de Finetti’s
favored interpretation of the Fundamental Theorem,
the modal Ellsberg choices are anomalous. They can-
not be justified even when the agent uses the uncer-
tainty intervals from the Fundamental Theorem. Levi
calls this a case of imprecise probability intervals. Un-
der this interpretation the agent is committed to re-
solving her/his uncertainty with a coherent, precise
probability.

By contrast, if the agent uses the two intervals,
Iblack = Iyellow = [0, 2/3], to identify a set of prob-
abilities for the two events, then relative to this set
neither option in either Problem is ruled out by con-
siderations of expected utility. That is, in Problem I,
for some probabilities in the set, option 1 has greater
expected utility than option 2, and for other prob-
abilities in the set this inequality is reversed. Like-
wise with the two options in Problem II. If the non–
comparability between options by expected utility is
resolved through an appeal to lower expected utility,
e.g., as a form of security, then in Problem I the agent
chooses option 1 and in Problem II the agent chooses
option 4. This is what Levi means by saying that the
decision maker’s IP is an indeterminate (not an im-
precise) probability. With indeterminate probability,
the agent is not committed to resolving uncertainty
with a precise probability prior to choice.

4 De Finetti’s Theory in Imprecise
Probabilities

Let us repeat a simple fact. Notwithstanding what
we see as de Finetti’s mostly unsupportive opinions
on imprecise probabilities, in the sense of IP as that
is used by many in SIPTA, our co-researchers in this
area find it appropriate to refer to his work in the de-
velopment of their own. One reason for this is that
many within SIPTA use aspects of de Finetti’s work
on personal probability which often are in conflict
with the more widely received but less general, clas-
sical theory, associated with Kolmogorov’s measure
theoretic approach.

Take for instance de Finetti’s concept of a coherent
prevision P (X) of a (bounded) random quantity X,
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which is a generalization of a coherent probability.
That special case obtains when X is the indicator
function for an event, and then a prevision is a prob-
ability.

A prevision may be viewed as a finitely additive ex-
pectation E(X) of X. But there are non-trivial differ-
ences between de Finetti’s concept of prevision and
the more familiar concept of a mathematical expec-
tation as that is developed within the classic measure
theoretic account. In order to determine the classical
expectation of a random variable X, we first have to
assess a probability for the events {ω : X(ω) = x},
or at least assess a density function. In uncountable
state spaces, common with familiar statistical models,
the classical theory includes measurability constraints
imposed by countable additivity. But this is not at all
necessary for assessing a prevision, P (X), which may
be determined directly within de Finetti’s theory free
of the usual measurability constraints. The difference
may seem negligible, but it becomes more apprecia-
ble when considering previsions for several random
quantities at the same time, and by far more so when
passing to imprecise previsions, where additivity in
general no longer applies. This is an illustration of
how de Finetti’s foundational ideas can become more
important in IP theory than they are even in tradi-
tional probability theory.

The problem reiterates within the theory of condi-
tional expectations, magnified by the fact that finitely
additive conditional expectations do not have to sat-
isfy what de Finetti called conglomerability, first in his
1930 paper Sulla proprietà conglomerativa delle prob-
abilità subordinate [11]. Assume that P (·) is a coher-
ent unconditional probability. Let π = {h1, . . .} be a
denumerable partition, and let {P (·|hi) : i = 1, . . .} be
a set of corresponding coherent conditional probabil-
ity functions for P , given each element of π. With re-
spect to an event E, define mE = infh∈π P (E|h), and
ME = suph∈π P (E|h). These conditional probabili-
ties for event E are conglomerable in π provided that
P (E) ∈ [mE ,ME ]. Schervish et al. [33] establish that
each finitely but not countably additive probability
fails to be conglomerable for some event E and denu-
merable partition π. Also, they identify the greatest
lower bound for the extent of non–conglomerability of
P , where that is defined by the supremum difference
between the unconditional probability P (E) and the
nearest point to the interval [mE , ME ], taken over all
denumerable partitions π and events E.

The treatment of conglomerability in IP is still con-
troversial. While Walley [42] imposes some conglom-
erability axioms to his concepts of coherence for con-
ditional lower previsions, Williams’ more general ap-
proach does not. In Walley’s words ([42], p. 644)

Because it [. . .] does not rely on the con-
glomerative principle, Williams’ coherence is
also a natural generalization of de Finetti’s
(1974) definition of coherence.

See [29], Secs. 3.4, 4.2.2 for a further discussion of
[11], Williams’ coherence and of some arguments in
favor/against conglomerativity in IP theory.

Also de Finetti’s use of a generalized betting scheme
to define coherent previsions serves as an example for
several subsequent variants, which underly many un-
certainty measures. Examples include coherent upper
and lower previsions [45, 42], convex previsions [30],
and capacities ([1], Sec. 4). Moreover, in all such in-
stances this approach based on de Finetti’s theory of
previsions provides vivid, immediate interpretations
of basic concepts and often relatively simple proofs of
important results.

Another issue, which was our focus in the previous
section, concerns de Finetti’s attention to extension
problems, i.e. to the existence of at least one coher-
ent extension of a coherent prevision, defined on an
arbitrary set of (bounded) variables. Walley [42] used
this idea in the realm of imprecise probabilities to
define several useful notions: a natural extension; a
regular extension; an independent extension, etc. For
instance, a natural extension is the largest, i.e., “least
committal” coherent IP extension.

In general, research in IP theory exposes new facets
of probability concepts already discussed and some-
times not quite fixed by de Finetti. An illustration is
with the notion of stochastic independence, which de
Finetti found unconvincing in its classical identifica-
tion with the factorization property, but which he left
somewhat undeveloped in his own work. In [15] he
gives an epistemically puzzling example of two ran-
dom quantities that are functionally dependent and
stochastically independent according to the factoriza-
tion property. Problems for a theory of independence
arise especially when conditioning on events of ex-
treme (0 or 1) probability. For instance, Dubins’ ver-
sion [8] of de Finetti’s theory leads to an asymmetric
relevance relation. The situation is more complex in
the IP framework, and de Finetti would perhaps be
surprised at the variety of independence concepts that
have been developed. (See, e.g., [5, 6, 38, 39]).

De Finetti discovered important connections between
independence and exchangeability as reported in his
Representation Theorem, 1937. IP generalizations are
being developed, e.g., [4]. Soon, will we see IP gen-
eralizations of partial exchangeability along the same
lines. In yet other settings, IP methods have been em-
ployed to achieve advances in probability problems to
which de Finetti himself contributed [28].
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5 Conclusions

We close our comments with this metaphor, which
will be entirely familiar to any parent. You raise your
children with an eye for the day when each becomes
an independent agent. Sometimes, however, contrary
to your advice, one embarks on what you fear is an
ill conceived plan. When to your great surprise the
plan succeeds, does not that offspring then make you
a very proud parent?!
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Abstract
Bruno de Finetti stated that probability does not exist
in an objective sense. This is the basis for subjective
Bayesian inference. For de Finetti probabilities are
real numbers from the closed unit interval. Descrip-
tive statistics for fuzzy data yield fuzzy relative fre-
quencies. That is the starting point for modern con-
siderations concerning probability. Recent research
results are proposing a general probability concept
where probabilities are special fuzzy numbers obey-
ing a generalized form of additivity. This concept of
so-called fuzzy probability distributions is explained
in the paper.

1 Introduction

In his monumental and basic book Theory of Proba-
bility Bruno de Finetti gave a deep analysis of proba-
bility. One of his main conclusions is that probability
is not an objective existing – frequently unknown –
quantity, but as he says “probability does not exist,
except in the mind”. This idea is the basis for all neo-
Bayesian statistical methods which were developed in
the 20th century.

Another criticism by Bruno de Finetti about proba-
bility is concerning countable additivity of probability
measures.

These and other comments on the theory of proba-
bility raise the question what mathematical model is
suitable to describe probability.

2 Current probability models

There are different concepts of probability models.
The most popular mathematical model for probability
is the concept of probability spaces (M, E ,Pr), where
M is a general set, E is a sigma field of subsets of
M , and Pr a σ-additive and normalized measure on
E , i. e.

(1) Pr : E −→ [0; 1]

(2) Pr(M) = 1

(3) For every countable family A1, A2, · · · of pairwise
disjoint events Ai ∈ E the following holds

Pr
( ∞⋃

n=1

An
)

=
∞∑

n=1

Pr
(
An
)
.

Bruno de Finetti’s concept of probability is starting
with the events as elementary concept. So he is con-
sidering a family

(
Ei, i ∈ I

)
of so-called events and

defines probabilities as real numbers fulfilling finite
additivity and the so-called coherence condition. For
him all probabilities are conditional on the state of in-
formation H, i. e. Pr

(
E | H

)
, where new information

(for example data) is changing the probability:

(1) 0 ≤ Pr
(
Ei | H

)
≤ 1 for all Ei in the event

system

(2) For finitely many pairwise exclusive events
E1, E2, · · · , En
Pr
(
E1 ∨ E2 ∨ · · · ∨ En | H

)
=
∑n
i=1 Pr

(
Ei | H

)

(finite additivity)

(3) Pr
(
E1 ∧E2 | H

)
= Pr

(
E1 | E2 ∧H

)
·Pr
(
E2 | H

)

(coherence)

From these axioms the so-called Bayes’ formula fol-
lows:

For any exhaustive and pairwise exclusive finite family
of events E1, · · · , En and arbitrary event E0 of the
event system

(
Ei, i ∈ I

)
the following holds:

Pr
(
Ei | E0 ∧H

)
=

Pr
(
E0 | Ei ∧H

)
· Pr
(
Ei | H

)
n∑
j=1

Pr
(
E0 | Ej ∧H

)
· Pr
(
Ej | H

)

for i = 1(1)n.
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Proof : By E0 = E0 ∧
( n∨
i=1

Ei
)

=
n∨
i=1

(
E0 ∧ Ei

)
we

obtain Pr
(
E0 | H

)
= Pr

( n∨
i=1

(
E0 ∧ Ei | H

))
=

n∑
i=1

Pr
(
E0∧Ei | H

)
=

n∑
i=1

Pr
(
E0 | Ei∧H

)
Pr
(
Ei | H

)
.

From the coherence condition we obtain

Pr
(
E0 ∧ Ei | H

)
= Pr

(
E0 | Ei ∧ H

)
·Pr
(
Ei | H

)
and

Pr
(
E0∧Ei | H

)
= Pr

(
Ei | E0∧H

)
·Pr
(
E0 | H

)
which

concludes the proof. �
There are several other theories of probability. For
more details compare [1] and [6].

3 Fuzzy probability distributions

More recently looking at histograms for fuzzy data
it turns out that frequencies become fuzzy numbers.
Therefore it is natural to look for more general con-
cepts of probability, so-called fuzzy probability distri-
butions. In this theory probabilities are special fuzzy
numbers.

A fuzzy number x? is characterized by its so-called
characterizing function ξ(·) which is a generalization
of an indicator function IA(·) of a subset A of the set
IR of all real numbers.

A characterizing function ξ(·) is a real function of one
real variable x obeying the following:

(1) 0 ≤ ξ(x) ≤ 1 ∀ x ∈ IR
(2) ∀ δ ∈ (0; 1] the so-called δ-cut Cδ

[
ξ(·)
]
, defined

by Cδ
[
(·)
]

:=
{
x ∈ IR : ξ(x) ≥ δ

}
is non-empty

and a finite union of bounded closed intervals.

In case all δ-cuts are intervals the corresponding fuzzy
number is called a fuzzy interval.

The system of all fuzzy intervals is denoted by FI(IR).
So-called fuzzy probability distributions Pr? on event
systems

(
Ei, i ∈ I

)
are defined in the following way:

A fuzzy probability distribution Pr? is a function Pr? :(
Ei, i ∈ I

)
−→ FI(IR) obeying the following:

(1) Pr?
(
Ei
)
is a fuzzy interval p? with characterizing

function ξi(·) whose support is a subset of [0; 1]

(2) For all finite families of pairwise exclusive events
E1, · · · , En the following holds true:
Let Cδ

[
Pr?(Ei)

]
=
[
ai,δ; bi,δ

]
∀ i = 1(1)n and

Cδ
[
Pr?
( n∨
i=1

Ei
)]

=
[
cδ; dδ

]
be the corresponding

δ-cuts then cδ ≥
n∑
i=1

ai,δ and dδ ≤
n∑
i=1

bi,δ

∀ δ ∈ (0; 1]

Special cases of fuzzy probability distributions are
defined by so-called fuzzy densities f? on measure
spaces (M, E , µ). A fuzzy density on (M, E , µ) is a
fuzzy valued function f? : M −→ FI

(
[0;∞)

)
for

which all δ-level functions f
δ
(·) and fδ(·), defined by

Cδ
[
f?(x)

]
=
[
f
δ
(x); fδ(x)

]
∀ δ ∈ (0; 1], are integrable

and there exists a classical probability density f(·) on(
M, E , µ

)
, i. e.

∫

M

f(x)dµ(x) = 1 for which f
1
(x) ≤ f(x) ≤ fδ(x)

for all x ∈M .

Based on fuzzy densities probabilities of classical
events E ∈ E are defined in the following way:
∀ δ ∈ (0; 1] defining Dδ to be the set of all clas-
sical probability densities g(·) on

(
M, E , µ

)
obeying

f
δ
(x) ≤ g(x) ≤ fδ(x) ∀ x ∈ M , the fuzzy proba-

bility Pr ?(E) of an event E is the fuzzy interval p?
which is generated by the following nested set of closed
bounded intervals

[
aδ; bδ

]
∀ δ ∈ (0; 1]:

bδ := sup
{∫

E

g(x)dµ(x) : g(·) ∈ Dδ
}

aδ := inf
{∫

E

g(x)dµ(x) : g(·) ∈ Dδ
}

The characterizing function ψ(·) of p? is given by its
values

ψ(x) := sup
{
δ ·I[aδ;bδ](x) : δ ∈ [0; 1]

}
∀ x ∈ IR.

This definition yields a fuzzy probability distribution
on the events system E for which the extremal events
∅ and M have precise probabilities Pr ?(∅) = I{0}(·)
and Pr ?(M) = I{1}(·). The inequalities for the end-
points of the δ-cuts follow from the integration.
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Abstract

The naive credal classifier extends the classical naive
Bayes classifier to imprecise probabilities, substitut-
ing the imprecise Dirichlet model for the uniform
prior. As an alternative to the naive credal classi-
fier, we present a likelihood-based approach, which
extends in a novel way the naive Bayes towards impre-
cise probabilities, by considering any possible quan-
tification (each one defining a naive Bayes classifier)
apart from those assigning to the available data a
probability below a given threshold level. Besides the
available supervised data, in the likelihood evaluation
we also consider the instance to be classified, for which
the value of the class variable is assumed missing-
at-random. We obtain a closed formula to compute
the dominance according to the maximality criterion
for any threshold level. As there are currently no
well-established metrics for comparing credal classi-
fiers which have considerably different determinacy,
we compare the two classifiers when they have com-
parable determinacy, finding that in those cases they
generate almost equivalent classifications.

Keywords. Classification, naive credal classifier,
naive Bayes classifier, likelihood-based learning.

1 Introduction

Classification, understood as the problem of assigning
class labels to instances described by a set of features,
is one of the major problems of AI, with lots of impor-
tant applications, including pattern recognition, pre-
diction, and diagnosis. Bayesian approaches to clas-
sification are particularly popular and effective. In
particular, the naive Bayes classifier (NBC; e.g., see
[11, Chap. 17]), assumes the conditional independence
of the feature variables given the class; because of this
unrealistic assumption, NBC requires the estimation
of only a few parameters from the data. Yet, this
assumption typically biases the probability computed
by NBC which, regarding all the features as indepen-

dent pieces of evidence, tends to assign a excessively
high probability to the most probable class. The prob-
lem is emphasised in the presence of many features,
among which could easily exist correlations [9]. How-
ever, NBC generally achieves a good accuracy under
0-1 loss; this means that, despite the biased proba-
bilities, it produces good ranks among the compet-
ing classes [7]. The parameters are typically learned
in a Bayesian way with uniform prior. Maximum-
likelihood quantification has the advantage of being
unbiased and independent from the prior specifica-
tion, but generally leads to inferior classification per-
formance, especially on data sets where the contin-
gency tables, which contain the counts of the joint
occurrences of specific values of the features and the
class, are characterised by several zeros [8, 12] (see
also Example 3).

The naive credal classifier (NCC, [18]), a generali-
sation of the NBC based on the theory of imprecise
probability [15], attempts to make classification inde-
pendent of the choice of the prior in a different way.
NCC learns from data through the imprecise Dirichlet
model (IDM, [16]); this corresponds to adopting a set
of priors, which model a condition of near-ignorance
about the model parameters. A NCC is equivalent to
a collection of NBCs; while NBC returns the single
class with highest probability according to the poste-
rior probability mass function, NCC can in some cases
suspend the judgment, by returning a set of classes
rather than a single one. This provides a cautious
and robust classification. A similar approach could
be obtained by applying a rejection option to NBC,
namely by returning more classes when the posterior
probability estimated for the most probable class does
not exceed a certain threshold. However, the rejec-
tion option requires accurate probability estimates to
be effective, which is hardly the case for the NBC.

Of course, IDM is not the only technique to learn sets
of distributions from data. Among others, likelihood-
based approaches to the learning of imprecise-proba-
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bilistic models from data [3, 14] can be regarded as an
alternative to the IDM. Loosely speaking, the idea is
to consider, instead of the single maximum-likelihood
estimator, all the models whose likelihood is above a
certain threshold level.

In this paper we investigate how likelihood-based
techniques apply to NCC quantification. To do that,
we keep the same independence assumptions of the
NBC (and of the NCC), but we change the way the
model is quantified. We call the resulting model
likelihood-based naive credal classifier (LNCC). This
model is associated with a classification algorithm
which computes the set of unrejected classes accord-
ing to the maximality criterion [15] (exactly as the
NCC does) for any threshold level.

A notable feature of our approach is that, in the likeli-
hood evaluation, we do not only consider the available
(learning) data set, but also the instance to be classi-
fied, whose value of the class variable is assumed to be
missing-at-random. This is important to obtain more
accurate classification performances when coping with
zero counts in the data set.

The paper is organised as follows. We first review
some background material about the naive Bayes
(Section 2.1) and credal (Section 2.2) classifiers and
the likelihood-based approaches to the learning of
imprecise-probabilistic models from data (Section 3).
Then, in Section 4, we introduce the LNCC and ob-
tain an analytic inference formula to compute the set
of candidate optimal classes. Numerical tests are in
Section 5. Conclusions and outlooks are finally in Sec-
tion 6, while the proofs are in the appendix.

2 Naive Classifiers

In this section we review the necessary background in-
formation about classifiers developed under the naive
assumption (i.e., independence between features given
the class). First let us introduce the general problem
of classification together with the necessary notation.

We use uppercase for the variables, lowercase for
the states, calligraphic for the possibility spaces, and
boldface for sets of variables. Let C denote the
class variable, with generic value c, taking values
in a finite set C. Similarly, we have m features,
F := (F1, . . . , Fm), each one taking values in the fi-
nite set Fj , j = 1, . . . ,m.1 Assume that the avail-
able data are d joint observations of these variables,
say D := {(c(i), f (i)

1 , . . . , f
(i)
m )}di=1, with c(i) ∈ C and

f
(i)
j ∈ Fj , for each i = 1, . . . , d and j = 1, . . . ,m. In-

formation associated with the data set D is described
1We focus on classification of discrete features. A discussion

on the extension to continuous variables is in the conclusions.

by a count function n returning the number of ele-
ments of the data set D satisfying a condition to be
specified in its argument. E.g., n(C = c) is the num-
ber of instances where the class has value c ∈ C, while
n(C = c, Fj = fj) is the number of instances where
C has value c and the j-th feature has value fj . For
sake of notation, we denote these counts as n(c) and
n(c, fj), and similarly for the others, with n(·) = d.

Given an instance of the features f̃ = (f̃1, . . . , f̃m),
classification is the problem of assigning it a single
class label or, as in the case of Section 2.2, a set of
them, all of which are candidates to be the correct
category. A classifier always returning a single class
is called precise, and credal otherwise.

2.1 Naive Bayes Classifier

A probabilistic approach to classification consists of
learning from the data D a joint probability mass
function for the whole set of variables (C,F). Let the
unknown chances of this distribution be denoted by
θc,f for each (c, f) ∈ C×F1× . . .×Fm. Once we learn
these chances, we assign to the instance f̃ the class
label maximising the posterior (which is proportional
to the joint) probability, i.e.,

arg max
c∈C

θc,f̃ .

As the number of parameters specifying the joint dis-
tribution grows exponentially with the number of fea-
tures, such a probabilistic approach is generally too
demanding, unless we make some assumption about
the independence relations between the variables. A
notable example is the so-called naive assumption,
which says that, given the class variable, the features
are conditionally independent from each other.2 This
induces in the joint the following factorisation:

θc,f := θc ·
m∏

j=1

θfj |c, (1)

where θc is the (unconditional) chance for C = c,
and similarly for the conditional ones. Equation (1)
makes it possible to assess the joint distribution, and
hence perform classification, by means of a number of
parameters which is linear in the number of features
and classes. Let θ denote the whole set of chances
to be quantified on the right-hand side of (1) and Θ
the corresponding set of possible assignments. The
parameter θ is quantified in a Bayesian way; given a
Dirichlet prior over Θ, we obtain the following poste-

2We say that A and B are conditionally independent given
C if P (a, b|c) = P (a|c) · P (b|c), for each a, b, and c.
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rior estimates:

θc =
n(c) + s t(c)
n(·) + s

, (2)

θfj |c =
n(c, fj) + s t(c, fj)

n(c) + s t(c)
, (3)

where Walley’s parametrisation of the Dirichlet distri-
bution is employed. In particular, s can be thought
of as a number of hidden instances, in the usual inter-
pretation of conjugate Bayesian priors as additional
samples. The parameters t(·) can be interpreted as
the proportion of hidden instances of a given type;
for instance, t(c) is the expected proportion of hidden
instances for which C = c.

In particular, non-informative specifications can be
obtained by Perks’ prior, which means t(c) := |C|−1

and t(c, fj) := |Fj |−1|C|−1 for each c ∈ C, fj ∈ Fj ,
j = 1, . . . ,m, and s = 1. In the language of Bayesian
networks, this is also known as BDe [11, Chap. 17].

2.2 Naive Credal Classifier

The classification performances of the NBC can be
quite sensitive to the choice of the prior. In a situa-
tion where different priors return different class labels,
a conservative approach consists of taking multiple
priors as a model of a condition of prior (near) igno-
rance about the model parameters, and hence learning
a posterior independently for each prior. This can be
done by means of the imprecise Dirichlet model (IDM,
[16]), for which the “precise” specification of the NBC
Dirichlet prior is relaxed, and its parameters are free
to vary in the following set, with minimal constraints:

T :=



t

∣∣∣∣∣∣

∑
c∈C t(c) = 1∑
fj∈Fj

t(c, fj) = t(c),∀c ∈ C,∀j
t(c, fj) > 0,∀(c, fj) ∈ C × Fj ,∀j



 . (4)

Each t ∈ T corresponds to a different Dirichlet prior
and hence a different NBC quantification. The collec-
tion of all these NBCs is called naive credal classifier
(NCC, [17]), and provides a collection of posterior dis-
tributions for the class variable given the feature of
the instance to be classified. In order to decide which
class labels to assign to the instance, the maximality
criterion [15] is adopted: a class is rejected if there is
another class that is more probable according to every
distribution. Thus, in order to perform classification
with the NCC, for each c′, c′′ ∈ C, we have to test
whether or not c′ dominates c′′, i.e.,3

inf
t∈T

Pt(c′, f̃)
Pt(c′′, f̃)

> 1, (5)

3Note that the ratio between conditional probabilities can
be equivalently described as a ratio between joint probabilities.

where Pt is the NBC quantification associated to t.
From (1), (2) and (3), we can rewrite the objective
function of our optimisation problem in (5) as4

[
n(c′) + s t(c′)
n(c′′) + s t(c′′)

]1−m m∏

j=1

n(c′, f̃j)
n(c′′, f̃j) + s t(c′′, f̃j)

,

and hence check dominance by solving the corre-
sponding optimisation with the constraints in (4).

Counterintuitive behaviors of NCC take place in pres-
ence of zero counts; in particular (a) an attribute Fj

such that n(c′, f̃j) = 0 prevents c′ from dominat-
ing any other class (see Example 3); (b) a class c′

such that n(c′) = 0 is identified as non-dominated for
most instances. These behaviors were first observed
in [17]; a solution to these problems, which make the
NCC unnecessarily imprecise, has been studied in [4],
proposing an ϵ-contamination of the IDM prior with
the uniform prior of the NBC: this corresponds to a
slight modification of the set T , obtained by rewrit-
ing the constraints in (4) in the form ϵ |C|−1 ≤ t(c) ≤
(1−ϵ)+ϵ |C|−1, and similarly for t(c, fj). Such a NCC
extension is denoted as NCCϵ.5

3 Likelihood-Based Learning of
Imprecise-Probabilistic Models

Coping with multiple priors as in the IDM is not the
only possible approach to learn imprecise-probabilis-
tic models from data. In a likelihood-based approach,
we can simply start by considering a collection of can-
didate models, and then only keep those assigning
to the available data a probability beyond a certain
threshold. We introduce these ideas by means of an
example.

Example 1. Consider a Boolean variable X, for
which N observations are available, and n of them
report the state true. If θ ∈ [0, 1] is the chance
that X is true, the likelihood induced by the observed
data is lik(θ) := θn · (1 − θ)N−n and its maximum
is attained at θ̂ = n

N . For each α ∈ [0, 1], we
can (numerically) compute the values of θ such that
lik(θ) ≥ α lik(θ̂). Figure 1 depicts the behaviour of
these intervals (which can be also interpreted as con-
fidence intervals for θ; e.g., see [10]) for increasing
sample size.

The approach considered in the above example can
be easily extended to the general case, and can be
interpreted as a way of updating imprecise probabil-
ities [1, 13], in the following sense. Consider a credal

4Note that a partial optimisation has been already per-
formed in the numerators of the terms in the product.

5Note that NCC0 is the NCC, while NCC1 is the NBC.
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Figure 1: Comparison between probability intervals
obtained by likelihood-based learning (α = .85, black
points) and IDM (s = 2, grey points) for Example 1.
The plot shows the upper bounds of the interval prob-
ability that the variable is true as a function of the
sample size N , when n

N = 1
2 . The plot for the lower

bounds would be symmetric to this one.

set P, i.e., a collection of probability distributions all
over the same variable. Assume the elements of P are
indexed by a parameter θ taking values in a set Θ,
i.e., P := {Pθ}θ∈Θ. Given the available data D, let us
consider the corresponding normalised likelihood:

lik(θ) :=
Pθ(D)

supθ′∈Θ Pθ′(D)
. (6)

The likelihood-based approach to learning consists of
removing from P the distributions whose normalised
likelihood is below some threshold. Thus, given α ∈
[0, 1], we consider the following (smaller) credal set:

Pα := {Pθ}θ∈Θ : lik(θ)≥α. (7)

Clearly, Pα=1 is typically a “precise” credal set in-
cluding only the maximum-likelihood distribution,
while Pα=0 = P. In principle, the original credal set
P can be obtained by means of some other imprecise-
probabilistic learning technique, which is indeed re-
fined by the likelihood-based approach. Likelihood-
based learning is said to be pure, if the credal set
P includes all the possible distributions that can be
specified over the variable under consideration (or, as
in the next section, at least all those satisfying the
structural judgements about symmetry and indepen-
dence characterising the model under consideration).

4 Likelihood-Based Naive Credal
Classifier

Let us consider a pure likelihood-based learning of
the model probabilities of the naive classifier. Thus,
let P denote the credal set associated to a NCC with

vacuous quantification of the model probabilities (i.e.,
each chance is only required to belong to the [0, 1] in-
terval). Let the parameter θ with values in Θ denote a
parametrisation of this credal set, i.e., P := {Pθ}θ∈Θ,
where θ is a NBC quantification. Given the available
data D, let us consider the normalised likelihood as
in (6), and hence the credal set Pα ⊆ P as in (7).

We call likelihood-based naive credal classifier (LNCC,
called naive hierarchical classifier in [3]) the collection
of NBCs in the credal set Pα. This only provides an
implicit specification of the model probabilities.6 Yet,
we can already describe how LNCC-based classifica-
tion is intended. The same dominance criterion (i.e.,
maximality) as for the NCC is considered, and we say
that c′ dominates c′′ iff

inf
θ∈Θ : lik(θ)≥α

Pθ(c′, f̃)
Pθ(c′′, f)

> 1. (8)

In order to perform classification with the LNCC, we
should discuss (8) for each pair of classes c′, c′′ ∈ C.
This task will be considered in Section 4.1. First, let
us note that, when evaluating the likelihood lik, we do
not only consider the data set D, but also the instance
under consideration f̃ . The value of the class variable
for this instance is unavailable (i.e., missing), no mat-
ter what its actual value is. Thus, the probability
we should take into account for the overall likelihood
evaluation is the product of Pθ(D) and

Pθ(f̃) :=
∑

c∈C

[
θc

m∏

i=1

θf̃i|c

]
. (9)

Note that we perform classification by means of the
dominance test in (8) for each c′, c′′ ∈ C. Thus, as
we cope with the likelihood separately for each pair
of classes, a simplification assumption consists of as-
suming that, when checking whether c′ dominates c′′,
the instance under consideration can only be c′ or c′′.
This basically means to restrict the sum in (9) only to
c′ and c′′. In order to see how this kind of classifica-
tion works in practice consider the following example.
Example 2. Consider a LNCC with a Boolean class
C and a single Boolean feature F . In this setup, a
NBC specification is provided by the three-dimensional
parameter θ := (θc, θf |c, θf |¬c), taking values in Θ :=
[0, 1]3. Apart from (c, f) which appears five times, the
other three possible combinations for the class/feature
values appear only once in the data set. To decide
whether or not C = c dominates C = ¬c, when the
instance to be classified is F = f , we first compute
the likelihood of the available (supervised) data:

lik(θ) = θ6c ·(1−θc)2 ·θ5f |c ·(1−θf |c) ·θf |¬c ·(1−θf |¬c).

6Note that, if regarded as a credal net [6], the LNCC (as the
NCC) has non-separately specified credal sets.
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Figure 2: LNCC-based classification. The dominance
test in Example 2 is solved by generating a random
sample of 3000 NBC quantifications θ and depict-
ing for each θ the posterior and the likelihood as the
point (Pθ(c|f), lik(θ)). Note that in the Boolean case
Pθ(c|f) > 1

2 is an equivalent dominance condition.
The upper envelope of the points in the limit of an
infinite sample size (see Section 4.1) is depicted in
grey. Horizontal lines describe the cuts for different
α-values. Black lines are based on the random sample,
while those referred to the upper envelope are grey.

As we also want to consider the instance to be clas-
sified, we multiply this likelihood by the chance that
F = f , which according to (9) is

θc θf |c + (1− θc) θf |¬c.

For each θ ∈ Θ, c dominates ¬c if

θc θf |c
(1− θc) θf |¬c

> 1.

To perform classification with the LNCC, we just have
to check whether or not such a dominance relation is
satisfied for each θ whose likelihood is not below the
maximum likelihood multiplied by α. Figure 2 reports
a Monte Carlo solution of this problem. Note that we
have dominance for high threshold levels (e.g., α =
.75), and no dominance for low levels (e.g., α = .2).

4.1 Statistical Inference with LNCC

In the previous section we defined the LNCC corre-
sponding to a given α level, and described how we
intend to perform inference based on this model. Yet,
the sampling-based method considered in Example 2
is not necessary. In this section, we provide a classifi-
cation algorithm for the LNCC based on a parametric
formula for the upper envelope of the likelihood.

Let us therefore, for a generic classification problem,
consider the dominance test between c′ and c′′ for an

instance f̃ to be classified by means of the LNCC for a
given threshold α on the basis of the data D. The idea
is to parametrise the upper envelope of the likelihood
(also called profile likelihood [2, 14]) by means of a
parameter t ranging on the interval [a, b], where

a :=− min
j=1,...,m

n(c′, f̃j)− 1
2
,

b := min
j=1,...,m

n(c′′, f̃j) +
1
2
.

In order to characterise the profile likelihood of the
LNCC, we employ the following two results.

Theorem 1. For each θ ∈ Θ and each pair of classes
c′, c′′ ∈ C, there is a unique t ∈ [a, b] such that

Pθ(c′, f̃)
Pθ(c′′, f̃)

=
[n(c′)+ 1

2+t]
∏m

j=1
[n(c′,f̃j)+

1
2+t]

[n(c′)+ 1
2+t]

[n(c′′)+ 1
2−t]

∏m
j=1

[n(c′′,f̃j)+
1
2−t]

[n(c′′)+ 1
2−t]

, (10)

where x
0 is interpreted as +∞ when x is positive, and

as 1 when x = 0. Moreover, the right-hand side of
(10) is a continuous, strictly increasing function of
t ∈ [a, b].

Theorem 1 defines a many-to-one relation between the
elements of Θ and those of the interval [a, b]. For each
t ∈ [a, b], let Θt denote the set of all elements of Θ for
which (10) is satisfied.

Theorem 2. Let L, l′, l′′, p′, p′′ be the functions on
[a, b] defined by

L(t) = sup
θ∈Θt

lik(θ),

l′(t) = [n(c′)+ 1
2+t]n(c′) ∏m

j=1
[n(c′,f̃j)+

1
2+t]n(c′,f̃j)

[n(c′)+ 1
2+t]n(c′) ,

l′′(t) = [n(c′′)+ 1
2−t]n(c′′) ∏m

j=1
[n(c′′,f̃j)+

1
2−t]n(c′′,f̃j)

[n(c′′)+ 1
2−t]n(c′′) ,

p′(t) = [n(c′)+ 1
2+t]

∏m
j=1

[n(c′,f̃j)+
1
2+t]

[n(c′)+ 1
2+t] ,

p′′(t) = [n(c′′)+ 1
2−t]

∏m
j=1

[n(c′′,f̃j)+
1
2−t]

[n(c′′)+ 1
2−t] ,

for all t ∈ [a, b], where both 0
0 and 00 are interpreted

as 1. Then
L ∝ l′ l′′ (p′ + p′′). (11)

These two theorems can be used to perform LNCC-
based classification without sampling. We first evalu-
ate the maximum t̂ of L(t). Then, we check whether,
for the values t ∈ [a, b] such that L(t) ≥ αL(t̂), the
ratio on the right-hand side of (10) is always bigger
than one. If so, we have that c′ dominates c′′. To
see how this works, consider the classification task in
Example 2. When testing whether or not c dominates
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Figure 3: Profile likelihood functions for P (c|f̃1, f̃2) in
Example 3: with and without the probability of the
new instance (black and grey curves, respectively).

¬c, we have [a, b] = [− 11
2 ,

3
2 ]. For each t ∈ [a, b], the

right-hand side of (10) rewrites as 11+2t
3−2t , while the

likelihood in (11) is proportional to (11 + 2t)5 (3− t);
the resulting profile likelihood is depicted in Figure 2
(grey curve).

Example 3. Consider a LNCC with a Boolean class
C and two features F1, F2. We want to classify a
new instance with features f̃1, f̃2, on the basis of a
data set D containing n(·) = 100 instances. In the
data set D, the class c has been observed n(c) = 50
times, always in conjunction with the feature f̃1, but
never with the feature f̃2; that is, n(c, f̃1) = 50 and
n(c, f̃2) = 0. Of the n(¬c) = 50 observed instances
with class ¬c, one had the feature f̃1, and another
one had the feature f̃2; that is, n(¬c, f̃1) = 1 and
n(¬c, f̃2) = 1. Figure 3 shows the profile likelihood
function for P (c|f̃1, f̃2) (compare with Figure 2) when
the probability (9) of the new instance is considered
in the likelihood function (black curve), and when it
is not considered (grey curve).

Hence, the LNCC classifies the new instance as c
when α is sufficiently large (more precisely, when
α ≥ 0.22); the same classification is obtained by the
NBC with uniform prior and by the NCCϵ (for suffi-
ciently large ϵ). By contrast, without using the proba-
bility (9) of the new instance in the likelihood function,
the classifier would return both classes (if α ≤ 0.98),
as does the standard NCC (that is, NCCϵ with ϵ = 0),
while the NBC with maximum-likelihood quantifica-
tion returns the class ¬c (at least when the usual like-
lihood function, without the probability of the new in-
stance, is maximised). This is an example of the zero-
counts issue discussed at the end of Section 2.2, which
is the main reason why the ϵ-modification of NCC has
been introduced and why we consider also the probabil-
ity (9) of the new instance in the likelihood function.

4.2 Computational Complexity

The classification of an instance requires the iteration
of the dominance test over all the possible pair of class
labels, this task being clearly quadratic in |C|. In or-
der to perform the dominance test, the function L(t)
should be evaluated. This requires a number of op-
erations which is linear in the number of attributes
m. The same order of magnitude is required to com-
pute the right-hand side of (10). In our preliminary
implementation, τ equally spaced points over the in-
terval [a, b] have been considered. The numerical op-
timisation of the likelihood and identification of the
α-cut was therefore simply performed by considering
the value of the function L(t) in these points. For
the experiments, we adopted τ = 250; empirically, in-
creasing τ beyond this value resulted only in negligible
differences in the classifications produced by LNCC.
Thus, for practical purposes, we can consider τ as a
constant, and we obtain O(m|C|2) complexity (as for
the NCC, [17]).

5 Experiments

To describe the performance of a credal classifier, we
need multiple indicators. In particular, we adopt the
following:

• determinacy (Det): the percentage of instances
classified with a single class;

• single accuracy (Sgl-acc): the accuracy over the
instances classified with a single class;

• set-accuracy : the accuracy over the instances
classified with more classes;

• indeterminate output size: the average number
of classes returned when the classification is in-
determinate.

Note that when NCC is determinate, it returns the
same class as NBC; this is due to the uniform prior be-
ing included in the IDM. This cannot be guaranteed
for LNCC; however in our experiments LNCC, when
precise, generally returned the same class as NBC.
Thus, the single accuracy of NCC [resp. LNCC]
is equivalent to the accuracy achieved by NBC on
the instances determinately classified by NCC [resp.
LNCC]. A credal classifier does a good job at isolating
hard-to-classify instances if its Bayesian counterpart
has low accuracy on the instances which are indeter-
minately classified. We denote as NBC-I the accuracy
of naive Bayes on the instances indeterminately clas-
sified by the credal classifier at hand (NCC or LNCC,
depending on the context). A large drop between sin-
gle accuracy and NBC-I means thus that the credal
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classifier is effective at isolating instances which are
hard to classify.

Unfortunately, there is so far no single indicator
which can reliably compare two credal classifiers. The
discounted-accuracy (D-acc, [5]) has been proposed
for this purpose; it is defined as 1

n

∑
i∈acc

acci

|outputi| ,
where, with reference to the i-th instance, acci de-
notes whether the set of returned classes contains or
not the actual one and |outputi| denotes the num-
ber of classes returned. On each instance, the clas-
sifier is thus given 0 if inaccurate or 1/|outputi| if
accurate. Yet, discounted-accuracy sees as equiva-
lent, in the long term, a vacuous classifier which re-
turns all classes and a random classifier which re-
turns a single class at random. However, the vacu-
ous classifier should be generally preferred over the
random one; this is clear if one thinks for instance
of the diagnosis of a disease. In a way the vacuous,
unlike the random, is aware of being ignorant; yet
discounted-accuracy does not capture this point. In
fact, the design of metrics to rank credal classifiers
is an important open problem. Moreover, when deal-
ing with credal classifiers with considerably different
determinacy, discounted-accuracy favors the more de-
terminate ones. We thus try to compare LNCC and
NCC (in its NCCϵ generalisation) when they have the
same determinacy. For this purpose we tried differ-
ent values of ϵ for NCCϵ and α for LNCC; more pre-
cisely, denoting also the value of α as a subscript,
we considered: NCC0.05, NCC0.15, NCC0.25, NCC0.35;
LNCC0.35, LNCC0.55, LNCC0.75, LNCC0.95.

5.1 Artificial Data

We generated artificial data sets, considering a bi-
nary class and 10 binary features, under a naive
data generation mechanism. We set the marginal
chances of classes as uniform, while we drew the
conditional chances of the features under the con-
straint |θfj |c′ − θfj |c′′ | ≥ 0.1 for each c′, c′′ ∈ C and
j = 1, . . . ,m; the constraint forced each feature to be
truly dependent on the class. We drew such chances
20 times uniformly at random and we consider the
sample sizes d ∈ {25, 50, 100}. For each pair (θ, d) we
generated 30 training sets and a huge test set of 10000
instances. For each sample size, we thus perform 20
θ × 30 trials = 600 training/test experiments. Note
that, dealing with two classes, set-accuracy is fixed to
100% and indeterminate output size to 2; we do not
need thus to consider these indicators.

In Figure 5 we show how the determinacy of NCC
and LNCC varies with the sample size, choosing pairs
{α, ϵ} which produce reasonably comparable curves.
Interestingly, NCC is more sensitive than LNCC to
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Figure 5: Determinacy of NCC and LNCC as a func-
tion of the sample size d.

Classifier n Det Sgl-acc D-acc NBC-I

NCC0.25 25 90.1 90.4 86.5 54.5
LNCC0.75 25 90.1 90.4 86.6 52.8
NCC0.05 50 91.7 91.5 88.2 57.4
LNCC0.75 50 91.2 91.8 88.2 55.3
NCC0.25 100 97.9 90.5 89.7 51.2
LNCC0.95 100 97.7 90.6 89.7 51.4

Table 1: Performance indicators for NCC and LNCC,
for choices of α and ϵ leading to close determinacies;
each number is an average over 600 experiments.

the sample size d; the determinacy of NCC steeply
increases with d, unlike that of LNCC. In fact, NCC
becomes determinate once the rank of the classes does
not change under all the different priors of the IDM;
but the smoothing effect of the prior decreases with d.
The same is known to happen with likelihood-based
methods, but convergence towards the precise model
is slower, as shown by the comparison in Figure 1.

It is interesting to compare LNCC and NCC when
they have, for the same sample size, very close de-
terminacy. This is this the case of NCC0.25 and
LNCC0.75 for d=25; of NCC0.05 and LNCC0.75 for
d=50; of NCC0.25 and LNCC0.95 for d=100. Note that
in general it is not possible to predict in advance which
choice of ϵ and α will allow to obtain similar determi-
nacy from LNCC and NCC. However, when NCC and
LNCC achieve the same determinacy, their perfor-
mances are very similar also on the remaining indica-
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Figure 4: LNCC versus NCC: scatter plots on different UCI binary data sets.

tors, as shown in Table 1. This suggests that, for the
same level of determinacy, NCC and LNCC become
indeterminate on roughly the same instances, despite
the different derivation of their algorithms. Note also
the large drop between Sgl-acc and NBC-I for both
classifiers, showing that both NCC and LNCC can be
seen as extending NBC towards increased reliability.

5.2 Binary Data Sets from UCI

We then considered 9 binary data sets (containing 2
classes) from the UCI repository; the number of in-
stances ranges from 57 to 3000 and the number of
features from 8 to 60. Since the data sets are binary,
set-accuracy and indeterminate output size can only
be respectively 100% and 2; we do not consider thus
these indicators. For each credal classifiers we report
instead Sgl-acc and NBC-I, namely the accuracy of
NBC when the credal classifier is respectively deter-
minate7 and indeterminate. If there is a large differ-
ence between these two indicators, the credal classi-
fier is doing a good job at isolating instances which
are difficult to classify for NBC. Moreover, we report
determinacy and D-acc to provide a general overview
of the classifiers’ behavior.

The results in Table 2 show that when LNCC and
7This follows from NBC returning the same class as the

credal classifier, when the latter is determinate (this is theo-
retically guaranteed for NCC and only empirically verified for
HNCC); Sgl-acc can be thus seen as measuring also the accu-
racy of NBC when the credal classifier is determinate.

Dataset Classifier Det Sgl-acc D-acc NBC-I

german NCC0.05 96.1 75.6 74.6 58.6
german LNCC0.95 95.7 75.7 74.6 57.5

haberman NCC0.05 95.1 73.3 72.1 45.6
haberman LNCC0.95 93.9 73.8 71.9 50.2
hepatitis NCC0.05 95.3 85.7 60.3 84.0
hepatitis LNCC0.75 95.4 85.5 61.1 83.9

Table 2: Results for LNCC and NCC on UCI data
sets, for choices of α and ϵ leading to close determi-
nacies. We report results only for 3 out of 9 analyzed
data sets, because the remaining data sets only show
very similar findings: namely that when LNCC and
NCC have close determinacy, their performance on all
indicators is substantially identical.

NCC have close determinacy, they also have very sim-
ilar performance on the remaining indicators, as in
the previous experiments. Also in this case, there is
in general a large drop between Sgl-acc and NBC-I,
showing that both credal classifiers are effective at
isolating instances that are hard to classify for NBC.

However, it is also interesting to see what happens
if we set a default choice for ϵ and α. We set ϵ to
0.05 for NCC, thus considering a minimal variation
over the NCC of [17], aimed at avoiding issues with
zero counts. As for LNCC, we adopted a trial and
error approach, from which α = 0.75 appeared as a
reasonable compromise between determinacy and reli-
ability of the classifier. On average, NCC has slightly
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higher determinacy (96.3% vs. 94.3%) and slightly
lower single-accuracy (84.2% vs. 85.5%) than LNCC.
Moreover, the area of ignorance (instances indetermi-
nately classified) of NCC is slightly more difficult to
classify for NBC than the area of ignorance of LNCC:
the average NBC-I is 53.1% vs. 57.6%. In fact, NCC
is slightly more determinate and thus more selective in
deciding when to become indeterminate. The average
discounted accuracy of the two classifiers is very close
(82.8% vs 82.7%). However, averaging indicators over
data sets is questionable; we thus also present in Fig-
ure 4 the scatter plots of such indicators. On each
data set there is little difference between the single-
accuracy of NCC and LNCC; the same holds also for
the discounted-accuracy. On the other hand, there
are sometimes considerable differences between NCC
and LNCC as for the determinacy, which tends to be
larger for NCC, and as for NBC-I, which tends to
be larger for LNCC. In general, when the difference
in determinacy between NCC and LNCC increases,
so does the difference in NBC-I between LNCC and
NCC.

6 Conclusions and Outlooks

We have presented an alternative, likelihood-based,
approach to the imprecise-probabilistic quantification
of a naive classifier. A numerical comparison with
the naive credal classifier (in its modified formulation
to cope with zero-count issues) shows that, despite
their deeply different derivations, the performance of
the two classifiers is very similar when they produce
more or less the same amount of indeterminate clas-
sifications. When the amount of indeterminacy be-
tween the two classifiers is considerably different, a
meaningful comparison is difficult: this would require
modelling the trade-off between accuracy and infor-
mativeness by means of one or more performance in-
dicators, which is currently one of the most important
open problems in credal classification.

Extensions of the new approach to more complex in-
dependence structures (e.g., tree-augmented naive),
incomplete data sets, and continuous features seem
to be worth of future investigations.
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Appendix

Proof of Theorem 1. Let g be the function assign-
ing to each t ∈ [a, b] the corresponding right-hand side
of (10). We prove the theorem by showing that for each
x ∈ [0, +∞] there is a unique t ∈ [a, b] such that g(t) = x.
When t ∈ (a, b), all the sums of three terms (of the form[
n + 1

2
± t

]
) in the expression of g(t) are positive. In this

case, each fraction [
n(c′, f̃j) + 1

2
+ t

][
n(c′) + 1

2
+ t

] (12)

is a continuous, increasing function of t, since it is differ-
entiable with derivative

n(c′)− n(c′, f̃j)[
n(c′) + 1

2
+ t

]2 ≥ 0.

Therefore, the numerator of g(t) is a continuous, strictly
increasing function of t ∈ (a, b), since it is the product of
m continuous, increasing functions and of the continuous,
strictly increasing function

[
n(c′) + 1

2
+ t

]
. Analogously,

we can prove that the denominator of g(t) is a continuous,
strictly decreasing function of t ∈ (a, b), and therefore g is
continuous and strictly increasing on (a, b).

In order to prove Theorem 1, it now suffices to show that

lim
t↓a

g(t) = g(a) = 0 and lim
t↑b

g(t) = g(b) = +∞. (13)

We prove the first expression: the second one can be
proved analogously. As t tends to a from above, the de-
nominator of g(t) tends to a positive constant, which is
reached when t = a. To study the limit of the numerator of
g(t), let j0 be such that n(c′, f̃j0) = minj=1,...,m n(c′, f̃j).
We can distinguish two cases: either n(c′, f̃j0) = n(c′), or
n(c′, f̃j0) < n(c′). In the first case, n(c′, f̃j) = n(c′) for
all j, and the numerator reduces to

[
n(c′) + 1

2
+ t

]
, since

the fractions (12) are all equal 1. Therefore, in this case,
the limit of the numerator of g(t) as t tends to a from
above is 0, because a = − 1

2
− n(c′). In the second case,

a = − 1
2
− n(c′, f̃j0), and thus the limit of the numerator

of g(t) as t tends to a from above is 0 as well, because the
fraction (12) with j = j0 tends to 0. Moreover, in both
cases, the numerator of g(t) is 0 when t = a, since 0

0
is

interpreted as 1. This proves the first expression of (13)
and hence the theorem.

Proof of Theorem 2. Let ld, π′, π′′, r be the functions
on Θ defined by

ld(θ) =
∏
c∈C

θn(c)
c

m∏
j=1

∏
fj∈Fj

θ
n(c,fj)

fj |c

 , r(θ) =
π′(θ)

π′′(θ)
,

π′(θ) = θc′

m∏
j=1

θf̃j |c′ , π′′(θ) = θc′′

m∏
j=1

θf̃j |c′′ ,

for all θ ∈ Θ. Then, up to normalisation, the considered
likelihood function lik corresponds to ld (π′ + π′′), since
ld(θ) is the probability of the observed data set D accord-
ing to the NBC specified by θ, while π′(θ) and π′′(θ) are
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the probabilities of the instance under consideration (ac-
cording to the NBC specified by θ), when its class is c′ and
c′′, respectively. Therefore, in particular, r(θ) corresponds
to the left-hand side of (10).

For each t ∈ [a, b], consider now the function

ld (π′)
1
2+t (π′′)

1
2−t = ld π′ rt− 1

2 = ld π′′ rt+ 1
2 . (14)

This function corresponds to the function ld with modi-
fied counts n (which are in general not integer anymore,
but still nonnegative), and can be easily maximised. Its
maximum is taken in θ̂(t), where θ̂(t) is the maximum
likelihood quantification of the NBC with respect to the
modified counts: that is,

θ̂(t)c′ =
n(c′) + 1

2
+ t

n(·) + 1
, θ̂(t)f̃j |c′ =

n(c′, f̃j) + 1
2

+ t

n(c′) + 1
2

+ t
,

θ̂(t)fj |c′ =
n(c′, fj)

n(c′) + 1
2

+ t
for all fj ̸= f̃j ,

θ̂(t)c′′ =
n(c′′) + 1

2
− t

n(·) + 1
, θ̂(t)f̃j |c′′ =

n(c′′, f̃j) + 1
2
− t

n(c′′) + 1
2
− t

,

θ̂(t)fj |c′′ =
n(c′′, fj)

n(c′′) + 1
2
− t

for all fj ̸= f̃j ,

θ̂(t)c =
n(c)

n(·) + 1
and θ̂(t)fj |c =

n(c, fj)

n(c)
for all fj ,

where c is any class different from c′, c′′. Therefore, in
particular, r(θ̂(t)) corresponds to the right-hand side of
(10): that is, θ̂(t) ∈ Θt.

Since θ̂(t) maximises the function (14) over all θ ∈ Θ,
it also maximises both functions ld π′ and ld π′′ over all
θ ∈ Θ such that r(θ) = r(θ̂(t)). That is, θ̂(t) maximises
both functions ld π′ and ld π′′ over all θ ∈ Θt, and therefore
it also maximises their sum ld (π′ + π′′) over all θ ∈ Θt.
Since this last function corresponds, up to normalisation,
to the considered likelihood function lik, we obtain the
result L(t) = lik(θ̂(t)).

In order to prove Theorem 2, it suffices to show that
lik(θ̂(·)) is proportional to l′ l′′ (p′ + p′′); that is, it suf-
fices to show that

ld(θ̂(t))
(
π′(θ̂(t)) + π′′(θ̂(t))

)
= γ l′(t) l′′(t)

(
p′(t) + p′′(t)

)
,

where the proportionality constant γ ∈ (0, +∞) may de-
pend on anything but t. Since

π′(θ̂(t)) + π′′(θ̂(t)) =
1

n(·) + 1

(
p′(t) + p′′(t)

)
,

it only remains to show that ld(θ̂(t)) is proportional to
l′(t) l′′(t). In the expression ld(θ̂(t)), we can drop all fac-
tors for classes c different from c′, c′′, because θ̂(t)c and
θ̂(t)fj |c do not depend on t when c is different from c′, c′′.
The desired result follows easily when one considers that

n(c) =
∑

fj∈Fj

n(c, fj)

for all c ∈ C and all j ∈ {1, . . . , m}.
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Abstract

We present empirical evidence indicating the exis-
tence of a description/experience gap for decisions
under uncertainty. The nature of the gap is differ-
ent than the one arising in the case of risk but both
phenomena depend essentially on the use of limited
sampling in experience. While subjects are ambigu-
ity averse in description they are robustly ambiguity
seeking in experience. A probabilistic explanation of
this effect is provided as well as conjectures about the
possibility of studying the effect with descriptive the-
ories like Cumulative Prospect Theory.

Keywords. uncertainty, descriptive, normative, ex-
perience, description

1 Background

Traditionally, beliefs and desires are represented by
subjective probabilities and utilities, respectively, and
these subjective probabilities and utilities are com-
bined in the calculation of expectations. This ex-
pected utility tradition is dominant within the deci-
sion sciences, extending from cases of decision making
under risk, where objective probabilities are available
to the decision maker, to cases of decision making
under uncertainty, where information about objective
probabilities is scarce [17].

The familiar axiomatizations of the expected util-
ity hypothesis, from von Neumann-Morgenstern to
Anscombe-Aumann to Savage (see [15] for an intro-
ductory presentation), are usually interpreted norma-
tively, but they also serve as a diagnostic tool in that
systematic deviations from their requirements are in-
terpreted as pathology exhibited in human behavior
and in need of explanation. The following example,
one among a class of examples made famous by Allais
[1], serves to illustrate the point: The subject is pre-
∗Engineering and Public Policy.
† Social and Decision Science.

sented with two decision problems, each consisting of
a pair of risky alternatives. In the first problem the
subject is given a choice between a lottery A that pays
$4000 with probability 0.8 and $0 with probability 0.2
and a lottery B that pays $3000 with probability 1.
In the second problem the subject is given a choice
between a lottery C that pays $4000 with probability
0.2 and $0 with probability 0.8 and a lottery D that
pays $3000 with probability 0.25 and $0 with prob-
ability 0.75. It has been observed that a significant
number of subjects choose B in the first decision prob-
lem and C in the second decision problem. Assuming
that such choices reveal strict preferences they are in-
compatible with the expected utility hypothesis: if B
is strictly preferred to A, then the expected utility hy-
pothesis requires a strict preference for the compound
lottery that rewards B with probability 0.25 and $0
with probability 0.75 over the compound lottery that
rewards A with probability 0.25 and $0 with proba-
bility 0.75 and, moreover, the expected utility max-
imizer must be indifferent between the first of these
compound lotteries and D as well as between the sec-
ond of these compound lotteries and C.

How are these observed deviations from expected util-
ity theory to be interpreted? More generally, what is
the significance of such deviations? According to one
important class of interpretations such observed de-
viations are evidence that the normative theories at
issue are not adequate when it comes to describing
the decisions of human agents – but remain nonethe-
less valid normatively. According to another class of
interpretations such deviations can be evidence that
the theory being violated is inadequate as a norma-
tive theory of decision making – this is essentially the
sort of interpretation that Ellsberg took in response to
the violations that he made famous in connection with
Savage’s theory [6]. For now we will focus on the first
class of interpretations that was mentioned. Work on
this class of has been dominated by two schools. Es-
sential examples of the first of these schools can be
found in the previously mentioned work of Simon [18]

31



and Gigerenzer [11]. A basic theme of such work is
that deviations from a normative theory such as ex-
pected utility maximization are often just the result
of computational limitations and that such deviations
are not necessarily a sign of irrationality. Essential
examples of the second of these schools is provided
by the work of Kahneman and Tversky [14]. A basic
theme of such work is that human decision processes,
much like human senses, are subject to illusions and
that these illusions lead to systematic deviations from
expected utility and related norms. Work done in
both these schools is potentially significant. For now
we will focus on work done in the second of the two
schools that were mentioned.

Let us consider what is perhaps the most well-known
theory from this second school that attempts to ad-
dress deviations from expected utility theory such as
those associated with the Allais-type example men-
tioned previously. Roughly, prospect theory posits two
phases of decision making. The first of these is an
editing phase during which various operations (e.g.,
coding) are applied to the information that is available
to the decision maker so that it can be arranged into
an appropriate form. The second phase is concerned
primarily with evaluation. The basic idea is that the
various alternatives are assessed in terms of an in-
dex that is similar to expected utility but with “deci-
sion weights” replacing the probabilities and a “value
function” replacing the utilities. The decision weights
can be represented in terms of a weighting function
π on the objective probabilities that are assumed to
be accessible to the decision maker in the context of
decision making under risk. According to Kahneman
and Tversky, “decision weights measure the impact of
events on the desirability of prospects, and not merely
the perceived likelihood of these events.” [14]. Pre-
sumably, according to this view there are a significant
number of cases where differences between π(p) and
p indicate a pathology of systematic deviations from
the expected utility hypothesis. Through an appeal
to empirical and theoretical considerations, Kahne-
man and Tversky argue that these decision weights
satisfy certain structural requirements, e.g., the over-
weighting of small probabilities. They also provide
arguments, both theoretical and empirical, to show
that the value function v of prospect theory, which is
defined on “changes in wealth or welfare, rather than
final states” satisfies certain structural requirements,
e.g., concavity for gains.

We now turn to an example that illustrates the man-
ner in which prospect theory is tested in [13]. Re-
call from the previous discussion that prospect theory
predicts the overweighting of small probabilities, i.e.,
π(p) > p for small p. Kahneman and Tversky perform

the following experiment to test this prediction: Each
subject in the study is asked to choose from a pair
of alternatives. One of these alternatives is a lottery
that pays $5000 with probability 0.001 and pays $0
with probability 0.999. The other alternative pays $5
with certainty. Kahneman and Tversky [14] report
that a majority of subjects have a strict preference
for the first of the two alternatives just described.
Consider a subject who demonstrates these prefer-
ences. Such preferences are representable in prospect
theory just in case there are π and v such that
π(.001)v($5000) + π(.999)v($0) > v($5). Following
Kahneman and Tversky we set v($0) = 0 so that the
previous inequality simplifies to π(.001)v($5000) >
v($5), which implies that

π(.001) >
v($5)

v($5000)
. (1)

Finally, since v is assumed to be concave for gains it
follows that

v($5)
v($5000)

≥ .001. (2)

Combining inequalities (1) and (2) yields π(.001) >
.001 as predicted.

In the experiment discussed in the previous paragraph
subjects were presented with a menu of alternatives
and a description of the relevant probabilities. Use
of this sort of empirical methodology is widespread
among work on the psychology of decision making.
But to what extent does empirical support, such as
that which was just discussed in connection with the
overweighting of small probabilities, depend on this
methodological choice? One might respond by main-
taining that such a question presupposes that there
are other plausible methodologies. An important ex-
ample of an alternative methodology is the “sampling
paradigm” that is used in more recent work such as
[13]. For our purposes, the essential difference be-
tween this alternative methodology and the sort of
approach that was taken in [14] is that in the for-
mer subjects get their information about the relevant
probabilities through sampling rather than by reading
a text description.

To illustrate the difference between the two ap-
proaches that were just mentioned, consider the fol-
lowing type of experiment from [13]: Divide the sub-
jects into two groups. Subjects in the first group are
given the previously discussed task from [13] in con-
nection with the underweighting of small probabili-
ties. That is, subjects in this first group are asked
to choose between A, a lottery that pays $5000 ($0)
with probability 0.001 (.999), and B, an alternative
that pays $5 with certainty. Subjects in the second
group are asked to choose between pressing one of two
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buttons, A and B, on a computer screen. Although
the subjects in this group are never given such infor-
mation, A is a chance setup that rewards either $5000
or $0 at the end of each trial and, furthermore, the
objective probabilities (i.e., limiting frequencies) that
are associated with A are .001 and .999 for $5000 and
$0, respectively. Similarly, button B is a chance setup
that rewards $5 with probability 1. Finally, although
subjects in the second group are not told the proba-
bilities associated with A and B, they are permitted
to sample both buttons as many times as they desire
before making their decision between the two alterna-
tives. It should be clear that the crucial distinction
between the task that is given to the first group of
subjects and the task that is given to the second is es-
sentially the aforementioned distinction between first
and second of the two empirical methodologies under
consideration.

Let us assume that the subjects in the first group
reveal preferences that are consistent with what Kah-
neman and Tversky observed in connection with the
underweighting of small probabilities. Do we expect
that the preferences that are revealed in the second
group to essentially parallel those that are revealed
in the first? Hertwig et al. have argued that we
should not. Indeed, Hertwig et al., through exper-
iments of the sort just mentioned, have shown that
certain psychological effects – e.g., the overweighting
of rare events – are not preserved when one changes
from a description-based approach to an experience-
based approach, and this lack of preservation is known
as experience-description gap – as a matter of fact
rare events are underweighted in experience. The gap
is difficult to explain by appealing to theories like
Prospect Theory.

Fox and Hadar have recently expressed criticisms in
[10] about some of the claims presented in [13] con-
cerning a possible experience-description gap. We
will now consider two of the main theoretical criti-
cisms that are discussed in [10]. First, Fox and Hadar
do not believe that Hertwig et al. were sufficiently
clear about what counts as experienced-based decision
making [EBDM]: “The generalization that EBDM dif-
fers from DBDM is difficult to evaluate because, sur-
prisingly, no one has yet defined ‘experience-based de-
cision making.” [10] 1 Noting this lack of an adequate
definition of experienced-based decision making, Fox
and Hadar offer what they take to be an adequate
characterization of EBDM. The upshot of their anal-
ysis is that “[. . .] EBDM applies to any situation in
which there is uncertainty and learning through sam-
pling.” This point, which is significant, will be dis-

1DBDM of course refers to description-based decision mak-
ing.

cussed later in this paper. For now, we turn to a
matter that is more directly related to the Fox and
Hadar’s charge that EBDM had not been given an
adequate definition.

We think that the analysis of EBDM given in [10]
is not well-suited to a study of the experience-
description gap as understood in [13]. In particular,
the analysis that is supplied in [10] does not say any-
thing about what it means to be an experience-based
counterpart to a given description-based task, some-
thing which is crucial to the interpretation of the work
that is reported in [13]. In light of this, Arló-Costa
and Helzner [2] proposed the following analysis of this
counterpart relation that is essential if one is to exam-
ine how well a given psychological effect travels across
experience-description gap:

• In a decision from description the subject is pre-
sented with a specification of the type of chance
mechanism.

• In a decision from experience the subject is not
presented with such a specification but rather is
allowed to observe the behavior of a chance mech-
anism that has the specified type.

In [2], Arló-Costa and Helzner suggest that this anal-
ysis might be useful in examining the extent to which
an experience-description gap exists for certain psy-
chological effects associated with decision making un-
der uncertainty. The argument that was given in [2]
on behalf of this suggestion is that, while classical
descriptions of uncertainty – e.g., the Ellsberg urn
– have no experiential counterparts, since the rele-
vant uncertainties in such cases are epistemic, one
can specify mechanisms that, at least psychologically,
approximate descriptions of uncertainty and, more-
over, have an experiential counterpart in the sense of
Arló-Costa and Helzner’s analysis of the counterpart
relation. In the next section we will examine recent
experimental work concerning the way effects asso-
ciated with these approximations of uncertainty can
vary as one moves from EBDM to DBDM. It is worth
noting that the present article may be seen as build-
ing on the approach considered in [21] and [5]. In a
more recent paper Yoram Halevy [12] makes a force-
ful case for establishing a strong correlation between
ambiguity neutrality and the reduction of compound
objective lotteries. Halevy concludes that his results
suggest that failure to reduce compound (objective)
lotteries is the underlying factor of the Ellsberg para-
dox. We do not want to make such a strong claim
but we rely on the idea that a chance setup like B∗,
as described in what follows, can be treated as an
operational approximation of uncertainty.
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2 Experimental Work

Example 1 (Ellsberg’s two-color problem [6])
Consider the following two cases:

Urn A contains exactly 100 balls. 50 of these balls are
solid black and the remaining 50 are solid white.

Urn B contains exactly 100 balls. Each of these balls is
either solid black or solid white, although the ratio
of black balls to white balls is unknown.

Consider now the following questions: How much
would you be willing to pay for a ticket that pays $25
($0) if the next random selection from Urn A results
in black (white) ball? Repeat then the same question
for Urn B.

It is well known that subjects tend to offer higher
maximum buying prices for urn A than for urn B.
This seems to be so even in non-comparative cases
(see [4] and [3]) contrary to the so-called comparative
ignorance hypothesis formulated in [9]. On the other
hand, consider the following description of a chance
setup:

B∗: First, select an integer between 0 and 100 at ran-
dom, and let n be the result of this selection.
Second, make a random selection from an urn
consisting of exactly 100 balls, where n of these
balls are solid black and 100− n are solid white.

In a previous ISIPTA paper Arló-Costa and Helzner
reported experimental results indicating that maxi-
mum buying prices for B∗ are intermediate with re-
spect to the ones for A and B. This confirms pre-
vious results reported in [21] and [5]. In a more re-
cent paper Yoram Halevy [12] makes a forceful case
for establishing a strong correlation between ambigu-
ity neutrality and the reduction of compound objec-
tive lotteries (that would lead to treat urns A and
B∗ equally). He therefore concludes that his results
suggest that failure to reduce compound (objective)
lotteries is the underlying factor of the Ellsberg para-
dox. We do not want to claim something as strong as
that but we rely on the idea that B∗ can be treated
as an operational approximation of urn B. The inter-
est of this move is that B∗ is easily implementable in
experience while it is notoriously difficult to find an
experiential counterpart of B. The main experimen-
tal finding reported below is that while in description
subjects are averse to ambiguity (they prefer C over
B∗ and B) in experience this effect is reversed and
subjects are ambiguity seeking (they prefer B∗ over
C – B has no experiential counterpart). This shows
that the description-experience gap also appears (in a
different form) for decisions under uncertainty.

3 Method: First Experiment

One hundred and nineteen students at Carnegie Mel-
lon University (Pittsburgh, USA) were presented with
the three decision problems presented below. Maxi-
mum buying prices for these games were requested.
The options C, B∗ and B described above were im-
plemented in the following way:

C: A fair chance setup with possible outcomes
{1, 2, . . . , 99, 100} has been constructed. If the
outcome on the next run of this setup is less than
or equal to 50, then you win $25. Otherwise, you
get $0.

B∗: Two fair chance setups, I and II, have been
constructed. Setup I has possible outcomes
{0, 1, . . . , 99, 100}. Setup II has possible out-
comes {1, . . . , 99, 100}. The game is played by
first running setup I and then running setup II.
If the outcome of the run of setup II is less than
or equal to the outcome from the run of setup I,
then you win $25. Otherwise, you get $0.

B: An integer n has been selected from the set
{0, 1, . . . , 99, 100}. Nothing is known about
the mechanism by which n has been selected.
A fair chance setup with possible outcomes
{1, . . . , 99, 100} has been constructed. If the out-
come on the next run of this setup is less than or
equal to n, then you win $25. Otherwise, you get
$0.

3.1 The Description Condition

Fifty eight students from the pool of one hundred and
nineteen students mentioned above faced the descrip-
tion condition for the first experiment. We have two
types of trials. In the first type we consider gains.
The subjects face a computer window with two rect-
angles containing the text used above to describe the
options C and B∗. The subjects in this condition are
asked the following question: Which one out of the
two games will you choose to play?. They then
have three possible options for a response:

Left Button: You were indifferent between the two
alternatives. (A)

Middle Button: You had a strict preference for one
of the alternatives. (B)

Right Button: Neither (A) nor (B) reflect my atti-
tudes

The second type of trials involved losses. For ex-
ample the loss version of the C-option is: ‘A fair
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chance setup with possible outcomes {1, . . . , 99, 100}
has been constructed. If the outcome on the next run
of this setup is less than or equal to 50, then you lose
25. Otherwise, you get 0.’

3.2 The Experience Condition

Sixty one students from the pool of one hundred and
nineteen students mentioned above faced the experi-
ence condition for the first experiment. In the experi-
ence condition the subjects faced two rectangles con-
taining the labels C and V . They can sample these
options by clicking on them. Clicking the option C
triggers a random selection from {1, 2, . . . , 99, 100}.
If the outcome is less than or equal to 50, then the
subject is told that he won $25. Otherwise, he is told
that he got $0. So, this option corresponds to op-
tion C in description. Clicking the option V yields
an output obtained by triggering the double sampling
procedure B∗ presented in description. For example,
if one clicks on V a number is selected at random
in the set {0, 1, . . . , 99, 100} and then another from
{1, 2, . . . , 99, 100}. If the outcome of the run of sec-
ond selection is less than or equal to the outcome from
the first selection, then the subject is told that he won
$25. Otherwise, he gets $0. So, button V is the expe-
riential counterpart of option B∗. The subjects can
sample as much as they want, and then they make a
final selection of the C or V button. Sampling is used
as follows: after the subject presses V , for example,
she has the option of sampling again the same game
selected at the second stage. The sampling option is
also available for the C button. Of course, in this
case one continues to sample the unique game imple-
mented for this button (another random number will
be generated from {1, 2, . . . , 99, 100} and if the out-
come is less than or equal to 50, then the subject is
told that he won $25. Otherwise, he is told that he
got $0.

As in the description condition the subjects have three
buttons at their disposal to respond to. Clicking the
middle button, as before, reveals a strict preference
for one of the two options. A gain and a loss version
of C and B∗ were implemented.

4 Results: First Experiment

At the end of the experiment subjects were asked to
provide maximum buying prices for options C, B and
B∗ as presented in the description condition. This
was done for the subjects in the experience condi-
tion and for the subjects in the description condition.
So, it makes sense to pool subjects from both condi-
tions in order to compute results. Confirming previ-
ous results presented in ISIPTA (see [4] and [3]) there

is a significant difference between maximum buying
prices for options C and B even when the subjects
do not compare vague and clear options. And con-
firming results reported in [2] option B∗ appears as
an intermediate option between options C and B. A
few remarks are in order before presenting the results
from this first experiment: First, although we recog-
nize that doing multiple comparisons to test for in-
dependent hypotheses might inflate the Type 1 error,
it is important to note that we only compare experi-
ence with description (a single hypothesis) in different
ways (for gain, for loss, and for pooled gain and loss).
Thus, we do not consider multiple hypotheses and do
not need the Bonferroni correction of α = .05

3 = 0.02
(to reduce the inflation in Type 1 error). Second, it
is important to note that we are not using a normal
approximation on small samples. We tested for nor-
mality of the data and we found the data to be non-
normal in both experience and description conditions
of experiments 1 and 2 using separate Shapiro-Wilk
tests. For example, the data were non-normal in both
the experience and description conditions (experience:
D(124) = .64, p < .001; description: D(122) = .63,
p < .001). Again, the data was non-normal in both
experience and description conditions in experiment
2. Therefore, we used non-parametric Mann-Whitney
tests to evaluate significant differences between expe-
rience and description conditions. In fact, a binomial
distribution assumption, as the one anonymous ref-
eree suggested, might also not be a correct assump-
tion. Therefore, the safest thing for us to do was
to report non-parametric statistics, as we do in the
current paper. The Z-score that we report as part
of the statistics belongs to this Mann-Whitney non-
parametric test.

The following results were obtained.

Condition Alternative Max. Buying Price
Exp. + Desc. B 4.93 (n = 119)
Exp. + Desc. B∗ 6.36 (n = 119)
Exp. + Desc. C 7.04 (n = 119)

Table 1

Alternative C is significantly greater than alternative
B∗, with T=622, Z=-2.329, p < .05, Effect Size =
-0.15. Alternative C is significantly greater than Al-
ternative B , with T=527, Z=-4.751, p < .001, Effect
Size = -0.31. Alternative B∗ is significantly greater
than Alternative B, with T=411, Z=-3.716, p < .001,
Effect Size = -0.24. So, as we explained above, al-
ternative B∗ can be used as an operational proxy of
condition B in experience.
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4.1 The Description condition: Results

The main hypothesis here is that subjects will be am-
biguity averse (will significantly prefer C to B∗). The
numbers in the tables are the number of subjects click-
ing the corresponding buttons for each alternative.
The boldfaced results for the pooled population show
the magnitude of the effect.

Alternative Left Button Middle B. Right B.
B∗ 10 11 6
C 11 18 5

Table 2. Gain Trials (Description)

Alternative Left Button Middle B. Right B.
B∗ 8 14 5
C 7 20 7

Table 3. Loss Trials (Description)

Alternative Left Button Middle B. Right B.
B∗ 18 25 11
C 18 38 12

Table 4.Gain and Loss Trials (Description)

4.2 The Experience condition: Results

Here the hypothesis is the subjects will be ambiguity
seekers. The hypothesis is confirmed by the following
results.

Alternative Left Button Middle B. Right B.
B∗ 10 17 4
C 14 11 6

Table 5. Gain Trials (Experience)

Alternative Left Button Middle B. Right B.
B∗ 16 15 2
C 10 12 7

Table 6. Loss Trials (Experience)

Alternative Left Button Middle B. Right B.
B∗ 26 32 6
C 24 23 13

Table 7. Gain and Loss Trials (Experience)

One index that seems interesting is based on comput-
ing the proportion of subjects who expressed a strict
preference for C, both in Description and Experience.
These are the subjects who clicked the Middle But-
ton and C in experience or the subjects who clicked
the Middle Button in description expressing a strict

preference for the ‘clear’ 50-50 lottery. We will refer
indistinctly to these subjects as ‘Middle & C’ subjects.
The analysis reveals the following:

Gain Trials: Proportion Middle & C buttons (De-
scription) (18/29 = .62) = Proportion Middle &
C buttons (Experience) (11/28 = .4), with U=314,
Z=-1.705, p = .09, Effect Size = -0.23.

Loss Trials: Proportion Middle & C buttons (De-
scription) (20/34 = .58) = Proportion Middle &
C buttons (Experience) (12/27 = .4), with U=393,
Z=-1.108, p = .27, Effect Size = -0.14.

Gain and Loss Trials: Proportion Middle & C but-
tons (Description) (38/63 = .6) > Proportion Mid-
dle & C buttons (Experience) (23/55 = .4), with
U=1412, Z=-1.998, p ¡ .05, Effect Size = -0.18.

It is very interesting to notice that the proportions of
Middle & C subjects in Description remains almost
constant for both gain and loss trials (minimum and
maximum values are, respectively, .58 and .62). By
the same token the proportion of Middle & C sub-
jects in Experience remains exactly constant with a
value of .4. The constancy of the proportions across
conditions is clearly depicted in Figure 1 below. Nev-
ertheless the proportion of Middle & C subjects in
Description is not significantly different from the pro-
portion of Middle & C subjects in Experience for both
the gain and loss trails takes separately. But when the
two types of trials are pooled the proportion of Mid-
dle & C subjects in Description is indeed significantly
greater than the proportion of Middle & C subjects
in Experience.

We believe that the reason why significant results are
not obtained for gain or loss trials separately is be-
cause we do not have enough subjects in these type
of trials taken separately. But it seems that pooling
the data for these two type of trials makes sense given
that the proportions remain constant across the dif-
ferent types. In other words, the effect seems to have
the same polarity in both types of trials.

The analysis of the pooled data reveals that subjects
were more ambiguity-averse in the description condi-
tion than in the experience condition. To put this in
other terms, if we compute the ratio RD of the num-
ber of Middle & C subjects in Description divided by
the number of Middle & B∗, and we compute the cor-
responding ratio RE in Experience, we have that RD

= 1
RE

.

We collected additional experience data in a second
experiment in order to see whether we can observe
significant effects not only for the pooled population
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but also for gains and losses. The results are reported
in the next secion.

5 Method: Second Experiment

Thirty students at Carnegie Mellon University (Pitts-
burgh, USA) participated in a second experiment.
They faced an experiential version of the first part
of the experiment. Of course in this case we can only
implement C and B∗.

6 Results: Second Experiment

Since we already had data for description we selected
at random thirty subjects from the first experiment.
First we report the maximum buying prices for the
conditions C, B∗ and B in description for the se-
lected subjects of the first experiment and for the
experiential version of B∗ and C in experience. In
this experiential version the subjects face the V and
C buttons used in experience. There is a preparatory
phase where they can see results from each button
and then maximum buying prices for each alternative
are requested.

Condition Alternative Max. Buying Price
Description C 5.38 (n = 30; SD = 3.61)
Description B∗ 4.71 (n = 30; SD = 3.81)
Description B 3.57 (n = 30; SD = 3.39)
Experience C 6.25 (n = 30; SD = 4.05)
Experience B∗ 5.75 (n = 30; SD = 4.75)

Table 8

Although in description the maximum buying prices
for B∗ also occupy an intermediate position between
prices for B and C, the difference between C and B∗

is not statistically significant (T=118, Z=-1.401, p =
.16, Effect Size = -0.18). But this seems to be due to
the fact that the effect verified in the larger population
of the first experiment is not verified in this arbitrarily
selected sub-population.

There is a clear effect verified in the first experiment
and in a previous paper [2] according to which in de-
scription the mean maximum buying prices for C are
higher than the mean maximum buying prices for B∗.
Moreover the values for B∗ appear as intermediate
between C and B. This effect seems to disappear
or suffer a complete inversion in experience.This is
partly verified by considering mean maximum buy-
ing prices. In fact, mean maximum buying prices for
B∗ and C cannot be distinguished statistically in ex-
perience (T=172, Z=-1.037, p = .30, Effect Size =

-0.13). A more clear reversal is verified in the follow-
ing experiments for gains and loses. This manipula-
tion repeats the design used in the first experiment.
Rather than providing buying prices the subjects ex-
press preferences for the different buttons displayed
in their screens.

6.1 The Experience condition: Results

The following results were observed for gain and loss
trails for experience:

Alternative Left Button Middle B. Right B.
B∗ 4 11 3
C 5 4 3

Table 9. Gain Trials (Experience)

Now here we can see the first clear reversal for ex-
perience of the pattern B∗ < C for description. In
fact we verify here that B∗ > C is indeed statistically
significant in spite of the relatively small size of the
population (p < .001, Effect Size =- 0.47).

Alternative Left Button Middle B. Right B.
B∗ 6 12 5
C 3 2 2

Table 10. Loss Trials (Experience)

It is interesting to see that the pattern gets repeated
here also for losses and with a similar ratio. We do
have as above B∗ > C is indeed statistically signifi-
cant (p < .01, Effect Size =- 0.71).

Alternative Left Button Middle B. Right B.
B∗ 10 23 8
C 8 6 5

Table 11. Gain and Loss Trials (Experience)

And, of course, we do have the same effect verified for
the pooled population. B∗ > C is indeed statistically
significant (p < .001, Effect Size = -0.58). Moreover
now we have an even nicer result paralleling the one
obtained in the first experiment:

Gain Trials: Proportion Middle & C buttons (De-
scription) (17/24) > Proportion Middle & C buttons
(Experience) (4/11), with U=101, Z=-2.657, p < .01,
Effect Size = -0.45.

Loss Trials: Proportion Middle & C buttons (De-
scription) (14/26) = Proportion Middle & C buttons
(Experience) (2/14), with U=110, Z=-2.405, p < .05,
Effect Size = -0.38.
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Gain and Loss Trials: Proportion Middle & C but-
tons (Description) (31/50 = .62) > Proportion Mid-
dle & C buttons (Experience) (6/29), with U=426,
Z=-3.524, p < .001, Effect Size = -0.40.

So, the second experiment verifies the effect (the fact
that subjects are ambiguity seeking in experience)
seen in the first experiment for the pooled popula-
tion. In addition the effect also holds for gains and
loses separately and it holds with similar intensity in
both conditions.

7 Discussion

It is tempting to reason as follows: a play in the
chance set up B∗ is equivalent to a play on chance
set up C. The line of reasoning is roughly as follows:
The random selection in the first stage of B∗ entails
that, for each integer i, where 0 ≤ i ≤ 100, there is
a probability of 1

101 that the urn sampled in the sec-
ond stage consist of i black balls and 100 − i white
balls. Moreover, according to this line of reasoning
the random selection in the second stage entails that
if i is selected in the first stage, then the probability
of selecting a black ball in the second stage is i

100 .
This line of reasoning then continues by combining
the first and second stage probabilities to conclude
that the probability of getting a black ball on a trial
of B∗ is 1

101 (
∑100

i=0
i

100 ) = 1
2 , as in the case of chance

set up C. First note that if this line of reasoning
were correct then the results presented in this paper
would be rather surprising. Perhaps B∗ and C can
be distinguished in description (due to cognitive lim-
itations of the players), but the two chance set ups
should not be distinguishable in experience accord-
ing to such an argument. However, arguments of the
given sort are mistaken as they fail to account for
the interaction between the subject’s choices and the
frequencies that are observed. For example, consider
the following set up which is basically equivalent to
the one we implemented. Suppose that you have a se-
quence of 101 possible urns with black and white balls.
Each urn contains 100 balls in total but the propor-
tion of white and black changes in each case. The
subject could generate output from B∗ by employing
a strategy where according to which she samples from
the current urn until she sees a white ball and, upon
seeing a white ball, advances to the next urn in the ar-
rangement. This strategy should eventually stabilize
on the all black urn so that the observed frequencies
converge to those associated with the all black urn.

7.1 Prospect Theory and its capacity to
model the gap experience-description

We explained above that Fox and Hadar offered in
[10] an ingenious explanation of the gap experience-
description by appealing to a version of Prospect The-
ory applicable to decisions under uncertainty rather
than risk. This version of Prospect Theory is pre-
sented in detail in the recent (and excellent) book by
Peter Wakker on Prospect Theory [16] (the theory
was presented first in [20]). The central idea of the
theory is to use event-decision weights rather than
probability-based decision weights. In fact if P is the
probability used for risk we can define a function W
on events by applying decision weights to P . So we
have that W (E) = w(P (E)). Since w can be non-
linear, W need not be additive. The corresponding
function has the properties of a capacity.

The idea that Fox and Hadar considered in the afore-
mentioned paper is to apply the decision weight w to
judged probabilities rather than the objective proba-
bilities of the lotteries considered in the case of risk.
This ingenious move fits the data reasonably well. So,
one can claim that decisions form experience are es-
sentially decisions under uncertainty and one can ap-
peal to Cumulative Prospect Theory to analyze the
data. The event-decision weights are calculated by
appealing to judged rather than risky probabilities.
These judged probabilities are estimated in terms of
observed frequencies through sampling.

Is it possible to do something similar in the case we
are studying? Perhaps there is a possible strategy
one can use to test the predictive power or Cumula-
tive Prospect Theory in this setting. To see the point
it is important to stress that we do agree with Hadar
and Fox about the fact that decisions from experience
are cases of decisions under uncertainty. Let’s fist see
how this applies to our experiment. For each partic-
ular play of V the subject can do some sampling and
obtain a judged probability in the sense of Hadar and
Fox. So, it seems that one does not have any alter-
native except representing the subjects playing V as
entertaining a set of judged probabilities. The only
thing that the subjects know is that there is s chance
set-up that is producing a set of probabilities that he
can estimate by repeated sampling. But he knows
nothing about the nature of the chance set up that
produces this set of probabilities. In particular the
chance set up that is producing the set of probabili-
ties need not obey the law of large numbers as in the
experimental set up used by Stecher at al. [19]. In
this case even the computation of wining frequencies
would lead to erroneous estimation of the chances of
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the chance set up that generates the probabilities.2.

So, when one implements B∗S in experience by fixing
a sampling rule various types of indeterminacy arise.
First the implemented game does not have a single ob-
jective long run frequency associated to it. Subjects
can employ different playing strategies that are as-
sociated with different long run frequencies. Second,
under the point of view of the subject who plays his
probabilities are indeterminate also. He only knows
that there is a chance set up that produces sets of
probabilities that he can eventually estimate. A so-
phisticated player can learn that the set of probabil-
ities associated with C are produced by a chance set
up of objective probability 0.5.3 And if the subject
has a fixed playing strategy he can perhaps learn the
objective probability corresponding to this strategy.
But most players will not use a fixed strategy and in
this case it seems that there is no learnable objective
chance associated to the chance set up that produces
the set of probabilities associated with B∗S .

So, the probabilities of the subjects remain undeter-
mined. This is so even if we guarantee that the win-
ning frequencies of the two chance set ups converge
to the same number (for example by guaranteeing fair
sampling procedures for plays of B∗), in the short run
agents cannot but remain uncertain about the prob-
abilities of the two chance set ups in experience.

Is there a way of connecting this set of priors with
event-decision weights? Here is a possible way of do-
ing it. Call the set of priors C. Then for each event
E we have the interval IE = {P (E) : P ∈ C}.
Now, one can define an event-decision weight W as
W = inf(IE) or W = sup(IE). Is it possible to ap-
proximate out empirical results via this procedure?
We propose a careful investigation of this issue for
future work. 4

We can point out here that a theory like Cumulative
Prospect Theory will tend to predict asymmetries re-
garding ambiguity for gains and loses. The major-
ity of the existing evidence seems to indicate, for ex-
ample, that subjects are ambiguity seeking for losses
while they are ambiguity averse for gains (see the ev-
idence and references in [16]). This patterns does not

2The main idea in the aforementioned paper is to use a
chance set up that cannot be learned in experience. Assum-
ing that fair sampling procedures could be used to play B∗

then its objective chance could be learned by observing enough
data. But in the short run the agents cannot but remain uncer-
tain about the determinate or indeterminate chances associated
with the chance set up producing the given set of probabilities.

3Notice that the subject does not even know that C is based
on single-sampling. For each time the they play C again they
do not know whether they are sampling the same risky lottery.
So, they have to entertain as well a set of probabilities for C.

4See [7] and [8] for earlier discussions along these lines.

seem to arise in our experiment. At least in the sec-
ond experiment it is clear that subjects are equally
ambiguity seeking for gains and losses.

The presentation of Cumulative Prospect Theory in
[16] makes clear that the main idea of extending
Prospect Theory to uncertainty is to avoid the repre-
sentation of uncertainty via multiple priors. Wakker
is quite explicit about rejecting this strategy which he
sees as problematic for various reasons that have to
do with measurement and elicitation. But it seems
that there are experimental situations of the sort we
presented in this article where the use of multiple pri-
ors seems unavoidable. In spite of this aversion to use
multiple priors there might be ways of finding a con-
nection with the way in which Cumulative Prospect
Theory represents uncertainty. If this were possible
a second step would consist in testing the predictive
power of the extended version of Prospect Theory to
uncertainty. We also propose to tackle this issue in
future work.
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Abstract

We discuss prevalence estimation under misclassifica-
tion. That is we are concerned with the estimation of
a proportion of units having a certain property (be-
ing diseased, showing deviant behavior, etc.) from a
random sample when the true variable of interest can-
not be observed, but a related proxy variable (e.g. the
outcome of a diagnostic test) is available. If the mis-
classification probabilities were known then unbiased
prevalence estimation would be possible. We focus on
the frequent case where the misclassification probabil-
ities are unknown but two independent replicate mea-
surements have been taken. While in the traditional
precise probabilistic framework a correction from this
information is not possible due to non-identifiability,
the imprecise probability methodology of partial iden-
tification and systematic sensitivity analysis allows
to obtain valuable insights into possible bias due to
misclassification. We derive tight identification inter-
vals and corresponding confidence regions for the true
prevalence, based on the often reported kappa coeffi-
cient, which condenses the information of the repli-
cates by measuring agreement between the two mea-
surements. Our method is illustrated in several theo-
retical scenarios and in an example from oral health
on prevalence of caries in children.

Key words: Partial Identification; Sensitivity Analy-
sis; Prevalence Estimation; Kappa Coefficient; Mis-
classification; Identification Region; Ignorance Re-
gion.

1 Introduction

Many data in social sciences, econometrics, biomet-
rics and epidemiology are complex in the sense that
the available data at hand do not exactly convey the
information one is looking for. Frequently, the vari-
ables of material interest cannot be observed directly
or measured correctly, and one has to be satisfied with
so-called surrogates or proxies, i.e., with somehow re-

lated, but different variables. This problem of non-
ascertainability of certain ideal variables is referred
to as measurement error (ME in the following) if the
variables are continuous and as misclassification (MC)
if they are discrete variables. If one ignores the princi-
pal difference between the ideal variables and their ob-
servable counterparts and just plugs in the surrogates
instead of the ideal variables (‘naive estimation’), then
all the parameter estimators must be suspected to be
severely biased. For the distorting effects of MC in
different applications, see, e.g., [8, 23, 24, 53, 55].

In the last years there has been a considerable
progress how to adjust for measurement error and
misclassification in statistical models. Many correc-
tion procedures are available for consistent estimation
in the presence of ME or MC, see in particular the
monographs [6, 17], or, e.g., [44]. Most of those pro-
cedures are based on precise information about the
process of measurement (and in complex models typ-
ically on Bayesian methods with precise priors, e.g.,
[43]). In the case of an additive measurement error,
usually the variance of measurement error has to be
known or to be estimated, e.g. by replicate measure-
ments, to enable consistent estimation. In the pres-
ence of MC, knowledge of the conditional probabili-
ties of correct classification, in the binary case called
sensitivity and specificity, allows for general estima-
tion procedures even in complex models; see [20] and
[39] for fundamental work concerned with response
misclassification and, e.g., [27, 29, 30, 59] for meth-
ods handling misclassified covariates. When no such
information about ME or MC is available, identifica-
tion problems arise and no consistent parameter es-
timation is possible. Important examples include the
estimation in simple linear regression with covariate
ME as well as the problem of estimating probability
distributions of outcomes in the presence of MC. In
this paper, we examine the latter problem in the spirit
of the methodology of partial identification (e.g., [32])
and systematic sensitivity analysis (e.g., [52]).
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One important example for estimating probability dis-
tributions in medical and clinical research is preva-
lence estimation, i.e. estimating the probability that
a randomly sampled person of the population has a
certain property, e.g. is diseased.1 In the presence
of MC, induced, e.g., by a medical examiner or a di-
agnostic tool, prevalence estimation using the rela-
tive frequency ignoring MC (naive estimation) is in-
consistent. In this situation, a consistent estimator
is available when the conditional probabilities of cor-
rect diagnosis (sensitivity and specificity) are known
or can be estimated consistently. However, estimat-
ing sensitivity and specificity using a validation study
usually relies on the availability of a correct diagnos-
tic method (gold standard) in the validation sample.
If such a gold standard method is not available, then
it is usual practice to replicate measurements on the
same unit to get some information on the quality of
the measurement procedure. In the case of the avail-
ability of three independent measurements with iden-
tical sensitivity and specificity, it is still possible to
obtain consistent estimators of prevalence; for a re-
cent discussion, see [41]. Another scenario, where the
parameters are identified, is the availability of two
independent measurements with identical sensitivity
and specificity in two different populations, see [46].

When only two replicate measurements in one popula-
tion are available, the quality of measurement can be
characterized by Cohen’s kappa coefficient [9], which
is based on the agreement of the replicates (“inter
rater reliability”). Although there is a long discus-
sion about the problems of using the kappa coefficient
(e.g. [14, 50]), it is usually reported in those studies.
However, no further correction is performed, since the
resulting estimation model is not well-identified, mak-
ing the derivation of a precise-valued estimator impos-
sible. In contrast, the concept of partial identification
and systematic sensitivity analysis provides valuable
insights into the magnitude of the misclassification
bias. We derive identification regions of the misclas-
sification probabilities and the true prevalence, and
confidence regions for the latter, additionally taking
sample variation into account. In our example, we
use data from a validation study, which consists of a
subsample of our data to estimate kappa coefficient.

We understand our contribution as a typical exam-
ple where imprecise probabilistic methodology pro-
vides powerful quantitative insights into the underly-
ing structure, while the traditional precise approach,
forced to choose between the extremes ‘precise solu-
tion’ or ‘no solution’, necessarily has to surrender.

1For ease of argumentation and influenced by the example
from oral health discussed in Section 4, we use biometric termi-
nology throughout the paper, without limiting the application
of our results to that area.

The general methodology underlying our investigation
adapts recent progress in the area of partial identifi-
cation and systematic sensitivity analysis for possibly
deficient data, also strongly related to the conserva-
tive handling of deficient data in imprecise probability
settings (e.g., [12, 49, 58]). Up to now, such methods
have been mostly applied to the case of missing or
coarse data with an unknown deficiency mechanism
(e.g. [33, 36], for surveys), notably with regard to
missingness due to counterfactuality when analysing
treatment effects (see e.g. [7, 15, 25, 35, 48]). Cor-
responding ideas have, for instance, been proposed
in general settings in [13, 18], or more specifically to
handle publication bias in meta analysis [11, 21], in
the reanalysis of a public opinion survey [2] or to de-
rive tight bounds on demand responses [4], and may
provide an alternative to some neighborhood models
in robust statistics ([1, Section 5]). Recently partial
identification has also been applied in the context of
misclassification ([19, 37]).

The paper is organized as follows. In Section 2, we
deduce basic formulae for the relationship between
the fundamental quantities characterizing our situa-
tion, i.e. observed prevalence, sensitivity, specificity
and the kappa coefficient. From that, identification
regions for the true prevalence are derived. In Sec-
tion 3, sampling variability is incorporated into our
estimates resulting in confidence intervals. In Sec-
tion 4, we apply our findings to a data set of caries
research before we conclude with a brief further dis-
cussion of our approach in Section 5.

2 Prevalence Estimation under
Misclassification

At the beginning of this section the basic situation is
described and notation and terminology are fixed (cf.
also Table 1).

We address the problem of estimating the prevalence
of a certain disease, i.e. a probability

p := P (Y = 1),

where

Y =
{

1 diseased
0 not diseased

denotes the indicator for the (true) disease status.
Due to the possible presence of MC we cannot observe
Y directly, but instead the diagnosis of an examiner,
which is denoted by

Y ∗ =
{

1 diagnosis positive
0 diagnosis negative .

The naive estimator 1
n

∑n
i=1 Y

∗
i based on a simple

random sample Y ∗1 , . . . , Y
∗
n of Y ∗ of size n is biased
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and converges to P (Y ∗ = 1). We call p∗ := P (Y ∗ = 1)
the naive prevalence and denote the naive estimator
based on the observed relative frequency by p̂∗.

obs. true status Y
Y ∗ 1 0

1 P (Y ∗ = 1|Y = 1) P (Y ∗ = 1|Y = 0)

sens → false p∗

positive cases

0 P (Y ∗ = 0|Y = 1) P (Y ∗ = 0|Y = 0)

→ false spec
negative cases

p

Table 1: Basic notions

The relationship between the true and the naive
prevalence using sensitivity sens := P (Y ∗ = 1|Y = 1)
and specificity spec := P (Y ∗ = 0|Y = 0) of the diag-
nosis is directly obtained from the law of total prob-
ability.

p∗ = P (Y ∗ = 1)
= P (Y ∗ = 1|Y = 1) · P (Y = 1)

+P (Y ∗ = 1|Y = 0) · P (Y = 0)
= p · sens+ (1− p) · (1− spec) (1)

Figure 1: Illustration of misclassification bias (devia-
tion from the angle bisector): naive (observed) preva-
lence p∗ in dependence of the true prevalence p for
different values of specificity and sensitivity = 1

Only for technical reasons we have to fix additionally
the assumption that throughout the paper

sens+ spec > 1 . (2)

This commonly used constraint is not a substantial
restriction, since otherwise the diagnosis does not con-
tain any useful information.

If sensitivity and specificity are known, equation (1)
yields an unbiased estimator of p by

p̂ =
p̂∗ + spec− 1
sens+ spec− 1

. (3)

Moreover, Equation (1) allows to illustrate the poten-
tially rather high distorting effects of misclassification.
In Figures 1 and 2 the naive prevalence p∗ is plotted in
dependence of the true prevalence p for different mis-
classification probabilities. Figure 1 shows the bias in
the situation of a test with optimal sensitivity, which
would detect every diseased unit, but may produce a
certain amount of false positive results.

Figure 2: Illustration of misclassification bias (devia-
tion from the angle bisector): naive (observed) preva-
lence p∗ in dependence of the true prevalence p for
different values of sensitivity and specificity

Figure 2 illustrates the more realistic situation of pos-
sibly false positive and false negative units. Note that
in all situations the bias depends on the true, but un-
known (!) value of p. Moreover, as in in Figure 2,
the bias usually is complex in the sense that, in con-
trast e.g. to single-variable classical measurement er-
ror in linear regression models, even its sign can not
be determined without additional knowledge. In de-
pendence on the concrete constellation of sense, spec
and p, over- and underestimation of the true preva-
lence is possible.
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2.1 Establishing a Relationship between the
Kappa Coefficient, Misclassification
Probabilities and Prevalence

We now assume that we have two replicate measure-
ments Y ∗1 , Y

∗
2 on the same units. These replicates re-

late to two examiners and the data can be displayed in
a 2x2 table. We define the corresponding probabilities
by

pjk := P (Y ∗1 = j, Y ∗2 = k), i, j = 0, 1 . (4)

The kappa coefficient κ as proposed by [9], see also,
e.g., [42, 45] for recent developments, assesses the
chance corrected agreement among the replicate mea-
surements (inter rater agreement). The (theoretical)
kappa coefficient is defined by

κ :=
po − pe
1− pe

(5)

po := p00 + p11

pe := (p00 + p01) · (p00 + p10) (6)
+(p10 + p11) · (p01 + p11)

Here, po is the probability of the observed agreement
and pe is the probability of agreement, when both
ratings are unconditionally independent. The closer
κ is to 1, the better the agreement of the examiners.

Remark 2.1 There is an explicit relation between the
kappa coefficient, the prevalence and the probabilities
of misclassification, which will be useful to identify
regions for the prevalence. Under the assumptions

(A1) Independent conditional distributions Y ∗1 |Y and
Y ∗2 |Y for both replicates

(A2) Equal sensitivity and specificity for both replicates

the following equation holds (p ∈ (0; 1)):

κ =
p (1− p) (sens+ spec− 1)2

(spec− p (sens+ spec− 1))

· 1
(1− spec+ p (sens+ spec− 1))

. (7)

Equation (7) is deduced by using the assumptions
(A1) and (A2) that imply

p00 = (1− p) · spec2 + p · (1− sens)2
p01 = (1− p) · spec · (1− spec)

+p · (1− sens) · sens
p10 = p01 (8)
p11 = (1− p) · (1− spec)2 + p · sens2 (9)

This leads, together with (5), to formula (7). Note
that the kappa coefficient can be seen as a parameter

of one scoring process. It is a measurement of agree-
ment when it is independently applied on the same
subject twice. It can be estimated by a validation
study, where two independent scorings are available
for a (sub)sample of individuals.

Note that the assumption of conditional independence
and identical sensitivity and specificity may be vio-
lated, if the two replicates correspond to two different
examiners, for a further discussion we refer to Sec-
tion 5. The assumption of identical sensitivity and
specificity can be checked using the McNemar test,
which is designed for the comparison of two proba-
bilities for dependent data. It basically checks the
identity (8), see also our example in Section 4.

2.2 Bias Correction using the Kappa
Coefficient

We want to estimate the true prevalence p using the
naive estimator p̂∗ and a given or consistently esti-
mated kappa coefficient. The basic approach is to use
equations (7) and (1) and solve them for p. Since
there are three unknowns (p, sens, spec) and only
two equations, there is a lack of identifiability and no
direct estimator can be deduced. However, non triv-
ial intervals I(ϑ ‖ p∗, κ) for the possible solutions for
the three parameters ϑ ∈ {p, sens, spec} can be de-
rived, by additionally relying on the constraint that
all probabilities are in [0; 1]. Following [32], these so-
lutions are called identification regions. In [52] they
are called ignorance regions, since they relate to igno-
rance in contrast to sampling error.

Theorem 2.2 ( Identification Regions for p, sens
and spec using p∗ and κ)
Let the assumptions (A1) and (A2) hold. Addition-
ally, let κ ∈ (0, 1] and sens + spec > 1 (see (2)).
Then the identification regions for the prevalence p,
the sensitivity sens and the specificity spec based on
the naive prevalence p∗ ∈ [0, 1], are

I(p ‖ p∗, κ) =
[

p∗

p∗ + κ−1(1− p∗) ;
p∗

p∗ + κ (1− p∗)

]
,

(10)

I(sens ‖ p∗, κ) = [p∗ + κ (1− p∗); 1] (11)
I(spec ‖ p∗, κ) = [1− p∗ + p∗κ; 1] . (12)

The regions in the theorem follow directly by solv-
ing equations (7) and (1), and therefore are the best
that we can learn from the given values of p∗ and κ,
without adding further assumptions. Details of the
derivation are given in the web appendix ([26]).
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Figure 3: Identification regions (dashed lines) for
the true prevalence p (solid line) in dependence of
κ for different values of the naive preference p∗ ∈
0.1, 0.3, 0.5, from top to bottom.

Naturally, the width of the intervals decreases when
the kappa coefficient κ increases. Indeed, considering
the extreme case where the examiners’ assignments
are almost random, (κ → 0) leads to the vacuous
statement Ip = [0; 1]. On the other hand, complete
agreement, and therefore κ = 1, results in point iden-
tification, where the region for p degenerates to p∗

and sens = spec = 1. In Figure 3, the identification
regions are displayed as a function of the kappa coeffi-
cient for fixed values of p∗. For reasonable agreement
of the measurements, in particular, the intervals are
small enough to provide valuable insight into the true
prevalence.

Note that, by construction, the method is based on
the data in a conservative manner. Consequently, the
identification region necessarily contains p∗: By κ ≤
1,

p∗

p∗ + κ−1(1− p∗) ≤
p∗

p∗ + (1− p∗) = p∗

p∗

p∗ + κ(1− p∗) ≥
p∗

p∗ + (1− p∗) = p∗.

The regions given in Theorem 2.2 are the best we
can conclude from the data alone. If we interpret
them as probability assignments they describe coher-
ent interval-valued probabilities and F-probabilities
in the sense of [54] and [56, 57], for details see
[26]. Note that kappa coefficient and p∗ bear suf-
ficient information for determining the probabilities
(p00, p01, p10, p11), i.e. using those probabilities would
not lead to an improvement of the bounds. Since the
assumptions A1 and A2 imply p01 = p10 and the prob-
abilities add to 1, there are only two free parameters.
An explicit formula is presented in [26].

Theorem 2.2 enables us to calculate identification re-
gions for the prevalence, sensitivity and specificity
from the naive estimator p̂∗ and an estimated kappa
value κ̂, by substituting p∗ and κ with their estimators
in equations (10) to (12). Note that these intervals
correspond to point estimators and, in particular, are
not confidence intervals. Strategies for finding confi-
dence intervals, i.e. additionally taking the sampling
variation into account, are given in the following sec-
tion.

3 Taking Additionally Sampling
Variation into Account: Confidence
Intervals

We follow here the strategy from [52] and define a
parameter γ, which is not identified by our data, but
the other parameters of our models are identified con-
ditional on this parameter. As a suitable choice for
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this identifying parameter we propose in our context
γ := sens

spec , which indeed would result in a point iden-
tified estimator, see (16) below. The parameter γ has
an obvious interpretation relating the probabilities of
the two types of misclassification. In the framework
of [52] it is called a sensitivity parameter. We do not
use this technical term here to avoid confusion with
the sensitivity of the diagnosis sens. The parameter
γ is restricted by (11) and (12). Therefore, the range
of γ is given by

[γmin, γmax] =
[
p∗ + κ (1− p∗), 1

1− p∗ + p∗κ

]
.

(13)

We now assume that a consistent estimator (p̂∗, κ̂)
with asymptotic covariance matrix Σ is available. If
the estimator of κ is estimated by an independent
validation study, Σ is diagonal. If we assume that κ
is known, then the corresponding entries in Σ are 0.

To construct a confidence interval
[
L(p̂∗, κ̂);U(p̂∗, κ̂)

]

for the parameter p we have to ensure that the cover-
age probability exceeds the confidence level 1− α for
every γ ∈ [γmin, γmax], i.e.

inf
γ∈ [γ̂min, γ̂max]

Pγ(p ∈
[
L(p̂∗, κ̂);U(p̂∗, κ̂)

]
) ≥ 1− α .

(14)
This can be achieved by defining the confidence in-
terval as the union of confidence intervals over the
identification parameter γ

[
L(p̂∗, κ̂);U(p̂∗, κ̂)

]
:=

⋃

γ∈ [γ̂min, γ̂max]

[
L(p̂∗, κ̂, γ);U(p̂∗, κ̂, γ)

]
(15)

with
[
L(p̂∗, κ̂, γ);U(p̂∗, κ̂, γ)

]
as suitable confidence

intervals for fixed parameter γ. To calculate the lat-
ter, we apply the delta method (e.g., [3]) and use for
fixed γ the point estimator for p given by

p̂ (p̂∗, κ̂, γ) =
(1− p̂∗) · γ − p̂∗ −√w

(p̂∗ − 1) · γ2 + (1−√w) · γ − p̂∗ −√w
(16)

with

w = (p̂∗ − 1)2 · γ2 − 2 · p̂∗ · (p̂∗ − 1)
·(2 · κ̂− 1) · γ + (p̂∗)2

derived from (7) and (1), see [26]. The asymptotic
variance is given by the delta method

V ar(p̂ (p̂∗, κ̂, γ)) = DT
p ΣDp . (17)

Here, Dp is the vector of derivatives of p̂ (p̂∗, κ̂, γ) with
respect to p̂∗ and κ̂, and Σ is the corresponding co-
variance matrix. Details are again given in [26]. Since

the relationship (16) between γ and p is monotone, the
choice of the confidence intervals in (15) can be opti-
mized, see [52] or [22, 47]. If the local confidence inter-
vals are small compared to the identification region,
then it is actually justified to rely on the (1−α)·100%-
quantile, instead of the (1−α/2)·100%-quantile. Thus
the confidence interval is given by

[
L(p̂∗; κ̂) , U(p̂, κ̂)

]
= (18)

[
p̂(p̂∗, κ̂, γ̂max)− z1−α ·

√
V̂ ar(p̂(p̂∗, κ̂, γ̂max));

p̂(p̂∗, κ̂, γ̂min) + z1−α ·
√
V̂ ar(p̂ (p̂∗, κ̂, γ̂min))

]
.

The range for γ is estimated using (13). Since the
estimator of (p̂∗, κ̂) is consistent, the probability that
the interval [γ̂min, γ̂max] covers the true parameter γ
tends to 1 as sample size n goes to infinity. Therefore,
(15) is an asymptotic confidence interval. Note that
we define our confidence intervals for the parameter
and not for the entire identified set, see, in particular,
[22] for a discussion of that distinction.

4 Example

4.1 The Signal-Tandmobiel R© Study

year n p̂∗ se(p̂∗)

1996 (age 6) 3378 0.118 0.006
1998 (age 8) 3657 0.280 0.007
2000 (age 10) 3415 0.380 0.008

Table 2: Signal-Tandmobiel R© study: Estimation of
p̂∗ per year

The Signal-Tandmobiel R© study is a 6-year longitu-
dinal oral health study, conducted in Flanders (Bel-
gium) involving 4468 children. Data were collected
on oral hygiene, gingival condition, dental trauma,
prevalence and extent of enamel developmental de-
fects, fluorosis, tooth decay, presence of restoration,
missing teeth, stage of tooth eruption and orthodon-
tic treatment need, all by using established criteria,
see [51]. The children were examined annually dur-
ing 1996 to 2001. Measurement of interest is the dmft
index, which is the sum of the number of decayed,
missing due to caries or filled teeth.

We use the dmft index as an indicator for the pres-
ence or absence of caries for each child to examine the
prevalence of caries. The observed disease status Y ∗i
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for child i is

Y ∗i =
{

1 caries observed (dmft > 0)
0 no caries observed (dmft = 0) .

For illustration of our methods, we estimate the naive
prevalence and its variance for the years 1996 (age 6),
1998 (age 8) and 2000 (age 10), see Table 2. These are
the years in which a calibration study was conducted.
The longitudinal structure is ignored and the naive
prevalence naturally increases over the years, i.e. with
the age of the children, and its standard error is very
low due to the high sample size n.

1996
Rater 1

Rater 2 78 7 85
13 22 35
91 29 120

p− value = 0.1797 (McNemar)
κ = 0.5752(0.084)

1998
Rater 1

Rater 2 85 13 98
16 43 59
101 56 157

p− value = 0.5775 (McNemar)
κ = 0.6023(0.066)

2000
Rater 1

Rater 2 89 14 103
3 42 45
92 56 148

p− value = 0.0076 (McNemar)
κ = 0.7461(0.057)

Table 3: Results of the validation study with two raters.
Kappa indicates the kappa statistics with standard error
in brackets.

In the calibration study in [38], the observations of
the 16 regular examiners were compared to a gold
standard examiner resulting in estimation of sensitiv-
ity and specificity. However, letting one single person
be the gold standard examiner can still not guaran-
tee correctness. For illustration of our methods and
to incorporate this possibility of an error, the gold
standard examiner is now considered a ‘common’ ex-
aminer. In the validation study we now have two ob-
servations per child. The results are presented in Ta-
ble 3. However, since assumption A2 is questionable
in our setting, we performed a McNemar test, which

is based on the difference of the off diagonal cells of
the two by two table. In case of the two by two ta-
ble for 2000, the test indicates a significant deviation
from the assumption. Therefore, we present results
of our method only for the years 1996 and 1998. The
estimated standard errors of the kappa coefficient are
rather high due to the small sample size.

4.2 Correction for Misclassification

We use the methods shown in this paper to correct the
estimated prevalence for misclassification. In Table 4,
the corresponding identification regions based on the
point estimation of p∗ and κ using Theorem 2.2 are
presented. The regions for the prevalence are wide.
This is a consequence of the low kappa coefficient,
reflecting the low agreement among the examiners.
As discussed, the estimated regions include the naive
estimator, but it can be seen that the naive estimator
could be seriously biased. Moreover, the regions for
specificity, and especially for sensitivity are wide, too.

If the kappa coefficient was considered known, the
confidence intervals are only slightly smaller, indicat-
ing that the main problem is in the partial identifica-
tion of our setting.

year p̂∗ κ̂ I(p ‖ p̂∗, κ̂)

1996 0.118 0.577 [0.072; 0.188]
1998 0.280 0.602 [0.190; 0.393]

year I(sens ‖ p̂∗, κ̂) I(spec ‖ p̂∗, κ̂)

1996 [0.627; 1.000] [0.950; 1.000]
1998 [0.714; 1.000] [0.889; 1.000]

Table 4: Signal-Tandmobiel R© study: Estimated iden-
tification regions for p, sens and spec

In a second step, the confidence intervals for the
prevalence following the strategy from Section 3 are
presented in Table 5, once while incorporating the
sample variability of the estimators p̂∗ and κ̂ and,
for illustration, assuming κ to be known at its esti-
mated value. The asymptotic confidence intervals for
the naive prevalence are pretty small compared to the
identification regions and to the corresponding confi-
dence intervals, which are both based on the addi-
tional information from the kappa coefficient. Conse-
quently, the confidence regions based on naive preva-
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lence estimation still suffer from a severe overpreci-
sion. Although being somewhat large, the identifica-
tion region and the corresponding confidence regions
still provide valuable insight into the prevalence. For
example, the hypothesis H0 : p ≥ 0.25 could be re-
jected at the 5 percent-level for the 6 year old children.

year with sampling variation fixed κ
of κ

1996 [0.057; 0.219] [0.065; 0.205]
1998 [0.170; 0.416] [0.179; 0.409]

Table 5: Signal-Tandmobiel R© study: Confidence in-
tervals for the prevalence with and without taking the
variability of κ into account

If further nontrivial bounds on sensitivity and speci-
ficity are available by some external information, then
this can be incorporated in an analogous way result-
ing in smaller identification regions and smaller con-
fidence intervals based on them.

5 Discussion

The concept of using identification regions or intervals
of ignorance in the case of misclassification with par-
tial information on sensitivity and specificity provided
by the kappa coefficient has been shown as a powerful
tool for data analysis. It avoids the potentially sub-
stantial bias arising from simply ignoring misclassifi-
cation if no direct correction method is available. The
resulting identification regions are tight in the sense
that they can not be improved without adding further
assumptions. Thus they are the best that we can con-
clude from the data alone in this context. Our exam-
ple shows that the possible effect of misclassification
is rather high, even when the inter rater reliability is
‘substantial´ in terms of [28]’s classification. Further-
more, the strategy of distinguishing between sampling
error and ignorance due to non-identifiability is use-
ful, since it highlights possible shortcomings in the
sampling of the data structure, which cannot be com-
pensated by a large sample size.

Since we use the value of the kappa coefficient from
validation data or from other sources of information,
one crucial assumption for our analysis is that this
value is also correct for the main data set. This will
be the case if our replication data are a random sample
from our main study (internal validation). Otherwise
this assumption could be disputable. It is well-known
that the kappa coefficient depends on the prevalence
when sensitivity and specificity are fixed [10]. So our

procedure cannot be used when the prevalence in the
validation data differs from the prevalence in the main
study, even if we assume that the scoring procedure
has fixed sensitivity and specificity. However, the lat-
ter assumption could also be problem, see the discus-
sion in [50]. In our example, the validation study was
part of a training program for the examiners. On the
one hand the prevalence was higher for the valida-
tion but on the other hand there were possibly more
children in that sample that were difficult to score.
This could lead to values of sensitivity and specificity
which are different in the main study. Nevertheless,
the kappa coefficient could be nearly identical in both
parts of the study. [50] performs some calculations
and presents plausible scenarios for this assumption.
Thus, our procedure can also be applied to studies
where the value of the kappa coefficient can be trans-
ferred from the validation data to the main study even
this is not true for sensitivity and specificity. Obvi-
ously, this issue has to be treated with great care.

Our results are a vivid illustration of the power of
imprecise probability methods in statistical analysis
based on misclassified data. As a topic of further re-
search the conditional independence assumption (A1)
in Remark 2.1 should be investigated further. As
mentioned above, it may be violated if the assessments
of two raters are used as substitutes for replication
data, because then certain characteristics of the units
may impose some dependence on the raters’ judge-
ments. We are currently studying the use of Frechet
bounds and related methods in this setting. If no
reliable information is available about the misclassi-
fication probabilities, our approach could be adopted
to the case where sensitivity and specificity vary in
certain ranges, closely relating our procedure to the
‘direct method’ of [37]. Then our identification pa-
rameter is two dimensional, which will result in larger
identification regions.

The methodology underlying our work promises, mu-
tatis mutandis, to be also powerful for other types of
error-prone data, like misclassification of more than
two categories and for (additive or multiplicative)
measurement error with unknown variance. In the lat-
ter case, the availability of replicates would yield iden-
tification in many instances, but often no information
about the measurement error is available, and then
partially identified corrected estimators are again the
best option available.
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[26] H. Küchenhoff, T. Augustin, and A. Kunz.
Partially identified prevalence estimation un-
der misclassification using the Kappa coeffi-
cient (Web Appendix) www.stablab.stat.uni-
muenchen.de/kuechenhoff/isipta-app.
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Abstract

Nonparametric predictive inference (NPI) is a
framework for statistical inference in the absence of
prior knowledge. We present NPI for multinomial
data with subcategories, motivated by the hierarchical
structure of many multinomial data sets. We
consider situations with known and with unknown
numbers of subcategories, and present lower and
upper probabilities for general events involving one
future observation. We present properties of the
model and an algorithm to derive an approximation
to the maximum entropy distribution.

Keywords. classification, multinomial data,
nonparametric predictive inference, subcategories

1 Introduction

Nonparametric predictive inference (NPI) was
presented by Coolen and Augustin [5, 7] for
multinomial data in the absence of prior knowledge.
A key assumption underlying the model is that the
different categories are not ordered or otherwise
related. The model is, therefore, not suited to
multinomial data sets with a hierarchical structure
in which two or more distinct categories may also
be considered as subcategories of a single main
category. Following the suggestion in [6], we present
an extension of the NPI model for multinomial data
suitable for data sets with subcategories, which we
refer to as the Sub-MNPI model. As in the original
NPI model for multinomial data [5, 7], we assume
that there is no ordering of the main categories, and
we also assume that for a single main category there
is no ordering of its subcategories. Throughout the
paper, categories are denoted by cj and subcategories
are denoted by sj,ij , where sj,ij ⊆ cj . We assume
that there are K main categories in total, and that k
main categories have already been observed and are
labelled c1, ..., ck. Similarly, we assume that there
is a total of Kj subcategories in main category cj ,

of which kj have already been observed. Note that
K and Kj may be known or unknown: these two
situations are considered separately. Let n denote
the total number of observations Y1,...,Yn in the data
set, where nj is the number of observations in main
category cj and nj,ij is the number of observations
in subcategory sj,ij . Some main categories may not
contain any subcategories, or may only be described
at main category level, in which case we continue
to denote these simply by cj . Such categories are
referred to as main-only categories, distinct from
main categories which may or may not have specified
subcategories.
In section 2 of this paper, we explain the probability
wheel representation of the data on which the
NPI model for subcategory data is based. In the
following two sections, we then define the general
events of interest for inference about a future
observation and we present the NPI lower and upper
probabilities for these events. The situation where
K and Kj are known is considered in Section 3,
and the situation where K and Kj are unknown is
considered in Section 4. Some important properties
of the model are then described in Section 5. In
Section 6 we consider the application of the model
to classification, and finally Section 7 provides some
concluding remarks.

2 The Sub-MNPI model

The NPI approach for multinomial data is based
on a variation of Hill’s A(n) assumption [8] called
circular-A(n) [5, 6, 7], which is an assumption
of post-data exchangeability. The model uses a
probability wheel representation of the data [5, 6, 7],
where each of the n observations is represented by
a radial line such that the wheel is partitioned
into n equally-sized slices. From the circular-A(n)

assumption we conclude that the next observation
has probability 1

n of being in any given slice. The
inferences made about a future observation therefore
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depend upon which main category or subcategory
each slice of the wheel represents, and this is
determined by the key assumption that each main
category and each subcategory is only allowed to be
represented by one segment of the wheel, where a
segment is defined as a single part of the wheel (note
that the wheel is always divided radially) consisting of
any number of full or partial slices. The assumption
implies the following constraints:

• Two or more lines representing the same
(sub)category must always be positioned next to
each other on the wheel.

• Lines representing different subcategories within
the same main category are always grouped
together in one single segment of the wheel.

• If a slice is bordered by two lines representing the
same (sub)category, it must be assigned to this
(sub)category.

• A slice that is bordered by two lines representing
observations in (sub)categories x and y where
x 6= y, defined as a separating slice, may be
assigned to x or to y or to an unobserved
(sub)category not yet allocated to any other slice.

• Separating slices may be divided radially between
multiple (sub)categories.

All possible configurations of the probability wheel
are considered, and lower and upper probabilities
for an event of interest are derived by respectively
minimising and maximising the number of slices
assigned to the event.

3 Known number of (sub)categories

When K and Kj , j = 1, ...,K, are known, the event
of interest can be expressed generally as

E = {Yn+1 ∈
⋃

j∈J
cj ∪

⋃

j∈J∗

⋃

ij∈Ij
sj,ij} (1)

where J ∩ J∗ = ∅, J ⊆ {1, ...,K}, J∗ ⊆
{1, ...,K} and Ij ⊆ {1, ...,Kj} for j = 1, ...,K. It
should be emphasized that J is the index-set of the
categories which occur in the event of interest only
at main category level, while J∗ is the index-set
of the categories which occur in this event at
subcategory level. We also define Ij = {1, ...,Kj}\Ij .
This notation allows us to describe events which
contain only specific subcategories of particular main
categories, whilst also retaining the possibility of
considering some main categories as a whole.
We define OJ = J ∩ {1, ..., k}, which is the index-set

of observed main-only categories in E, and |OJ | =
rmain. We also define UJ = J ∩ {k+ 1, ...,K}, which
is the index-set of unobserved main-only categories
in E, and |UJ | = lmain. Similarly, OJ∗ = J∗ ∩
{1, ..., k}, where |OJ∗| = rsub. OJ∗ is the index-set
of observed main categories in E which are described
at subcategory level. We also define UJ∗ = J∗ ∩{k+
1, ...,K}, where |UJ∗| = lsub. UJ∗ is the index-set of
unobserved main categories in E which are described
at subcategory level. Let r = rmain + rsub, and let
l = lmain + lsub.
Let OIj = Ij ∩ {1, ..., kj}, where |OIj | = rj , for
j = 1, ...,K. OIj is the index-set of observed
subcategories in E. Also let UIj = Ij∩{kj+1, ...,Kj},
where |UIj | = lj , for j = 1, ...,K. UIj is the
index-set of unobserved subcategories in E. Let
OIj = Ij ∩ {1, ..., kj}, where

∣∣OIj
∣∣ = rj , and let

UIj = Ij ∩ {kj + 1, ...,Kj}, where
∣∣UIj

∣∣ = lj .
We present the NPI lower and upper probabilities for
E (1). A detailed derivation of these formulae is given
in [4].

3.1 Lower probability

The NPI lower probability is found by constructing
a configuration of the probability wheel which
minimises the number of slices assigned to E. In
order to construct such a configuration, we consider
how many separating slices we can assign to main
categories or subcategories not in E. First, separating
slices on the wheel between different observed main
categories in E can be assigned to main categories
that are not in E. There are (K−r−l) such categories.
Furthermore, if we have subcategories which are not
in E but which are part of a main category that
appears in E, it may be possible to utilise these
subcategories to separate observed main categories in
E. By considering the configuration of the slices, we
find that the number of separating slices which can
potentially be filled in this way (with x+ representing
max{x, 0}) is

SM =
∑

j∈OJ∗
min{(rj + lj − rj + 1)+, 2}

+
∑

j∈UJ∗
min{lj , 1}.

Minimising the number of slices that must be assigned
to E results in the following general formula:

P (E) =
∑

j∈OJ

nj − 1
n

+
∑

j∈OJ∗

∑

ij∈OIj

nj,ij − 1
n

+
1
n

(2r + l −K − SM )+

+
1
n

∑

j∈OJ∗
(2rj + lj −Kj − 1)+.

(2)
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Example 1 Consider a multinomial data set with
possible main categories blue (B), green (G), red
(R), yellow (Y), pink (P) and orange (O). These
main categories are labelled 1 to 6 respectively.
Observations in B are further classified as light blue
(LB), medium blue (MB), dark blue (DB) or other
blue (OB), and observations in G are further classified
as light green (LG), dark green (DG) or other green
(OG). The data set consists of eight observations
altogether, including 1 LB, 1 MB, 2 DB, 1 LG, 1 DG,
1 R and 1 Y.
Suppose that we are interested in the event Y9 ∈
{LB,MB,DB,LG,R,Y,P}. We have K = 6, r =
4 and l = 1. For main categories described at
subcategory level, the values of Kj, rj and lj are
shown in Table 1. Here, we are unable to assign all

j Kj rj lj
B 1 4 3 0
G 2 3 1 0

Table 1: Values of Kj , rj and lj for Example 1

separating slices within the B segment to subcategories
not in E. Furthermore, we are unable to configure
the probability wheel such that all observed main
categories in E are separated by main categories not
in E. We find that 2r+l−K = 3 in this example, and
SM = 2. While we can use some subcategories which
are not in E but which are part of a main category that
appears in E, there is still one separating slice between
main categories which has to be assigned to E. Figure

LB
MB

DB

DB

R
DG

LG

Y

OG

O

OB

DG DG

Figure 1: Probability wheel for Example 1

1 shows a possible configuration of the wheel such that
O separates B and Y, OG separates Y and G, and DG
separates G and R. There is then no way of separating
R and B by a main category or subcategory not in E,
and we are therefore forced to assign this slice to E.
Looking specifically at the B segment, we see that OB
separates LB and MB but the slice between MB and
DB then has to be assigned to E. This leads to a NPI

lower probability of 3
8 for the event E. This lower

probability can be verified using (2). We see that the
set OJ contains R and Y, the set OJ∗ contains B and
G, the set OI1 contains LB, MB and DB and the set
OI2 contains LG. Also, 2r + l −K = 3, SM = 2 and∑

j∈OJ∗
max{2rj+lj−Kj−1, 0} = 1, therefore (2) gives

P (E) = 3
8 .

3.2 Upper probability

The NPI upper probability is found by constructing
a configuration of the probability wheel which
maximises the number of slices assigned to E. We
do this by considering which slices can definitely
not be assigned to E and are accounted for by the
k − r observed main categories not in E or by the rj
observed subcategories not in E. In order to construct
such a configuration, we consider the various ways in
which we can separate lines or segments on the wheel
representing different main categories which either are
not in E or which are present in E but have neither
end of their segment in E.
First, we could separate these main categories using
unobserved main categories in E. There are l of
these categories. Secondly, we could separate using
observed main-only categories in E. There are rmain
such categories. Finally, we could separate using
the other observed main categories in E, provided
that the configuration of the relevant segment is such
that each end represents a subcategory in E. There
are rsub main categories in E that are described at
subcategory level. For a segment to have the required
configuration, the category must satisfy kj − rj +
1 ≤ rj + lj . This is because we need kj − rj − 1
subcategories in E to ensure that all subcategories
not in E are separated, and a further two to ensure
that both ends of the segment are in E. We define the
number of main categories which satisfy this condition
as r̃sub. We define the number of main categories
which are present in E but have neither end of their
segment belonging to E, i.e. the number which satisfy
kj − rj − 1 ≥ rj + lj , as r0

sub.
By maximising the number of slices that may be
assigned to E, we find that

P (E) =
∑

j∈OJ

nj − 1
n

+
∑

j∈OJ∗

∑

ij∈OIj

nj,ij − 1
n

+
min{r + l + rmain + r̃sub − r0

sub, k}
n

+
∑

j∈OJ∗

min{2rj + lj , kj − 1}
n

.

(3)

Example 2 Consider the data set described in
Example 1. Suppose that we are interested in the event
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Y9 ∈ {LB,DB,P}. We have k = 4, rmain = 0, rsub =
1, r = 1 and l = 1. For main categories described
at subcategory level, the values of kj, rj and lj are
shown in Table 2. Here, we find that (k− r) + r0

sub >

j kj rj lj
B 1 3 2 0
G 2 2 0 0

Table 2: Values of kj , rj and lj for Example 2

l + rmain + r̃sub, i.e. there is no configuration of the
probability wheel such that all of the categories not
in E are separated by a category in E. Also, within
the G segment we cannot assign all separating slices
to subcategories in E. One configuration of the wheel

LB
MB

DB

DB

R
DG

LG

Y

LBDB

DB

P

LB

Figure 2: Probability wheel for Example 2

corresponding to the NPI upper probability is shown in
Figure 2. Figure 2 shows a configuration where R and
Y are separated by B, and G and R are separated by P.
However, we cannot separate G and Y by a category
in E. We also do not have an available subcategory
in E to which we can assign the slice separating DG
and LG. This leads to a NPI upper probability of
6
8 for the event E. This upper probability can be
verified using (3).We see that the set OJ is empty,
the set OJ∗ contains B and the set OI1 contains LB
and DB. Also, r + l + rmain + r̃sub − r0

sub = 3 and∑

j∈OJ∗
min{2rj + lj , kj − 1} = 2, therefore (3) gives

P (E) = 6
8 .

4 Unknown number of (sub)categories

In addition to K and Kj being unknown, it is
important to note that they are not assumed to have
a finite limit. In order to describe the general events
of interest in this situation, we introduce some new
notation. Let cjs , s = 1, ..., r′, be the observed
main-only categories in the event of interest, let

UN be the set of Unobserved New main categories,
which refers to any not yet observed category, and
let DNj , j = 1, ..., l, be the set of Defined New
main categories, which is a subset of UN and which
represents categories we wish to specify in the event
of interest but have not yet observed.
Also, let cjs , s = r′ + 1, ..., r, be the observed main
categories in the event of interest which are described
at subcategory level, and let sjs,ijs , s = r′ + 1, ..., r,
ijs = 1, ..., rs, be the observed subcategories in the
event of interest. Let D̃N js,ijs

, ijs = 1, ..., ds, be the
set of Defined New subcategories within the observed
main categories cjs , and let DNj,ij , j = 1, ..., l,
ij = 1, ..., lj , be the set of Defined New subcategories
within the Defined New main categories. Let ˜UN js ,
s = 1, ..., r be the set of all Unobserved New
subcategories within the observed main categories
cjs , and let UNj , j = 1, ..., l be the set of all
Unobserved New subcategories within the Defined
New main categories. A given event can be expressed
as a union involving some or all of the above terms.
Let A,B ⊆ {1, ..., k} such that A ∩ B = ∅. Any
event of interest can be expressed using one of the
two formulae shown below. The first general event is

Yn+1 ∈
r′⋃

s=1

cjs ∪
r⋃

s=r′+1

(
rs⋃

ijs=1

sjs,ijs )

∪
⋃

s∈A
( ˜UN js \

ds⋃

ijs=1

D̃N js,ijs )

∪
⋃

s∈B
(
ds⋃

ijs=1

D̃N js,ijs
)

∪
l′⋃

j=1

(UNj \
lj⋃

ij=1

DNj,ij ) ∪
l⋃

j=l′+1

(
lj⋃

ij=1

DNj,ij ).

(4)

The second general event is

Yn+1 ∈
r′⋃

s=1

cjs ∪
r⋃

s=r′+1

(
rs⋃

ijs=1

sjs,ijs )

∪
⋃

s∈A
( ˜UN js \

ds⋃

ijs=1

D̃N js,ijs ) ∪
⋃

s∈B
(
ds⋃

ijs=1

D̃N js,ijs )

∪ UN \ {
l′⋃

j=1

(UNj \
lj⋃

ij=1

DNj,ij )

∪
l⋃

j=l′+1

(
lj⋃

ij=1

DNj,ij )}.

(5)

We denote these by E1 (4) and E2 (5). We
now present formulae for the NPI lower and upper

54 Rebecca Baker & Pauline Coolen-Schrijner & Frank P. A. Coolen & Thomas Augustin



probabilities for each of these general events. A
detailed derivation of these formulae is given in [4].

4.1 Lower probability

First we consider event E1, which includes only a
finite number of unobserved main categories. By
minimising the number of slices of the wheel that must
be assigned to E1, the NPI lower probability is

P (E1) =
r′∑

s=1

njs − 1
n

+
∑

s/∈A
{

r∑

s=r′+1

(
rs∑

ijs=1

njs,ijs − 1
n

)}

+
∑

s∈A
{

r∑

s=r′+1

(
rs∑

ijs=1

njs,ijs − 1
n

) +
Ns
n
}

(6)

where Ns = [(rs − 1)− ds − (kjs − rs)]+.
For E2, which contains all except a finite number of
the UN main categories, the NPI lower probability is

P (E2) =
r′∑

s=1

njs − 1
n

+
∑

s/∈A
{

r∑

s=r′+1

(
rs∑

ijs=1

njsijs − 1
n

)}

+
∑

s∈A
{

r∑

s=r′+1

(
rs∑

ijs=1

njsijs − 1
n

) +
Ns
n
}

+
1
n

(2r − k − l −
r∑

s=r′+1

Ms)+

(7)

where Ms = 2 if s /∈ A and Ms = min{[ds + (kjs −
rs)− (rs − 1)]+, 2} if s ∈ A.

Example 3 Consider a multinomial data set where
the set of possible main categories consists of an
unknown number of different colours. We have
observed the following main categories: red (R),
blue (B), green (G) and pink (P). At subcategory
level, we have observed DB, MB, LB, DG, MG, LG,
MP and DP. In addition we define two new main
categories: orange (O), with defined subcategories LO
and MO, and purple (Pu) with defined subcategory
DPu. We also define the new subcategory LP. We
let UNB represent all unobserved new subcategories
within the main category B, including the defined
new subcategory RB, and let UNPu represent the
equivalent for the main category Pu. The data set
consists of twenty observations including 3 R, 3 DB,
1 MB, 2 LB, 3 DG, 2 MG, 2 LG, 2 MP and 2 DP.
We consider the event Y21 ∈ {(LB∪MB)∪(LG∪MG)∪
(MP) ∪ (UNB\RB) ∪ (LP) ∪ [UN\((UNPu\DPu) ∪
(LO ∪ MO))]}. We label this event E. Let s = 1
correspond to B, s = 2 to G and s = 3 to P. This

is an event of type E2 (5), so (7) is used to compute
the NPI lower probability for this event.
In this example, r = 3. The main categories for which
s /∈ A are G and P, and the only main category for
which s ∈ A is B. We have N1 = [(r1 − 1) − d1 −
(kj1 − r1)]+ = [(2 − 1) − 1 − (3 − 2)]+ = 0. We also
have M1 = min{[d1 + (kj1 − r1) − (r1 − 1)]∗, 2} = 1,

M2 = 2 and M3 = 2. Therefore
3∑

s=1

Ms = 5. The

values of njs and njs,ijs are shown in Tables 3 and 4.

R
R

R
MPMPDP

DP
LG

LG

MG

MG
DG

DG
DG LB LB

MB
DB

DB

DB
R

R
MP

DP
O

UN (G)

DG

DG
DG

Pu
RB

DB

DB

DB

R

Figure 3: Probability wheel for Example 3

B G P
njs 6 7 4

Table 3: Values of njs for Example 3

LB MB LG MG MP
njs,ijs 2 1 2 2 2

Table 4: Values of njs,ijs for Example 3

By (7), the NPI lower probability for the event E is
4
20 . Figure 3 shows a corresponding configuration of
the probability wheel. There are four slices assigned
to E, and the remaining slices are assigned to main
categories or subcategories not in E and are labelled
accordingly.

4.2 Upper probability

The NPI upper probabilities for events E1 and E2

are derived by assigning as many slices of the wheel
as possible to the event of interest. The NPI upper
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probability for event E1 is

P (E1) =
r′∑

s=1

njs − 1
n

+
∑

s/∈A
{

r∑

s=r′+1

(
rs∑

ijs=1

njs,ijs − 1
n

)

+
kjs − 1− Ps

n
}+

min{r − r0 + l + r̃, k}
n

+
∑

s∈A
{

r∑

s=r′+1

(
rs∑

ijs=1

njs,ijs − 1
n

) +
kjs − 1
n
}

(8)

where Ps = [(kjs − rs − 1) − rs − ds]+, r0 denotes
the number of main categories such that s /∈ A which
satisfy rs + ds − (kjs − rs − 1) ≤ 0, and r̃ denotes
the number of main categories cjs which satisfy either
s ∈ {1, ..., r′}, s ∈ A or the condition

s /∈ A, rs + ds − (kjs − rs − 1) ≥ 2.

The NPI upper probability for event E2 is

P (E2) =
r′∑

s=1

njs − 1
n

+
∑

s/∈A
{

r∑

s=r′+1

(
rs∑

ijs=1

njsijs − 1
n

)

+
kjs − 1− Ps

n
}+

k

n

+
∑

s∈A
{

r∑

s=r′+1

(
rs∑

ijs=1

njsijs − 1
n

) +
kjs − 1
n
}.

(9)

Example 4 Consider the data set described in
Example 3. Suppose that we are interested in the event
Y21 ∈ {(LB∪MB)∪(LG∪MG)∪(MP)∪(UNB\RB)∪
(LP)∪(UNPu\DPu)∪(LO∪MO)}. We label this event
E. This is an event of type E1, so (8) is used for the
NPI upper probability for E.
In this example, r = 3, l = 2 and k = 4. Let s = 1
correspond to B, s = 2 to G and s = 3 to P. The main
categories for which s /∈ A are G and P, and the only
main category for which s ∈ A is B. We have P2 =
[(kj2−r2−1)−r2−d2]+ = [(3−2−1)−2−1]+ = 0 and
P3 = [(kj3−r3−1)−r3−d3]+ = [(2−2−1)−1−1]+ = 0.
The values of njs , kjs and njs,ijs are shown in Tables
5 and 6.

B G P
njs 6 7 4
kjs 3 3 2

Table 5: Values of njs and kjs for Example 4

We have r0 = 0 and r̃ = 3, as both of the main
categories in E for which s /∈ A satisfy the condition
rs + ds − (kjs − rs − 1) ≥ 2. The general formula (8)
shows that the NPI upper probability for the event E

LB MB LG MG MP
njs,ijs 2 1 2 2 2

Table 6: Values of njs,ijs for Example 4

R
R

R
MPMPDP

DP
LG

LG

MG

MG
DG

DG
DG LB LB

MB
DB

DB

DB
O

MP
MP

LG

LG

MG

LB
LB

MB

Figure 4: Probability wheel for Example 4

is 13
20 . Figure 4 shows a corresponding configuration

of the probability wheel. There are four slices of the
wheel that must be assigned to E. The nine further
slices that can be assigned to elements of E are labelled
accordingly.

5 Properties of the model

We now discuss several properties of the Sub-MNPI
model. We focus here on the case where K and Kj

are known, but the following properties are equally
applicable when these quantities are unknown.
A fundamental property for lower and upper
probabilities is the conjugacy property, which states
that P (E) = 1 − P (Ec). This is implicit in the
F-probability property, proven below, but can also be
proven explicitly for the Sub-MNPI model [4]. It can
also be shown [4] that the interval between the lower
and upper probabilities always contains the relative
frequency of observations in the event of interest E,
i.e.

P (E) ≤
∑

j∈OJ

nj
n

+
∑

j∈OJ∗

∑

ij∈OIj

nj,ij
n
≤ P (E). (10)

This is an attractive property, since it shows that the
Sub-MNPI model is not in conflict with the empirical
probability, and one which is not always satisfied by
methods such as Bayesian inferences which typically
assign a positive probability to a category before it has
been observed even once. A third property that can
be proven [4] is that as the number of observations in
the data set becomes infinitely large, the imprecision
vanishes and the interval probability P (E) shrinks to
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a point value equal to the relative frequency. This is,
in our situation, a desirable property for the model.
We now prove that the interval probabilities
[P (E), P (E)] given by the Sub-MNPI model are
F-probabilities in the sense of Weichselberger [13].
F-probability is a desirable property, because it
shows that none of the interval probabilities are too
wide and that they could not be made any smaller
given the data available to us. Also, F-probability
is strongly linked to other concepts in imprecise
probability theory. As stated above, conjugacy is
implicit in the F-probability property. Coherence is
a direct consequence of F-probability, by Walley’s
lower envelope theorem [11], and this can be seen
as a rationality requirement. The following is based
on work by Coolen and Augustin [7] that proved the
F-probability property for the original NPI model for
multinomial data.
For the proof we introduce some new notation in
order to describe all the possible configurations of the
probability wheel. Suppose that the wheel is split
into K segments, and each segment is split into Kj

subsegments. We move clockwise around the wheel
numbering the segments as 1, ...,K as shown in Figure
5. We also number the subsegments within segment j
as 1, ...,Kj as shown in Figure 6. The area of these

K

K-1...

j

...

3 2

1

Figure 5: Numbering of segments

segments and subsegments is thus far unspecified: we
allocate a different main category or subcategory to
each segment or subsegment in order to describe the
configuration of the wheel, but a segment assigned to
an unobserved category may have area zero.
As seen in [7], we let Σ represent the set of all
possible configurations σ of the wheel. Each σ can
be described by a sequence

(σ(j))j=1...K+1, σ(K + 1) = σ(1)

where σ(j) is the index of the main category assigned
to segment j, and a set of sequences

(σ(i, j))i=1...Kj , j ∈ J∗

Kj

Kj-1

...
i

...21

Figure 6: Numbering of subsegments

where σ(i, j) is the index of the subcategory within
main category j assigned to subsegment i.
It is also necessary to describe the position of the
observed main categories and subcategories on the
wheel for a given σ. Let the circular sequence

σ(i1), ..., σ(ik+1), σ(ik+1) = σ(i1)

be the indices of the observed main categories as we
move around the wheel, and let the sequence

σ(i1, j), ..., σ(ikj , j), j ∈ J∗

be the indices of the observed subcategories as we
move through the segment representing main category
j.
For l = 1, ..., k, we describe each separating slice
between two main categories as follows:

Jσ,l = {σ(j)|il ≤ j ≤ il+1}

if categories in positions il and il+1 are main-only,

Jσ,l = {σ(j)|il ≤ j < il+1} ∪
i1⋃

x=1

σ(x, l + 1)

if category in position il is main-only but category in
position il+1 has subcategories,

Jσ,l = {σ(j)|il < j ≤ il+1} ∪
Kl⋃

x=ikl

σ(x, l)

if category in position il has subcategories but
category in position il+1 is main-only, and

Jσ,l = {σ(j)|il < j < il+1}∪
i1⋃

x=1

σ(x, l+1)∪
Kl⋃

x=ikl

σ(x, l)

if categories in positions il and il+1 both have
subcategories. Jσ,l is the index set of all main
categories and subcategories to which the separating
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slice could be assigned. Let c|Jσ,l| be the set of all
these main categories and subcategories.
We also describe the separating slice between two
observed subcategories within the same main category
using

Bσ,j,l = {σ(b, j)|il ≤ b ≤ il+1}, l = 1, ..., kj−1, j ∈ J∗.

This is the set of indices of all possible subcategories
to which, for the particular configuration σ, we could
assign the separating slice between the subcategories
in positions il and il+1 in the segment representing
main category j. Let s|Bσ,j,l| be the set of these
subcategories.
Now, for a given configuration σ, the Sub-MNPI
model gives the following basic probability assignment
[3] to the event Yn+1 ∈ cj :

mσ(Yn+1 ∈ cj) = max{nj − 1
n

, 0}, j = 1, ...,K.

Similarly, the basic probability assignment given to
the event Yn+1 ∈ sj,ij is

mσ(Yn+1 ∈ sj,ij ) = max{nj,ij − 1
n

, 0}, i = 1, ...,Kj .

With regard to distributing probability mass
amongst slices separating different main categories or
subcategories, we give the following basic probability
assignments:

mσ(Yn+1 ∈ c|Jσ,l|) =
1
n
, l = 1, ..., k.

mσ(Yn+1 ∈ s|Bσ,j,l|) =
1
n
, l = 1, ..., kj − 1, j ∈ J∗.

Any other event is given the basic probability
assignment of zero.
Let XE represent the index set of the event of
interest E. This set contains some one-dimensional
elements, corresponding to main-only categories, and
some two-dimensional elements, corresponding to
subcategories. We now determine the lower and upper
probabilities for event E via the belief and plausibility
functions [10]. For a particular configuration σ, we
find that the belief function of E is

Pσ(E) =
∑

j∈J
mσ({Yn+1 ∈ cj})

+
∑

j∈J∗

∑

ij∈Ij
mσ({Yn+1 ∈ sj,ij})

+
∑

Jσ,l⊆XE
mσ({Yn+1 ∈ c|Jσ,l|})

+
∑

Bσ,j,l⊆Ij
mσ({Yn+1 ∈ s|Bσ,j,l|})

(11)

and the plausibility function of E is

Pσ(E) =
∑

j∈J
mσ({Yn+1 ∈ cj})

+
∑

j∈J∗

∑

ij∈Ij
mσ({Yn+1 ∈ sj,ij})

+
∑

Jσ,l∩XE 6=∅
mσ({Yn+1 ∈ c|Jσ,l|})

+
∑

Bσ,j,l∩Ij 6=∅
mσ({Yn+1 ∈ s|Bσ,j,l|}).

(12)

We therefore have a set of belief functions and a
set of plausibility functions corresponding to the
set Σ of possible configurations of the probability
wheel. According to Theorem 3.2 of [3], and to
[9], taking the lower and upper envelopes over all
possible configurations leads to F-probability. Since
the lower and upper probability formulae of the
Sub-MNPI model are derived by considering all
possible configurations σ ∈ Σ, resulting in

P (E) = min
σ∈Σ

Pσ(E)

and
P (E) = max

σ∈Σ
Pσ(E),

the interval probability [P (E), P (E)] is an
F-probability.

6 Approximate maximum entropy
distribution

We present an algorithm for approximating the
maximum entropy distribution consistent with the
Sub-MNPI model, with a view to using this maximum
entropy measure in the construction of classification
trees. Further details of such classification at main
category level are presented in [4]; the implementation
of this method at subcategory level is ongoing
research.
The process of computing the maximum entropy
distribution is carried out in two stages. Initially,
we work at main category level only. We apply
the NPI-M algorithm presented in [1], which gives
a maximum entropy probability pmaxE(cj) for each
main category. As a second step, we share the
probability mass pmaxE(cj) as evenly as possible
between the subcategories, in such a way that the
probability p̂j,ij that is assigned by the algorithm to
subcategory sj,ij is within the interval [Lj,ij , Uj,ij ].
Let K(i)j represent the number of subcategories in
main category cj that have been observed i times.
From the NPI-M algorithm [1] we have the results
pj = pmaxE(cj), j = 1, ...,K. This means that for
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each main category cj , we have a segment consisting

of npj slices. Of these slices, n(
Kj∑

i=1

Lj,ij ) must be

assigned to observed subcategories in cj . We therefore

have remaining probability mass pj −
Kj∑

i=1

Lj,ij that

may be assigned to any available subcategory in cj ,
and this is termed optional probability mass. For each
cj , we share the optional probability mass between
subcategories of cj , beginning with subcategories
with the fewest observations. This leads to the
Sub-A-NPI-M algorithm, which is shown below in
pseudo-code and which is similar to the A-NPI-M
algorithm presented in [1] and justified in the same
way.

Sub-A-NPI-M

For j = 1 to K

For i = 1 to Kj

Lj,ij ← max{nj,ij−1

n , 0}

opt← pj −
Kj∑

i=1

Lj,ij

p̂j,ij ← Lj,ij

t← 0;
While (opt > 0) do
If (nj,ij = t or nj,ij = t+1) p̂j,ij ←
p̂j,ij + min{ opt

K(t)j+K(t+1)j
, 1
n};

opt← opt−min{ opt
K(t)j+K(t+1)j

, 1
n};

t← t+ 1;

The Sub-A-NPI-M algorithm is illustrated in Example
5.

Example 5 Consider a multinomial data set with
observed main categories blue (B), green (G), red (R)
and pink (P), and unobserved main category orange
(O). Observations in B are further classified as light
blue (LB) or dark blue (DB), and observations in G
are further classified as light green (LG) or dark green
(DG). The data set consists of twenty observations
altogether, including 5 DB, 5 DG, 5 R and 5 P.
First, considering the data at main category level
only, we apply the NPI-M algorithm [1] and find that
the maximum entropy probabilities assigned to the
main categories {O,R,B,G,P} are { 1

20 ,
19
80 ,

19
80 ,

19
80 ,

19
80}.

(For further details on this, see [1] and [4].) A
configuration of the wheel corresponding to this
distribution is shown in Figure 7. The separating
slices are shared in such a way that B, R,
G and P are each assigned 3

4 of a separating

DB

DB
DB

DBDBDG
DG

DG

DG

DG

R

R
R

R R P
P

P

P

P
O

Figure 7: Probability wheel for Example 5

slice. We now consider the subcategories. The
maximum entropy probabilities for the main categories
are distributed over the subcategories using the
Sub-A-NPI-M algorithm. For main category B we
have P (DB) = 4

20 and P (LB) = 0. For main
category G we have P (DG) = 4

20 and P (LG) = 0.
Applying the Sub-A-NPI-M algorithm, we find that
opt = 19

80 − 4
20 = 3

80 for both of these main categories.
Taking t = 0 gives

p̂(LB) = 0 + min{ opt

K(t)j +K(t+ 1)j
,

1
n
} =

3
80
,

p̂(LG) = 0 + min{ opt

K(t)j +K(t+ 1)j
,

1
n
} =

3
80
.

So the probabilities assigned to the set of subcategories
{LB,DB} are { 3

80 ,
4
20} and the probabilities assigned

to the set of subcategories {LG,DG} are { 3
80 ,

4
20}.

The Sub-A-NPI-M algorithm can be implemented for
building classification trees using methodology similar
to that shown in [2] and in [4].

7 Concluding remarks

In this paper we presented the Sub-MNPI model
for inferences from multinomial data described at
subcategory level as well as at main category
level. NPI lower and upper probabilities were
derived for the general events of interest, and some
fundamental properties of the model were explained.
The inferences presented here are more flexible
than those given by the original NPI model for
multinomial data in the sense that observations can
be represented at varying levels of detail, which makes
the model widely applicable to practical problems.
With the view to applying the Sub-MNPI model to
classification problems, an algorithm was presented
for approximating the maximum entropy distribution
consistent with these inferences. Implementation of
this algorithm for building classification trees, and
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comparison of the approach with alternative imprecise
and classical methods, is ongoing. It is also of interest
for future research to investigate other applications of
the Sub-MNPI model.
With regard to future research, it will also be
useful to compare classification trees built using
the Sub-A-NPI-M algorithm presented here with
classification trees constructed by ignoring the
hierarchical relationship between the categories and
subcategories and simply using the NPI-M algorithm
presented in [1]. Note that the distinction between
these two methods, and the different results they
achieve, show that the Representation Invariance
Principle (RIP) satisfied by Walley’s IDM [12] does
not generally hold for NPI. This is an issue discussed
in detail by Coolen and Augustin [5, 7].
The Sub-MNPI model presented in this paper could
be extended further by considering inferences about
multiple future observations and by introducing
further layers e.g. subsubcategories to the hierarchy.
Such developments would be of theoretical and
practical interest.
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Abstract

The prediction of the behavior and reliability of engi-

neering structures and systems is often plagued by uncer-

tainty and imprecision caused by sparse data, poor mea-

surements and linguistic information. Accounting for 

such limitations complicates the mathematical modeling 

required to obtain realistic results in engineering analys-

es. The framework of imprecise probabilities provides a 

mathematical basis to deal with these problems which 

involve both probabilistic and non-probabilistic sources 

of uncertainty. A common feature of the various concepts 

of imprecise probabilities is the consideration of an entire 

set of probabilistic models in one analysis. But there are 

differences between the concepts in the mathematical 

description of this set and in the theoretical connection to 

the probabilistic models involved. This study is focused 

on fuzzy probabilities, which combine a probabilistic 

characterization of variability with a fuzzy characteriza-

tion of imprecision. We discuss how fuzzy modeling can 

allow a more nuanced approach than interval-based con-

cepts. The application in engineering is demonstrated by 

means of two examples. 

 

Keywords. Fuzzy Probabilities, Imprecise Probabilities, 

Failure Probability, Reliability Analysis. 

  

1   Introduction 

The analysis and reliability assessment of engineering 

structures and systems involves uncertainty and impreci-

sion in parameters and models of different type.  In order 

to derive predictions regarding structural behavior and 

reliability, it is crucial to represent the uncertainty and 

imprecision appropriately according to the underlying 

real-world information which is available. To capture 

variation of structural parameters, established probabilis-

tic models and powerful simulation techniques are avail-

able for engineers, which are widely applicable to real-

world problems; for example, see [24]. The required 

probabilistic modeling can be realized via classical ma-

thematical statistics if data of a suitable quality are avail-

able to a sufficient extent. 

 

In civil engineering practice, however, the available data 

are frequently quite limited and of poor quality. These 

limitations create epistemic uncertainty, which can some-

times be substantial. It is frequently argued that expert 

knowledge can compensate for the limitations through 

the use of Bayesian methods based on subjective proba-

bilities.  If a subjective perception regarding a probabilis-

tic model exists and some data for a model update can be 

made available, a Bayesian approach can be very power-

ful, and meaningful results with maximal information 

content can be derived.  Bayesian approaches have at-

tracted increasing attention in the recent past and consi-

derable advancements have been reported for the solution 

of various engineering problems [7, 15, 23].  An impor-

tant feature of Bayesian updating is that the subjective 

influence in the model assumption decays quickly with 

growing amount of data.  It is then reasonable practice to 

estimate probabilistic model parameters based on the 

posterior distribution, for example, as the expected value 

thereof. 

 

When less information and experience are available, 

greater difficulties will be faced.  If the available infor-

mation is very scarce or is of an imprecise nature rather 

than of a stochastic nature, a subjective probabilistic 

model description may be quite arbitrary.  For example, a 

distribution parameter may be known merely in the form 

of bounds. Any prior distribution which is limited to 
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these bounds would then be an option for modeling.  But 

the selection of a particular model would introduce un-

warranted information that cannot be justified sufficient-

ly.  Even the assumption of a uniform distribution, which 

is commonly used in those cases, ascribes more informa-

tion than is actually given by the bounds.  This situation 

may become critical if no or only very limited data are 

available for a model update. The initial subjectivity is 

then dominant in the posterior distribution and in the 

final result. If these results, such as failure probabilities, 

determine critical decisions, one may wish to consider 

the problem from the following angle. 

 

If several probabilistic models are plausible for the de-

scription of a problem, and no information is available to 

assess the suitability of the individual models or to relate 

their suitability with respect to one another, then it may 

be of interest to identify the worst case for the modeling 

rather than to average over all plausible model options 

with arbitrary weighting. The probabilistic analysis is 

carried out conditional on each of many particular proba-

bilistic models out of the set of plausible models.  In 

reliability assessment, this implies the calculation of an 

upper bound for the failure probability as the worst case.  

This perspective can be extended to explore the sensitivi-

ty of results with respect to the variety of plausible mod-

els, that is, with respect to a subjective model choice. A 

mathematical framework for an analysis of this type has 

been established with imprecise probabilities; see [28].  

Applications to reliability analysis [17, 22, 26] and to 

sensitivity analysis [9, 13] have been reported. This intui-

tive view, however, is by far not the entire motivation for 

imprecise probabilities [16].  Imprecise probabilities are 

not limited to a consideration of imprecise distribution 

parameters. They are capable of dealing with imprecise 

conditions and dependencies between random variables 

and with imprecise structural parameters and model 

descriptions. Respective discussions can be reviewed, for 

example, in [8, 14]. Multivariate models can be con-

structed [11]. Imprecise probabilities also allow statistic-

al estimations and tests with imprecise sample elements. 

Results from robust statistics in form of solution domains 

of statistical estimators can be considered directly and 

appropriately [1]. 

 

In this paper, the implementation of intervals and fuzzy 

sets as parameters of probabilistic models is discussed in 

the context of proposed concepts of imprecise probabili-

ties. Structural reliability analysis is employed to illu-

strate the effects in examples. 

 

2   Imprecise Probabilistic Model Parame-

ters 

In engineering analyses, parameters of probabilistic 

models are frequently limited in precision and are only 

known in a coarse manner. This situation can be ap-

proached with different mathematical concepts. First, the 

parameter can be considered as uncertain with random 

characteristics, which complies with the Bayesian ap-

proach. Subjective probability distributions for the para-

meters are updated by means of objective information in 

form of data. The result is a mix of objective and subjec-

tive information – both expressed with probability. 

Second, the parameter can be considered as imprecise but 

bounded within a certain domain, where the domain is 

described as a set. In this manner, only the limitation to 

some domain and no further specific characteristics are 

ascribed to the parameter, which introduces significantly 

less information in comparison with a distribution func-

tion as used in the Bayesian approach. Imprecision in the 

form of a set for a parameter does not migrate into prob-

abilities, but it is reflected in the result as a set of proba-

bilities which contains the true probability. Intervals and 

fuzzy sets can thus be considered as models for parame-

ters of probability distributions. 

 

An interval is an appropriate model in cases where only a 

possible range between crisp bounds  xl  and  xr  is known 

for the parameter  x, and no additional information con-

cerning value frequencies, preference, etc. between inter-

val bounds is available nor any clues on how to specify 

such information. Interval modeling of a parameter of a 

probabilistic model connotes the consideration of a set of 

probabilistic models, which are captured by the set of 

parameter values 

 

             (1) 

 

This modeling corresponds to the p-box approach [10] 

and to the theory of interval probabilities [28, 29]. Events  

Ei  are assessed with a range of probability, 

! " ! "# $ # $0 1
l i r i

P E ,P E ,% , which is directly used for the 

definition of interval probability, denoted as IP, as fol-

lows, 

 

 

         (2) 

 

 

In Eq. (2), ! "&P  is the power set on the set & of ele-

mentary events '. This definition complies with tradi-

tional probability theory. Kolmogorov's axioms and the 

generation scheme of events are retained as defined in 

traditional probability theory, see also [30]. Traditional 

mathematical statistics are applicable for quantification 

purposes. In reliability analysis with interval probabili-

ties, the parameter interval  XI  is mapped to an interval 

of the failure probability, 

 

        (3) 

 

Scrutinizing the modeling of parameters as intervals 

shows that an interval is a quite crude expression of im-

precision. The specification of an interval for a parameter 

implies that, although a number’s value is not known 

# $I l rX .x ,x(

! " # $) *
    

0 1  .: 

IP : E I with

E , I a,b a b

&

&

+

( & ( , , ,P

# $) *,  .
I f I f f f l f r

X P P P P P+ ( -
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exactly, exact bounds on the number can be provided. 

This may be criticized because the specification of pre-

cise numbers is just transferred to the bounds. Fuzzy set 

theory provides a suitable basis for relaxing the need for 

precise values or bounds. It allows the specification of a 

smooth transition for elements from belonging to a set to 

not belonging to a set. Fuzzy numbers are a generaliza-

tion and refinement of intervals for representing impre-

cise parameters.  The essence of an approach using fuzzy 

numbers that distinguishes it from more traditional ap-

proaches is that it does not require the analyst to circum-

scribe the imprecision all in one fell swoop with finite 

characterizations having known bounds.  The analyst can 

now express the available information in the form of a 

series of plausible intervals, the bounds of which may 

grow, including the case of infinite limits. This allows a 

more nuanced approach compared to interval modeling. 

 

Fuzzy sets provide an extension to interval modeling that 

considers variants of interval models, in a nested fashion, 

in one analysis.  A fuzzy set X!  of parameter values can 

be represented as a set of intervals  XI, 

 

 

 

        (4) 

 

 

 

This is utilized for an approximation of X!  via a series of 

discrete values ! $0,1i. - , which is referred to as .-

discretization; see Figure 1 [31].  In Eq. (4),  X.  denotes 

an .-level set of the fuzzy set X! , and  /(.)  is the mem-

bership function.  This modeling applied to parameters of 

a probabilistic model corresponds to the theory of fuzzy 

random variables and to fuzzy probability theory accord-

ing to [4, 18]. For further information on related con-

cepts, see [6, 12, 19]. The definition of a fuzzy random 

variable refers to imprecise observations as outcome of a 

random experiment.  A fuzzy random variable Y!  is the 

mapping 

 

                  (5) 

 

with ! "YF  being the set of all fuzzy sets on the funda-

mental set Y, whereby the standard case is Y = Rn.  The 

pre-images of the imprecise events described by ! "YF  

are elements of a traditional probability space # $, , P& S .  

This complies with traditional probability theory and 

allows statistics with imprecise data [2, 18, 27]. As a 

consequence of Eq. (5), parameters of probabilistic mod-

els, including descriptions of the dependencies and dis-

tribution type, and probabilities are obtained as fuzzy 

sets. This builds the relationship to the p-box approach 

and to the theory of interval probabilities. A representa-

tion of a fuzzy probability distribution function of a 

fuzzy random variable Y!  with aid of .-discretization 

leads to interval probabilities ! " ! "# $,
l r

F y F y
. .

 for each 

.-level as one plausible model variant, 

 

                  (6) 

 

with 

 

       (7) 

 

       (8) 

 

As depicted in Figure 1, in a reliability analysis, the 

fuzzy set X!  of parameter values is mapped to a fuzzy set 

of the failure probability, 

 

        (9) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1:  Relationship between fuzzy parameters and 

failure probability. 

 

The membership function serves only instrumentally to 

summarize various plausible interval models in one em-

bracing scheme. The interpretation of the membership 

value  /  as epistemic possibility, which is sometimes 

proposed, may be useful for ranking purposes, but not for 

making critical decisions. The importance of fuzzy mod-

eling lies in the simultaneous consideration of various 

magnitudes of imprecision at once in the same analysis. 

 

The features of a fuzzy probabilistic analysis can be 

utilized to identify sensitivities of the failure probability 

with respect to the imprecision in the probabilistic model 

specification; see Figure 1. Sensitivities of  Pf  are indi-

cated when the interval size of  Pf.  grows strongly with a 

moderate increase of the interval size of  X.  of the para-

meters. If this is the case, the membership function of  

f
P!  shows outreaching or long and flat tails. An engineer-

ing consequence would be to pay particular attention to 

those model options  X., which cause large intervals  Pf.  

and to further investigate to verify the reasoning for these 

options and to possibly exclude these critical cases.  

 

A fuzzy probabilistic analysis also provides interesting 

features for design purposes. The analysis can be per-

formed with coarse specifications for design parameters 

and for probabilistic model parameters. From the results 
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of this analysis, acceptable intervals for both design 

parameters and probabilistic model parameters can be 

determined directly without a repetition of the analysis; 

see Figure 1. Indications are provided in a quantitative 

manner to collect additional specific information or to 

apply certain design measures to reduce the input impre-

cision to an acceptable magnitude. This implies a limita-

tion of imprecision to only those acceptable magnitudes 

and so also caters for an optimum economic effort. For 

example, a minimum sample size or a minimum mea-

surement quality associated with the acceptable magni-

tude of imprecision can be directly identified. Further, 

revealed sensitivities may be taken as a trigger to change 

the design of the system under consideration to make it 

more robust. A related method is described in [5] for 

designing robust structures in a pure fuzzy environment. 

These methods can also be used for the analysis of aged 

and damaged structures to generate a rough first picture 

of the structural integrity and to indicate further detailed 

investigations to an economically reasonable ex-

tent9expressed in form of an acceptable magnitude of 

input imprecision according to some .-level. 

 

3   Examples 

3.1  Concept Demonstration: Reinforced Concrete 

Frame 

The principle of the fuzzy probabilistic reliability analy-

sis is illustrated by means of the reinforced concrete 

frame from [22] shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Reinforced concrete frame, structural model, 

and loading. 

 

The structure is loaded by its dead weight, a small hori-

zontal load  PH, and the vertical loads  PV0  and  p0  which   

are increased with the factor  !  until global structural 

failure is reached. For the purpose of demonstration, only 

the load factor  !  is introduced as a random variable with 

an extreme value distribution of Ex-Max Type I (Gum-

bel) with mean m:
!  and standard deviation :;! . Impreci-

sion of the probabilistic model is described with triangu-

lar fuzzy numbers 5.7, 5.9, 6.0m
:
(!  and 

0.08, 0.11, 0.12
:

; (! . In addition, the rotational stiff-

ness of the springs at the column bases is modeled as a 

triangular fuzzy number 5, 9,13k< (
! MNm/rad to take 

account of the only vaguely known soil properties. These 

fuzzy parameters are considered as given for the purpose 

of this paper to highlight certain advantages of fuzzy 

probabilistic approaches in structural reliability assess-

ment rather than to demonstrate the procedure for a spe-

cific practical case. In practical applications these fuzzy 

parameters need to be determined for the specific case. 

Although a general rule or algorithm cannot be formu-

lated for this purpose, expert knowledge and inspection 

results are frequently available, which can be used to-

gether with statistical methods to determine bounds for 

the support of these parameters in a conservative manner. 

These semi-heuristic approaches can then be extended to 

higher .-levels in order to derive further nested intervals 

with an engineering meaning, e.g., to which the parame-

ter imprecision can be reduced with certain technical 

efforts. Some suggestions to derive fuzzy parameters of 

probability distributions based on statistical data with 

typical characteristics as in civil engineering practice are 

discussed in [3]. It should be noted that the membership 

values are only instrumental in this approach with no 

specific meaning; they enable the simultaneous consider-

ation of a variety of intervals of different size at once in 

the same analysis; see Section 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Fuzzy reliability index and evaluation against 

safety requirement. 

 

Based on this input information, the fuzzy reliability 

index =!  shown in Figure 3 is calculated. The result 

spreads over a large range of possible values for  ". The 

interval bounds for each .-level are determined with the 

global optimization approach from [21], which is based 

on a modified evolution strategy. This provides advan-

tages over a perturbation method or sensitivity investiga-

tion in view of result accuracy as the dependency be-

tween the parameters and = can be quite nonlinear, and 

the intervals obtained for = are quite large. The shaded 

part of =!  does not comply with the safety requirements. 

This means that a sufficient structural reliability is not 

ensured when the parameters are limited to the plausible 
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ranges for  . = 0. In a traditional reliability analysis, 

using crisp assumptions for the parameters out of their 

plausible range such as the values associated with the 

membership  µ = 1, this critical situation is not revealed. 

So far, the results from p-box approach or from interval 

probabilities would lead to the same conclusions. As an 

additional feature of fuzzy probabilities, it can be ob-

served that the left tail of the membership function of =!  

slightly tends to flatten towards small values. This indi-

cates a slight sensitivity of  "  with respect to imprecision 

of the fuzzy input when this grows in magnitude. So one 

may wish to reduce the input imprecision to a magnitude 

which is associated with the steeper part of the member-

ship function of  ". In Figure 3, the part  µ(") @ 0.4  is a 

reasonable choice in this regard. Further, the result ".=0.4 

= [3.935, 6.592] for  µ(") @ 0.4 = .  (according to the 

definition of .-level sets) satisfies the safety requirement  

".=0.4 @ 3.8. That is, a reduction of the imprecision of the 

fuzzy input parameters to the magnitude on .-level  . = 

0.4  would lead to an acceptable reliability of the struc-

ture despite the remaining imprecision in the input. For 

example, a collection of additional information can be 

pursued to achieve the requirements 

A k< - [6.6, 11.4] MNm/rad = k<,.=0.4, 

A # $
, 0.4

5.78,5.96m m
: : . (
- ( , 

A # $
, 0.4

0.092, 0.116
: : .

; ;
(

- ( . 

If this cannot be achieved for one or more parameters, 

the fuzzy analysis can be repeated with intervals for the 

parameters with non-reducible imprecision and with 

fuzzy sets for the parameters with reducible imprecision 

to separate the effects. The evaluation of the results then 

leads to a solution with proposed reduction of the impre-

cision only of those parameters for which this is possible. 

In this manner, it is also possible to explore sensitivities 

of the result  "  with respect to the imprecision of certain 

groups of input parameters or of individual input parame-

ters. The repetition of the fuzzy analysis for these pur-

poses can be avoided largely when a global optimization 

technique is used for the fuzzy analysis. This type of 

fuzzy analysis leads to a set of points distributed over the 

value ranges of the fuzzy input parameters and associated 

with results = =- ! . For each construction of member-

ship functions for the fuzzy input parameters, it is then 

immediately known which points belong to which .-

level so that a discrete approximation of a result can be 

obtained directly without a repeated analysis. Repetition 

of the analysis is then only required for a detailed verifi-

cation. 

 

3.2  Practical Application: Offshore Structures 

Reliability analysis of existing offshore structures in 

seawater conditions requires realistic models for corro-

sion. Due to scarce and imprecise information, however, 

the model parameters cannot be specified precisely and 

are merely known in form of bounds. This situation can 

be approached appropriately with concepts of imprecise 

probabilities. 

 

3.2.1  Corrosion Model 

A probabilistic model for mild steel corrosion based on 

results from various coupon tests and other observations 

is proposed in [20].  This model describes the material 

loss due to corrosion as a function of time; see Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Corrosion model with mean value function  

f(t,E) after [20]. 

 

Uncertainties in the corrosion process are considered 

with a probabilistic model for the corrosion depth c(t,E), 

measured in mm, as 

 

         (10) 

 

with 

A ( , )f t E  9 mean-value function, 

A ( , )b t E  9 bias function, 

A ( , )t EB  9 zero-mean uncertainty function, 

A E  9 vector of environmental 

   (and material) parameters. 

 

The specification of the mean-value function  f(t,E)  

requires calibration of the parameters shown in Figure 4. 

These parameters can be determined as a function F(T) 

of the average seawater temperature T  (contained in E),  

 

                 (11) 

 

see [20]. The variability of  c(t,E)  is modeled with the 

zero-mean uncertainty function  B(t,E)  (in Eq. (10)) in 

the form of Gaussian white noise;  B(t,E)  is assumed 

with zero mean and a standard deviation given by 

 

        (12) 

 
 

The bias function  b(t,E)  in Eq. (10) reflects the differ-

ence of the mean value predicted by the corrosion model 
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and the mean values of corrosion loss derived from data.  

It is a function of the exposure time.  Examples for bias 

functions based on statistical evaluations are provided in 

[20], see Figure 5,  as functions of the non-dimensional 

time coordinate  t/ta  with  ta  as shown in Figure 4.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  Bias function b(t,E), dimensionless, after [20]. 

 

Before the anaerobic phases (up to the end of phase 2), 

the bias function lies in the range between 0.9 and 1.1.  

In the anaerobic phases (phases 3 and 4), the spread 

between the possible graphs becomes even more distinc-

tive.  A dependency between the temperature  T  and bias 

function  b(t,E)  cannot be retrieved based on this infor-

mation only. A condensation of the spread into a deter-

ministic bias function would disregard information.  On 

the other hand, the available information on the spread is 

quite sparse for the specification of a probabilistic model 

with sufficient confidence.  A Bayesian approach would 

require some data for model update.  If this is not availa-

ble, as can be assumed for this type of data for a specific 

location, the model would remain subjective. Thus, one 

may wish to identify the worst case for the bias function  

b(t,E)  for the analysis based on the range of available 

information.  But a simple conclusion such as “the upper 

bound of the bias function leads to the most critical struc-

tural behavior” may not apply.  Due to the variety of 

members in a structural system even a uniform thickness 

reduction can lead to changes in kinematic failure modes.  

This motivates a search for the worst case under consid-

eration of a plausible range for the bias function  b(t,E).  

 

In the subsequent two examples, the uncertainty of the 

bias function  b(t,E)  is accounted for with different mod-

els, and the effects on the results of a corresponding 

reliability analysis are investigated. 

 

3.2.2  Steel Plate 

For demonstration purposes, an example of a simple steel 

plate is taken from [20], and a reliability assessment is 

carried out under uncertain corrosion impact.  The effects 

of different models for the uncertainty of the bias func-

tion  b(t,E)  are investigated with respect to the failure 

probability  Pf. The analysis is limited to the aerobic 

corrosion phase. It is assumed that the steel plate is ex-

posed to seawater with a temperature of  T = 15DC over a 

period of 2.5 years. 

 

Let  d  and  h  denote the thickness and nominal width of 

the uniform plate, respectively. A load is applied to cause 

a constant uniaxial tensile force  Q  in the plate. The 

force  Q  follows a normal distribution with parameters 

given in Table 1.  It is applied at  t = 2.5 years. 

 

Variable Mean Standard deviation 

Q 200 kN 23 kN 

Sy 300 MPa 10 MPa 

d 4 mm 0 

h 250 mm 0  

 
Table 1:  Example data summary. 

 

The resistance  R(t)  of the plate is expressed in terms of 

the yield stress  Sy , and the cross sectional area is re-

duced by the corrosion loss  c(t,E)  on both surfaces of 

the plate.  That is, 

 

       (13) 

 

The yield stress  Sy  is modeled as normally distributed. 

The performance function is 

      

      (14) 

 

The corrosion model is specified according to [20], 

which leads to a mean value  f(.) = 0.3 mm and to a stan-

dard deviation  ;B = 0.0126 mm for the considered t = 2.5 

years. 

 

The failure probability  Pf   is first computed with a de-

terministic value for the bias function, bdet(.) = 1.0. Direct 

Monte Carlo simulation (MCS) with a sample size of  

NPf = 105  leads to  Pf,det = 0.0126. 

 

The bias factor  b(.)  is considered as merely known lying 

in the range between 0.9 and 1.1, which represents model 

uncertainty. This complies with the information provided 

in Figure 5. For a purely probabilistic analysis, this range 

is taken into account with the aid of bounded random 

quantities. A common probabilistic model used for those 

purposes in engineering is the Beta distribution with its 

probability density function (pdf) 

 

 

      (15) 

 

 

where B(q, r) is the Beta function, and the parameters  a  

and  b  are the minimum and maximum value of the 

random variable  X, respectively, with  a " x " b. This 

model can be adjusted quite arbitrarily by means of the 

distribution parameters. As the available information for 

the modeling of the bias  b(.) is quite scarce, possible 

variants for the distribution function for  b(.)  are consi-

dered. The following cases of parameter adjustments are 

investigated:  Case (I): q = r = 1, Case (II): q = r = 2, and 
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Case (III): q = r = 3; see Figure 6. Case (I) represents a 

uniform distribution, which is frequently used when no 

information about the distribution is available. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Variants for the  pdf  of the beta distribution. 

 

The results of the subsequent reliability analysis provide 

extended information in comparison to the deterministic 

value  Pf,det. To show the effects of the subjective distri-

bution assumption on the result for  Pf , a distribution for  

Pf  is determined as dependent on the distribution of  b(.).  

An MCS is carried out for each sampling point  b(.)  to 

obtain a corresponding value of Pf(b), and the empirical 

distribution for  Pf  is constructed based on a sample size 

of  Nb = 2000.  The sample size for the determination of  

Pf  for a given  b(.)  is fixed at  NPf = 105.  The resulting 

plot of the distributions for the failure probability  Pf   in 

Figure 7 shows the differences between the cases consi-

dered. Since all cases represent possible models, their 

differences will be manifested through the distribution of  

Pf  and their corresponding expectations  E[Pf]  estimated 

in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7:  Failure probability, pdf’s, means and upper 

bounds. 

 

The modeling of  b(.)  as a random variable involved data 

for various conditions and presumed variation of  b(.), 

which is reasonable for an analysis in a general context.  

For an analysis for a specific location, for which no data 

are available, one may wish to follow another approach.  

The bias function  b(.)  may then be considered as given 

but unknown instead of showing variation.  From this 

point of view, it is reasonable to determine the upper 

bound of  Pf .  With the stochastic parameter model, the 

upper bound for  Pf  can easily be retrieved from the 

sampling results shown in Figure 7, when the sampling is 

done conditional on  b(.).  The results for the upper 

bounds in the considered cases are: 

A Case (I):  ! " ! "! "
,

. 0.0199
u

f I
P b ( , 

A Case (II): ! " ! "! "
,

. 0.0198
u

f II
P b ( , 

A Case (III): ! " ! "! "
,

. 0.0196
u

f III
P b ( . 

The differences between these results for all three cases 

are quite small.  The absolute values, however, are 

smaller than the true upper bound ! "! "
,

. 0.02082
u

f true
P b ( . 

An improvement can be obtained by increasing the sam-

ple size  Nb  for  b(.). But a reasonable precision of 

! "! ".
u

f
P b  demands a quite high numerical effort; the 

total number of evaluations of the limit state function is  

Nb ? NPf .  This is hardly feasible for real structures, even 

when sophisticated sampling schemes are implemented.  

 

Certainly, in a number of practical cases, including this 

simple example, the worst case for the imprecise parame-

ter can be recognized in advance, so that the upper bound 

of  Pf  can be found easily.  However, in a general case 

when the dependency between imprecise model parame-

ters and  Pf  is non-monotonic, the solution is quite te-

dious. 

 

A suitable approach to solve this problem is available 

with concepts of imprecise probabilities. The bias func-

tion is now modeled as an interval, bI = [0.9,1.1].  An 

interval analysis is performed to map  bI  to an interval 

for the failure probability ! "! " ! "! "# $. , .
l u

f I f f
P P b P b( , 

see Eq. (3).  The associated result is shown in Figure 7.  

This analysis is realized with the global optimization 

algorithm from [21].  Instead of sampling  b(.), a search 

algorithm is used to directly head for the interval bounds 

! "! ".
l

f
P b   and ! "! ".

u

f
P b .  Still, for each selected value 

! ".
I

b b-   an MCS needs to be carried out.  The required 

number  Nb  of these simulations, however, is now signif-

icantly smaller; the exact result of the upper bound 

! "! ".
u

f
P b  is approached much faster.  With standard 

adjustments for the search algorithm, only  Nb = 45 val-

ues of ! "! ".
f

P b   were calculated to find the true result 

! "! "
,

. 0.02082
u

f true
P b ( . This effort can be reduced further 

with an improved adjustment in the parameters of the 

search algorithm. The effort increases almost linearly 

with the number of interval input variables. 

 

This analysis can be extended further by implementing a 

fuzzy probabilistic concept. This enables modeling of the  

bias function  b(.)  with the aid of fuzzy sets so that a set 

of different intervals for  b(.)  can be considered simulta-

neously.  A rational approach is to assign a membership 
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value  µ(b(.)) = 1.0  to the deterministic value  bdet(.) = 

1.0. A reasonable interval ! " ! " ! "# $
0 0 0

. . , .
l u

I
b b b(  may 

then be specified, which is even larger than the one con-

cluded from available information, in order to reveal 

effects in case that  b(.)  takes on exceptional values.  

The associated membership values are assigned as 

! "! " ! "! "
0 0

. . 0.0
l u

b b/ /( ( . In the example, 

bI0 = [0.8,1.2]  is selected. If no further specifications for 

membership values are made, this leads to the fuzzy 

triangular number ! ". 0.8,1.0,1.2b (!  as shown in Fig-

ure 8.  Of course, the interval concluded from available 

information should be included in the fuzzy modeling.  

This is provided in form of the #-level set 

! " ! " # $. . 0.9,1.1
I I

b b
.

( (  for  # = µ(b(.)) = 0.5; see Figure 

8.  The associated analysis is performed with global 

optimization according to [21] as a repetition of the in-

terval analysis for various membership levels with ex-

ploitation of the nested configuration of the intervals.  A 

fuzzy failure probability 
f

P!  is obtained as shown in Fig-

ure 8. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8:  Fuzzy bias factor ! ".b!  and fuzzy failure prob-

ability 
f

P! ; interval modeling and results from Figure 7 

are included for  µ = # = 0.5. 

 

A total of  Nb = 208  calculations of ! "! ".
f

P b  were 

necessary to obtain this result. The number Nb in the 

fuzzy analysis is not a multiple of Nb from interval analy-

sis according to the number of .-levels. Random ele-

ments in the optimization procedure weaken this conclu-

sion to the statistical mean of Nb. The search domains for 

different .-levels are of a different and so require a dif-

ferent Nb. Further, the numerical procedure from [21] 

exploits the nested configuration of the interval to re-use 

all previously evaluated points inside the search domain, 

which leads to a significant gain in numerical efficiency 

for a larger number of .-levels. In the example, the sig-

nificant increase of the support of the parameters in the 

fuzzy analysis compared to the interval possesses the 

governing effect, which leads to increase of Nb by a fac-

tor larger than two. But this is still a much smaller num-

ber  Nb  compared to a stochastic sampling of  b(.).  

Compared to interval analysis, the numerical effort is 

higher.  But the result 
f

P!   is much richer in information 

compared to  PfI. The fuzzy analysis contains the above 

interval analysis on the level # = 0.5; see Figure 8. In 

addition, a series of intervals with decreasing and in-

creasing size are analyzed, which provides information 

regarding sensitivities of  PfI  with respect to the interval 

size of  bI(.)  as discussed in Sections 2 and 3.1. Again, 

the membership values are not of interest, they just serve 

as a tool in the modeling.  Dependencies between the size 

of  bI(.)  and the size of  PfI  become directly visible in 

the results.  In the example, no particular sensitivities are 

obvious. 

 

3.2.3  Offshore Platform 

Deterioration of structural strength is a major factor in 

the safety assessment of offshore structures.  The protec-

tive paints and cathodic protection may be ineffective 

after some years.  Typically, when analyzing structural 

strength or structural capacity, only “uniform” corrosion 

is considered [20]. These issues can be addressed in an 

investigation as demonstrated in Section 3.2.2 applied to 

real structures. In the following example, a fixed offshore 

platform is analyzed, which is exposed to seawater with a 

temperature of  T = 15DC over a period of 5 years. All the 

tubular structural members beneath the seawater surface 

are assumed to have the same average reduction in thick-

ness due to corrosion only on the outer side. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9:  Structural model of the fixed jacket platform. 

 

As an example structure, a fixed jacket platform located 

in the North Sea is taken from [25]. The jacket is de-

signed for a water depth of approximately 110 m.  The 8-

leg jacket is arranged in a two by four rectangular grid. 

The overall dimensions are 27 m × 54 m at the top eleva-

tion and 56 m × 70 m at the mudline. The total height is 

142 m. Horizontal bracings are installed at 5 levels. The 

jacket foundation consists of four corner clusters with 

eight skirt piles in each group and no leg piles are used. 

The longitudinal jacket frames are diagonal-braced, with  

X-braces between central and corner legs at the bottom 

bay.  Transverse frames are  K-braced, with the bottom  

K  inverted to form a double  X  as shown in Figure 9. 

 

Longitudinal direction                Transverse 

1
1
0
 m

 

1
4
2
 m

 

54 m 27 m 

70 m 56 m 
x 

y 

z 

Probability of failure 

µ(b(.)) 

Bias factor 

0.8   0.9    1.0    1.1    1.2 0       0.01     0.02   0.03 

0.5 

1.0 

0.0 

0.5 

1.0 

0.0 

µ(Pf) 
Interval          Fuzzy                   Interval     Fuzzy 

68 Michael Beer & Mingqiang Zhang & Ser Tong Quek & Scott Ferson



The reliability analysis of a jacket structure involves the 

performance function, 

 

G = Ultimate Resistance 

            9 Environmental Loads.    (16) 

 

The ultimate resistance is determined through a pushover 

analysis of the platform.  It is equal to the environmental 

design loads multiplied by the Reserve Strength Ratio 

(RSR).  For this example, the environmental design loads 

are a 100-year wave together with a 10-year current. This 

is associated with a Gumbel distribution, which is im-

plemented as a probabilistic load model in the analysis. 

For the structural resistance, uncertainty is considered in 

the yield strength of the steel and in the thickness reduc-

tion of the members due to marine corrosion. The yield 

strength of the steel ASTM-A7 is described with a log-

normal distribution. Based on the probabilistic corrosion 

model discussed in Section 3.2.2, the environmental 

condition with  T = 15DC  and  t = 5  years leads to the 

mean value  f(.) = 0.48 mm and the standard deviation  

;B = 0.08 mm.  The bias factor  b(t,T)  lies in the range 

between 0.8 and 1.6 based on Figure 5. Implementation 

of these models in a structural analysis leads to the ap-

proximate performance function 

 

 

       (17) 

 

 

with 

 

       (18) 

 

For the reliability analysis, the variables in Eq. (17) are 

described by their respective probabilistic models. These 

random variables are summarized in Table 2. The proba-

bility of failure is calculated as ! "0
f

P P G( ,  via MSC.  

In order to calculate  Pf  effciently, importance sampling 

is utilized. A sample size of  NPf  = 5000  is used for the 

reliability analysis. Variants for modeling of  b(.)  are 

investigated, and the results are summarized in Figure 

10. Again, the interval concept shows some advantage 

when the bounds on the failure probability have to be 

found.  The total number of calculations  Nb   of  Pf  us-

ing the interval concepts is 114. The accuracy of the 

upper bound on  Pf  is higher, compared to the sampling 

of  b(.). 

 

Varia- Distri-           Parameters 

ble bution  

Fy Log. Normal    µ = 40 psi         c.o.v. = 0.087 

H Gumbel          .H = 21.0 m       "H = 1.63 m 

c(.) Normal          µ = 0.48 mm      ;B = 0.08 mm 

Table 2.  Random variables for the reliability 

analysis. 

 

 

 

 

 

 

 

 

 
Figure 10:  Failure probability; distributions, upper bounds and 

interval solution. 
 

In the example, the differences in the upper bound on the 

failure probability are small. However, in other cases, 

and if more imprecision is involved in the problem, the 

discussed effects may become quite significant. It is 

obvious that the imprecision in the bias function  b(.)  
and thus, the imprecision of  Pf   grow dramatically with 

the exposure time, as can be seen in Figure 5. Further, in 

the example, only the annual failure probability is calcu-

lated. In a consideration of the failure probability for the 

entire lifetime of the structure, the imprecision in the 

annual failure probabilities will be accumulated accor-

dingly. A consideration of this imprecision in a reliability 

analysis for the entire lifetime of an offshore structure is 

thus of great interest. 

 

4   Summary and Conclusions 

Different approaches were applied to describe impreci-

sion in probabilistic models for a reliability analysis of 

engineering structures. The features of the models were 

compared with a pure probabilistic solution and with one 

another by means of academic and practical examples. 

The influence of the modeling on the prediction of struc-

tural reliability was examined.  It was found that con-

cepts of imprecise probabilities and, in particular, fuzzy 

probabilities, have certain advantages when bounds on 

the failure probability are of interest.  These advantages 

concern the precision and the numerical effort in the 

calculation of these bounds and, in the case of fuzzy 

probabilities, some extended insight into sensitivities of 

the computational results with respect to the imprecision 

of the probabilistic input. Applicability in practice was 

demonstrated by means of a reliability analysis for a real 

offshore platform. 
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Abstract

Analysts in many domains must choose a design, a
strategy, or an intervention without being able to test
all relevant alternatives. We consider a situation in
which one of two alternatives must be chosen, while
only one alternative can be tested prior to decision.
The probability of success from blind choice is 1/2.
The probability of success if the distribution of the
system attributes is known is 3/4. The 1-test algo-
rithm assures probability greater than 1/2 of choosing
the better system based on a single test, even with-
out knowing the probability distribution of the system
attributes. If the distribution is poorly known, then
info-gap theory can robustify the 1-test algorithm.
Using the info-gap robustness function we show that
robust-satisficing algorithms may differ from the nom-
inally optimal algorithm when the attribute distribu-
tion is uncertain.

Keywords. Testing, design, info-gap.

1 The 1-Test Algorithm

Consider a choice between two design concepts for a
technological system. We would like to choose the
system with higher reliability (or longer life or lower
mean time between failure, etc.). It may be very ex-
pensive to construct and test both physical systems.
It would be useful if the better system could be reli-
ably chosen based on testing only one system.

Consider the choice between two medical interven-
tions for a specific patient (or macro-economic in-
terventions for a specific economy, or biological in-
terventions in an ecosystem). We can do one or the
other, but not both. Given all available information,
we are epistemically indifferent between the interven-
tions: we have no reason to believe that one inter-
vention is better than the other, though they are dif-
ferent. We choose one intervention by flipping a fair
coin, and we observe the result (reduction in fever, or

increase in blood count, etc.). For future reference we
would like to know which of the two would have been
better.

Decisions such as these can be thought about generi-
cally as follows.

Two systems each have a real-valued attribute (e.g.
lifetime, reliability, etc.). We would like to choose
the system with the larger—better—value, but we are
able to measure the attribute of only one system. We
must decide if the measured attribute is the smaller
or the larger of the two, where we have chosen the
system to test by a throw of a fair coin. We know
nothing about the distribution of the attribute values,
other than that they can take any value in a specified
interval.

The 1-test algorithm is stated without proof by Cover
[2] and proven by Snapp [6]. The idea is also discussed
in a blog [7]. We can formalize it as follows.

Two different real numbers, x1 and x2, are chosen by
an algorithm unknown to you. One of these numbers,
call it xr, is revealed to you, where you know that the
probability that xr = x1 is 0.5. You must decide if xr

is the smaller or the larger of the two numbers.

The 1-test algorithm for deciding whether xr is
the smaller or larger of the two values is as follows.
Let q(y) be a non-atomic probability density function
(pdf) which is positive on an interval containing x1

and x2. The interval may be finite, half-finite, or in-
finite. We will refer to q(y) as the “decision pdf”.
Decide according to the following decision rule:

1. Draw a random number, y, distributed according
to q(y).

2. If y ≥ xr then decide that xr is the smaller of the
two xi.

3. If y < xr then decide that xr is the larger of the
two xi.

The 1-test algorithm succeeds if the number chosen by
the algorithm is in fact the larger of the two numbers.
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Let Ps(x1, x2, q) denote the probability of success of
the 1-test algorithm using a pdf q(y) applied to real
numbers x1 and x2. We will prove the following the-
orem. See Cover [2] and Snapp [6].

Theorem 1 The probability of success of the 1-test
algorithm exceeds 1/2.

Given:

• The two numbers, x1 and x2, are different.

• q(y) is a non-atomic probability density function
which is non-zero on an interval containing x1 and
x2. q(y) is zero outside this interval.

Then:

Ps(x1, x2, q) >
1
2

(1)

Proof of theorem 1. The two numbers are different,
so one is larger. Denote the larger of the two num-
bers by x1, where xr is the number which has been
revealed. Our information is:

Prob(xr = x1) = Prob(xr = x2) = 0.5 (2)

If xr is the larger of the two numbers, then the prob-
ability of success equals the probability that y < xr:

Ps(xr = x1) =
∫ x1

−∞
q(y) dy = Q(x1) (3)

where Q(y) is the cumulative distribution function of
q(y). Similarly, if xr is the smaller of the two numbers,
then the probability of success equals the probability
that y ≥ xr:

Ps(xr = x2) =
∫ ∞

x2

q(y) dy = 1−Q(x2) (4)

Ps(xr = x1) and Ps(xr = x2) are illustrated in fig. 1.

y

q(
y
)

x2 < x1

x1x2

1−Q(x2)

Q(x2)

Q(x1)

Figure 1: Q(x1) and 1−Q(x2) for
x2 < x1; eqs.(3) and (4).

Recall that x1 > x2 which, since q(y) is non-zero on
an interval containing x1 and x2, implies:

Q(x1) > Q(x2) (5)

Thus the total probability of success, with the q-based
decision algorithm, is:

Ps(x1, x2, q)
= Prob(xr = x1)Ps(xr = x1)

+ Prob(xr = x2)Ps(xr = x2) (6)
= 0.5Q(x1) + 0.5[1−Q(x2)] (7)
= 0.5[1 + Q(x1)−Q(x2)︸ ︷︷ ︸

>0

] > 0.5 (8)

which completes the proof.

2 Info-Gap Robustness of the 1-Test
Algorithm

The system attributes, x1 and x2, are random vari-
ables. Let p(x1, x2) denote their joint pdf. If we knew
this distribution we could choose the 1-test decision
distribution, q(y), to maximize the probability of suc-
cess. But suppose we only have a guess or plausi-
ble supposition of the joint pdf of x1 and x2. That
is, we think they are drawn from a joint pdf which
is something like p̃(x1, x2), but the true distribution
may have a different shape or different moments. How
should we choose q(y)?

In this section we introduce info-gap models to repre-
sent non-probabilistic uncertainty about the true pdf
of x1 and x2. We then define the info-gap robustness
function and illustrate its use in selecting the decision
pdf q(y).

2.1 Info-Gap Uncertainty and Robustness

An info-gap model [1], [4] is a family of nested sets,
U(h, p̃), h ≥ 0. The elements of these sets are real-
izations of the uncertain quantity, which is the joint
pdf of x1 and x2 in the present case. The set-valued
functions, U(h, p̃), of an info-gap model, have the fol-
lowing properties:

Contraction: U(0, p̃) = {p̃} (9)
Nesting: h < h′ implies U(h, p̃) ⊆ U(h′, p̃)(10)

Contraction states that, in the absence of uncertainty,
only a single function—our estimate—applies, so the
uncertainty set is a singleton. Nesting is the prop-
erty that the sets become more inclusive as the hori-
zon of uncertainty grows. An info-gap model is a
non-probabilistic quantification of uncertainty. It en-
tails no assumptions about probability distributions
or about worst cases.

For instance, consider a situation where evidence sup-
ports a symmetric pdf p̃(x) for |x| ≤ d, but no evi-
dence is available on the far tails, |x| > d, and fat
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tails are suspected. A simple info-gap model for this
situation is:

U(h, p̃) =
{

p(x) ∈ P : p(x) = νp̃(x), |x| ≤ d

p(x) ≤ h

x2
, |x| > d

}
, h ≥ 0 (11)

where P is the set of non-negative and normalized
pdfs.

The generic properties of an info-gap model are
eqs.(9) and (10), for which eq.(11) is an example.
An info-gap model can be a Lévy neighborhood or
a contamination neighbor, as treated by Huber [3],
but need not be as illustrated by eq.(11) and in [1]
and [4].

2.2 Info-Gap Robustness

The unknown joint pdf of x1 and x2 is p(x1, x2) where
we will assume that the variables x1 and x2 are ex-
changeable: p(x1, x2) = p(x2, x1). x1 and x2 are also
exchangeable in the estimated joint pdf, p̃(x1, x2).
U(h, p̃) is an info-gap model for uncertainty in p(x).

Let Ps(p, q) denote the overall probability of success,
regardless of the realizations of x1 and x2, based on
the 1-test algorithm with decision pdf q(y):

Ps(p, q) = 2
∫ ∞

−∞

∫ ∞

x2

Ps(x1, x2, q)p(x1, x2) dx1 dx2

(12)
In the double integral itself (without the factor 2) we
assume that x1 is greater than x2. Multiplying by 2
accounts for the other possibility.

We aspire to choose q(y) so that Ps(p, q) is no less
than a “critical value”, Pc. We know from theorem 1
and eq.(12) that Ps(p, q) exceeds 0.5; we might aspire
to exceed 0.6 or 0.7. The robustness of any choice
of q(y), given aspiration Pc, is the greatest horizon
of uncertainty in the true distribution of x1 and x2,
up to which all distributions result in probability of
success no less than Pc. Large robustness implies that
our estimate, p̃(x1, x2), can err greatly and the 1-test
algorithm with q(y) will still achieve a probability of
success no less than Pc. Small robustness implies high
vulnerability to error in the estimate. Clearly, the
robustness function ĥ(q, Pc) establishes preferences on
the decision pdfs q(y).

Mathematically, we define the robustness of a decision
pdf, q(y), as the greatest horizon of uncertainty, h, up
to which the probability of success is no less than the
critical value, Pc, for all possible pdf’s at that horizon

of uncertainty:

ĥ(q, Pc) = max

{
h :

(
min

p∈U(h,p̃)

Ps(p, q)

)
≥ Pc

}

(13)
The robustness, ĥ(q, Pc), is the least upper bound of
the set of h values which satisfice the probability of
success at its critical value. We define the robustness
to equal zero if the set of h values in eq.(13) is empty.

The info-gap robustness in eq.(13) is different in sev-
eral respects from the concepts of robustness in ro-
bust statistics ([3], section 1.4). First of all, the info-
gap model need not represent uncertainty with the
neighborhoods usually treated in robust statistics, as
mentioned at the end of section 2.1 and illustrated in
eq.(11). Eq.(13) does not consider the bias or variance
of a statistic, nor the asymptotic (large sample) prop-
erties of any statistic, nor does it assume that the
statistic is consistent in the sense of converging (in
probability) to an asymptotic value. For further dis-
cussion of the relation between robust statistics and
info-gap robustness see [5].

2.3 Simple Example

We now examine a very simple special case. We know
that x1 and x2 are chosen independently from an ex-
ponential distribution, p(x) = λe−λx, x ≥ 0. Our best
guess of the coefficient is λ̃ but this guess is very un-
certain. We use a fractional-error info-gap model for
uncertainty in the exponential coefficient of the pdf
by which the xi are chosen:

U(h, p̃) =
{
p(x) = λe−λx : (1− h)

+
λ̃ ≤ λ ≤ (1 + h)λ̃

}

h ≥ 0 (14)

where x
+

= x if x ≥ 0 and equals zero otherwise.
Furthermore, assume that the pdf used for deciding
is also exponential: q(y) = γe−γy. We will derive the
robustness function (actually, its inverse) and study
the choice of γ.

Let Ps(λ, γ) denote the overall probability of success,
eq.(12), when the true distribution is exponential with
coefficient λ and the decision pdf is exponential with
coefficient γ. One finds:

Ps(λ, γ) =
1
2

+
λγ

(λ + γ)(2λ + γ)
(15)

=
1
2

+
ρ

(1 + ρ)(1 + 2ρ)
, ρ =

λ

γ
(16)

Differentiating we find:

∂Ps(λ, γ)
∂λ

=
γ(γ2 − 2λ2)

(λ + γ)2(2λ + γ)2
(17)
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Ps(λ, γ) vs. λ is a unimodal function with a maximum
at λ = γ/

√
2, as illustrated in fig. 2.
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Figure 2: Ps(ρ) defined in eq.(16).

Let µ(h, γ) denote the inner minimum in the definition
of the robustness, eq.(13), which is the minimum of
Ps(λ, γ) as λ varies up to horizon of uncertainty h.
µ(h, γ) is the inverse of ĥ(q, Pc). That is:

µ(h, γ) = Pc implies ĥ(q, Pc) = h (18)

A plot of µ(h, γ) vs. h is the same as a plot of Pc vs.
ĥ(q, Pc).

The minimum of Ps(λ, γ), at horizon of uncertainty
h, occurs when λ takes one or the other of its extreme
values, which are:

λ1(h) = (1 + h)λ̃ (19)

λ2(h) = (1 − h)
+
λ̃ (20)

Let us define the following two functions:

µ1(h, γ) = Ps[(1 + h)λ̃, γ] (21)

µ2(h, γ) = Ps[(1− h)
+
λ̃, γ] (22)

The inner minimum in the definition of the robustness
is the lesser of these two functions:

µ(h, γ) = min
i

µi(h, γ) (23)

The nominal optimal choice of γ is the value which
maximizes the estimated function Ps(λ̃, γ):

γ? = argmax
γ

Ps(λ̃, γ) (24)

We find γ? by differentiating Ps(λ̃, γ):

∂Ps(λ̃, γ)
∂γ

=
λ̃(2λ̃

2 − γ2)

(λ̃ + γ)2(2λ̃ + γ)2
(25)

Thus we see that the nominal optimal choice of γ is:

γ? = λ̃
√

2 (26)
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Figure 3: 3 robustness curves.

Note that the nominal optimal decision pdf, q(y|γ?),
differs from the estimated generating pdf, p̃(x|λ̃), even
if the estimate is correct.

Figs. 3–5 show robustness curves, ĥ(q, Pc) vs Pc, for
different choices of γ, which determines the decision
pdf, q(y). The estimated value of λ, the coefficient of
the estimated distribution of xi, is λ̃ = 1 in all cases.

The curves all converge, at the upper left, at ĥ = 1
when Pc = 1/2. We understand this from eq.(15),
where Ps = 1/2 when λ = 0.

In fig. 3 we examine values of γ for which µ(h, γ) in
eq.(23) takes only one functional form—µ1(h, γ)—for
all horizons of uncertainty, so no kink occurs in the
curve. The peak of Ps(λ, γ) vs. λ (see fig. 2 or eq.(17))
occurs when λ = γ/

√
2. When γ =

√
2 (solid black

curve) then, since λ̃ = 1, the value of µ(0, γ) occurs
at the peak of Ps(λ, γ) vs. λ. As h increases, the
value of µ(h, γ) moves left, down the steep positive
slope illustrated in fig. 2. In the other curves of fig. 3,
λ̃ < γ/

√
2 so the value of µ(0, γ) occurs on the steep

positive slope of Ps(λ, γ) vs λ and, as h increases, the
value of µ(h, γ) moves left, down the steep positive
slope.

From eq.(26) we see that γ =
√

2 is the nominal op-
timal choice since λ̃ = 1. Fig. 3 indicates that this
choice is robust-dominant among the values of γ which
are shown, and it is clear that this will hold for any
value of γ for which λ̃ ≤ γ/

√
2.

Fig. 4 is different from fig. 3: each robustness curve in
fig. 4 displays a kink when µ(h, γ) switches from one
solution to the other as specified in eq.(23). λ̃ > γ/

√
2

in both cases, so µ(0, γ) occurs on the gentle negative-
slope portion of Ps(λ, γ) vs. λ. Thus, for small h,
µ(h, γ) moves to the right down the gentle slope.
However, at larger h, the value of (1 − h)

+
λ̃ occurs

on the steep positive slope to the left of the peak, and
now µ(h, γ) switches and moves left down the steep
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Figure 4: 2 robustness curves.
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Figure 5: Figs. 3 and 4 combined.

slope. This explains the kink in the robustness curves.

Fig. 5 combines the curves of figs. 3 and 4. What is
of particular interest is the intersection between the
robustness curves. For instance, the curve for γ = 1
intersects the curve for γ =

√
2 at critical probability

Pc = 0.65. For greater critical probability, γ =
√

2 is
more robust (up to Pc = 0.67 at which its robustness
vanishes). For lower probability, γ = 1 is more ro-
bust. This intersection between robustness curves en-
tails the possibility of reversal of preferences between
the corresponding choices of γ (which determines the
decision pdf, q(y)).

3 Three Properties

We now discuss three generic properties of info-gap
robustness curves—trade off, zeroing, and preference
reversal—which are illustrated in the example.

Trade off between robustness and perfor-
mance. Robustness curves, such as in figs. 3–5, are
always monotonic, which expresses a trade off between
robustness and performance: good performance en-
tails low robustness against uncertainty. In our exam-
ple, aspiring to high probability of success, Pc, entails
low robustness against uncertainty in the generating

pdf. This trade off is universal and results from the
nesting property of info-gap models, eq.(10). The ro-
bustness function, ĥ(q, Pc), quantifies this trade off.

Zeroing of the robustness curve. The robust-
ness, ĥ(q, Pc), will equal zero for some critical value
Pc. This value is precisely the estimated performance.
Using the notation of our example, the zeroing prop-
erty is:

ĥ(q, Pc) = 0 if Pc = Ps(p̃, q) (27)

This means that the robustness is zero when aspiring
to a probability of success which equals the estimated
probability of success. Estimated outcomes have no
robustness against errors in the models that underlie
the estimate. Combining this with the trade off prop-
erty we conclude that only outcomes which are worse
than the estimated outcome have positive robustness.
This has an important implication for decision under
uncertainty. Estimated outcomes are not a good basis
for choosing between options because estimated out-
comes have no robustness to error in the models and
data underlying the estimates.

Preference reversal between options. This paper
is based on the idea that more robustness against un-
certainty is better than less robustness. This provides
a prioritization of options—decision pdf’s q(y) in our
example—as explained following eq.(12). Figs. 4 and
5 show several examples of intersection between ro-
bustness curves for different choices of q(y). For in-
stance, fig. 5 shows crossing between the robustness
curves for the nominal optimum (γ =

√
2) and a dif-

ferent option (γ = 1). The former option is preferred
if one requires Pc > 0.65, while the latter option is
preferred if lower probability of success is acceptable.
In short, the crossing of robustness curves entails the
possibility of reversal of preference between the cor-
responding options.

4 Extensions of the 1-Test Algorithm

Theorem 1 and the associated decision algorithm re-
late to selecting a single system from two candidates
based on testing only one system. We now consider
three candidate systems, where either one or two sys-
tems are tested. When testing one system our aim is
to select the best of the three systems. When testing
two systems our aim is to select the two best sys-
tems. We prove two extensions of theorem 1, relating
to these two cases, and we propose an hypothesis for
more than 3 systems.
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4.1 Two Tests, 3 Systems

Consider three systems, each characterized by a sin-
gle real number, xi, and assume these numbers are
different. Without loss of generality we denote these
numbers:

x1 < x2 < x3 (28)

Two of the systems are tested to reveal their at-
tributes, xi, where each system has the same prob-
ability of being tested. The revealed attributes are:

r1 < r2 (29)

Let s denote the third, unrevealed, number.

Our goal is to select the two best systems, whose at-
tributes are larger than of the third system. We do
not need to identify the better of the two best; only
to exclude the worst system.

The 2-test 3-system algorithm is as follows. Let
q(y) be a non-atomic pdf which is positive on an in-
terval containing x1, x2 and x3. The interval may
be finite, half-finite, or infinite. Select two systems
according to the following decision rule:

1. Draw a random number, y, distributed according
to q(y).

2. If y < r1, choose the two tested systems.
3. If r1 ≤ y ≤ r2, choose the systems corresponding

to r2 and s.
4. If r2 < y, choose the systems corresponding to

r2 and s.

The probability of blindly choosing the two best sys-
tems is 1/3. The following theorem asserts that the
above decision algorithm successfully chooses the two
best systems with probability strictly exceeding 1/3.

Theorem 2 The probability of success of the 2-test
3-system algorithm exceeds 1/3.

Given:

• The three numbers, x1, x2 and x3, are different.

• q(y) is a non-atomic pdf which is positive on an
interval containing x1, x2 and x3.

• Each system has equal probability of being selected
for testing.

Then:

Ps(x1, x2, x3, q) >
1
3

(30)

Proof of theorem 2. The three numbers are differ-
ent, so they can be denoted as in eq.(28). The two
revealed numbers are therefore also different and de-
noted as in eq.(29). Let R = {r1, r2} denote the set of
revealed values. Let s denote the third, unrevealed,

number. Let Q(·) denote the cumulative probability
distribution of q(·). Since the tested systems are se-
lected with equal probability we can assert:

Prob(s = x1) = Prob(s = x2) = Prob(s = x3) =
1
3

(31)

The decision algorithm succeeds at step 2 if R =
{x2, x3} whose probability is 1/3.

The decision algorithm succeeds at step 3 if R =
{x1, x2} or if R = {x1, x3}, each of whose probabili-
ties is 1/3.

The decision algorithm succeeds at step 4 if R =
{x1, x2} or if R = {x1, x3}, each of whose probabili-
ties is 1/3.

Putting this together we can write the total probabil-
ity of success of the decision algorithm as:

Ps(x1, x2, x3, q) =
1
3

∫ x2

−∞
q(y) dy

︸ ︷︷ ︸
step 2

(32)

+
1
3

∫ x2

x1

q(y) dy +
1
3

∫ x3

x1

q(y) dy

︸ ︷︷ ︸
step 3

+
1
3

∫ ∞

x2

q(y) dy +
1
3

∫ ∞

x3

q(y) dy

︸ ︷︷ ︸
step 4

=
1
3
Q(x2)
︸ ︷︷ ︸

step 2

(33)

+
1
3

[Q(x2)−Q(x1)] +
1
3

[Q(x3)−Q(x1)]
︸ ︷︷ ︸

step 3

+
1
3

[1−Q(x2)] +
1
3

[1−Q(x3)]
︸ ︷︷ ︸

step 4

=
2
3
− 1

3
Q(x1)︸ ︷︷ ︸

<1

+
1
3
[Q(x2)−Q(x1)︸ ︷︷ ︸

>0

] >
1
3

Q(x1) < 1 and Q(x2) > Q(x1) because x1 < x2 and
q(y) is positive on an interval containing x1, x2 and
x3. This completes the proof.

4.2 One Test, 3 Systems

Consider three systems, each characterized by a sin-
gle real number, xi, and assume these numbers are
different. Without loss of generality we denote these
numbers as in eq.(28). One of the systems is tested to
reveal its attribute, r, where each system has the same
probability of being tested. t denote the unrevealed
numbers.
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Our goal is to select the best system, whose attribute
is larger than of the other two systems.

The 1-test 3-system algorithm is as follows. Let
q(y) be a non-atomic pdf which is positive on an in-
terval containing x1, x2 and x3. The interval may be
finite, half-finite, or infinite. Select a system accord-
ing to the following decision rule:

1. Draw a random number, y, distributed according
to q(y).

2. If y ≤ r, choose the tested system.

3. If y > r, choose between the untested systems
with equal probability.

The probability of blindly choosing the best system is
1/3. The following theorem asserts that the above de-
cision algorithm successfully chooses the best system
with probability strictly exceeding 1/3.

Theorem 3 The probability of success of the 3-
system 1-test algorithm exceeds 1/3.

Given:

• The three numbers, x1, x2 and x3, are different.

• q(y) is a non-atomic pdf which is positive on an
interval containing x1, x2 and x3.

• Each system has equal probability of being selected
for testing.

Then:

Ps(x1, x2, x3, q) >
1
3

(34)

Proof of theorem 3. The three numbers are differ-
ent, so they can be denoted as in eq.(28). Let r denote
the revealed value. Let s and t denote the unrevealed
numbers. Let Q(·) denote the cumulative probability
distribution of q(·). We can assert:

Prob(r = x1) = Prob(r = x2) = Prob(r = x3) = 1/3
(35)

The decision algorithm succeeds at step 2 if r = x3

(with probability 1/3).

The decision algorithm succeeds at step 3 if the choice
between s and t is correct (with probability 0.5), and
if either r = x1 or r = x2 (each with probability is
1/3).

Putting this together we can write the total probabil-
ity of success of the decision algorithm as:

Ps(x1, x2, x3, q) =
1
3

∫ x3

−∞
q(y) dy

︸ ︷︷ ︸
step 2

(36)

+
1
2

1
3

[∫ ∞

x1

q(y) dy +
∫ ∞

x2

q(y) dy

]

︸ ︷︷ ︸
step 3

=
1
3
Q(x3)
︸ ︷︷ ︸

step 2

+
1
6

[(1−Q(x1)) + (1−Q(x2))]
︸ ︷︷ ︸

step 3

(37)

=
1
3

+
1
6
[Q(x3)−Q(x1)︸ ︷︷ ︸

>0

] +
1
6
[Q(x3)−Q(x2)︸ ︷︷ ︸

>0

] (38)

>
1
3

(39)

which completes the proof.

4.3 m Tests, n Systems

Consider n systems, each characterized by a single
real number, xi, and assume these numbers are dif-
ferent. Without loss of generality we denote these
numbers:

x1 < x2 < · · · < xn (40)

m of the systems are tested to reveal their attributes,
xi, where each system has the same probability of
being tested. The revealed attributes are:

r1 < r2 < · · · < rm (41)

Let R = {r1, . . . , rm} denote the set of revealed
values. Let Rj denote the set R after removing
the j smallest elements: Rj = {rj+1, . . . , rm}, for
j = 0, . . . , m. Thus R0 = R and Rm = ∅. Define
r0 = −∞ and rm+1 = ∞.

Our goal is to select the m best systems, whose at-
tributes are larger than all the remaining systems. We
do not need to identify the values of these m best sys-
tems; only to exclude the n−m worst systems.

The m-test n-system algorithm takes a slightly differ-
ent form depending on whether or not the number of
tested systems, m, is less than the number of untested
systems, n − m. If m ≤ n − m then the best m sys-
tems may be entirely in the untested set. If m > n−m
then at least some tested systems are among the best
m systems. We specify these two realizations of the
decision algorithm separately.

Let q(y) be a non-atomic pdf which is positive on an
interval containing x1, x2 and x3. The interval may
be finite, half-finite, or infinite.

If m ≤ n−m, the m-test n-system algorithm is as
follows. Select m systems according to the following
decision rule:

1. Draw a random number, y, distributed according
to q(y).
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2. For j = 0, . . . , m, if rj ≤ y < rj+1, choose
the systems corresponding to Rj and choose j
untested systems equi-probably from among all
untested systems.

If m > n−m, the m-test n-system algorithm is as
follows. Select m systems according to the following
decision rule:

1. Draw a random number, y, distributed according
to q(y).

2. For j = 0, . . . , n − m, if rj ≤ y < rj+1, choose
the systems corresponding to Rj and choose j
untested systems equi-probably from among all
untested systems.

3. For j = n − m + 1, . . . , m, if rj ≤ y < rj+1,
choose the systems corresponding to Rn−m and
choose all n−m untested systems.

The number of distinct subsets of m from among the

n systems is the binomial coefficient
(

n
m

)
, which we

denote γnm. Only one of these subsets contains the m
best systems. Thus the probability of blindly choosing
the m best systems is 1/γnm. We hypothesize that
one could prove, in analogy to theorems 1–3, that the
above decision algorithm chooses the m best systems
with probability strictly exceeding 1/γnm.

5 Further Questions

The 1- and 2-test algorithms can probably be further
generalized in various ways. Likewise, the info-gap
analysis can be realized in many different forms, espe-
cially by using different info-gap models to represent
different types of prior information about the uncer-
tain generating pdf. Many questions remain to be
explored. We mention a few possible extensions of
our results.

(1) In some situations the systems are evaluated by
multiple criteria, not by only one attribute as we
have done. (2) One might consider adaptive testing,
wherein intermediate results indicate whether or not
to continue testing. (3) One would like to know what
is the best possible probability of success.

References

[1] Ben-Haim, Yakov, 2006, Info-Gap Decision The-
ory: Decisions Under Severe Uncertainty, 2nd edi-
tion, Academic Press, London.

[2] Cover, Thomas M., 1987, Pick the largest number,
chapter 5.1 in T. Cover and B. Gopinath, 1987,
Open Problems in Communication and Computa-
tion, Springer-Verlag, Berlin.

[3] Huber, Peter J., 1981, Robust Statistics, Wiley,
New York.

[4] Info-gap decision theory, http://info-gap.com.

[5] Keren, Carmit, 2009, Info Gap Bayesian Classi-
fication, M.Sc. thesis, Technion-Israel Institute of
Technology (in English).

[6] Snapp, Robert R., 2005, Tom Covers Number
Guessing Game,
http://www.cems.uvm.edu/˜ snapp/teaching/
coversproblem.pdf

[7] xkcd, http://blog.xkcd.com/2010/02/09/math-
puzzle.

78 Yakov Ben-Haim



7th International Symposium on Imprecise Probability: Theories and Applications, Innsbruck, Austria, 2011

A discussion on learning and prior ignorance for sets of priors

in the one-parameter exponential family

Alessio Benavoli and Marco Zaffalon

IDSIA, Galleria 2, CH-6928 Manno (Lugano), Switzerland

email: alessio@idsia.ch, zaffalon@idsia.ch

Abstract

For a conjugate likelihood-prior model in the one-

parameter exponential family of distributions, we show

that, by letting the parameters of the conjugate exponential

prior vary in suitable sets, it is possible to define a set of

conjugate priors M that guarantees prior near-ignorance

without producing vacuous inferences. This result is ob-

tained following both a behavioural and a sensitivity analy-

sis interpretation of prior near-ignorance. We also discuss

the problem of the incompatibility of learning and prior

near-ignorance for sets of priors in the one-parameter ex-

ponential family of distributions in the case of imperfect

observations. In particular, we prove that learning and

prior near-ignorance are compatible under an imperfect ob-

servationmechanism if and only if the support of the priors

in M is the whole real axis.

Keywords. Prior near-ignorance, set of distributions, ex-

ponential family of distributions.

1 Introduction

This paper deals with the problem of modelling prior ig-

norance about statistical parameters through a set of prior

distributions M . There are two distinct approaches of this

kind. The first approach, known as Bayesian sensitivity

analysis [2], assumes that there is an ideal prior distribu-

tion π0 which could, ideally, model prior uncertainty. It

is assumed that we are unable to determine π0 accurately

because of limited time or resources. The criterion for in-

cluding a particular prior distribution π in M is that π is a

plausible candidate to be the ideal distribution π0.

The second approach, known as the theory of coherent

lower (and upper) previsions, was developed by Walley

[11]. This approach revises Bayesian sensitivity analysis

by directly emphasizing the upper and lower expectations

(also called previsions) that are generated by M . The up-

per and lower expectations of a bounded real-valued func-

tion (we call it a gamble) g on a possibility space, de-

noted by E(g) and E(g), are respectively the supremum

and infimum of the expectations EP(g) over the probabil-
ity measures P in M (if M is assumed to be closed and

convex,1 it is fully determined by all the upper and lower

expectations). The upper and lower expectations have a be-

havioural interpretation (explained in Section 2), but, con-

trary to the sensitivity analysis approach, there is no spe-

cial commitment to the individual probability distributions

in M . In choosing a set M to model prior near-ignorance,

the main aim is to generate upper and lower expectations

with the property that E(g) = infg and E(g) = supg on

a specific class of gambles of interest g. This means that

the only available information about E(g) is that it belongs
to [infg,supg], which is equivalent to state a condition of

complete prior ignorance about the value of g.

Modeling a state of prior ignorance about the value w of a

random variableW is not the only requirement for M , it

should also lead to non-vacuous posterior inferences. Pos-

terior inferences are vacuous if the lower and upper expec-

tations of all gambles of interest g coincide with the infi-

mum and, respectively, the supremum of g. This means

that our prior beliefs do not change with experience (i.e.,

there is no learning from data).

In [1], following an approach based on the behavioural

interpretation, we have defined a set of minimal proper-

ties that a set M of distributions should satisfy to be a

model of prior near-ignorance that does not lead to vacu-

ous inferences. Furthermore, in the case that the likelihood

model is in the one-parameter exponential family and M
includes the corresponding conjugate exponential priors,

we have also shown that the set of priors M satisfying the

above properties can be uniquely obtained by letting the

parameters of the conjugate exponential prior vary in suit-

able sets.

In this paper, after reviewing the main results of [1],

we show that, for the one-parameter exponential fam-

ily, similar conclusions about the parametrization of M
(which guarantee prior near-ignorance and non-vacuous in-

1Closed and convex in the weak∗ topology, see [11, Sec. 3.6] for more

details.
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ferences) can be derived via a sensitivity analysis of the

quantities of interest to the choice of the prior parameters.

We also deal with the problem of imperfect observations.

In [8], it has been proven that the imprecise Beta model

yields vacuous parametric inferences in the case the obser-

vation mechanism is imperfect. It is also shown that learn-

ing and prior near-ignorance are incompatible for the im-

precise Beta model in the case of imperfect observations.2

A question is if the impossibility to learn from imperfect

observations under prior near-ignorance holds in general

for any prior model based on sets of distributions. Here,

considering conjugate likelihood-prior models in the one-

parameter exponential family, we show that learning and

prior near-ignorance are compatible under an imperfect ob-

servationmechanism if and only if the support of the priors

in M is the whole real axis.

2 A Behavioural Interpretation of Prior

Near-Ignorance

The aim of this section is to define which minimal proper-

ties the set of priors M should satisfy in the case where

there is (almost) no prior information about w ∈ W ⊆ R.

Before listing these properties, we discuss the behavioural

interpretation of upper and lower expectations.

By regarding a gamble g : W → R as a random reward,

which depends on the a priori unknown value of w, the

expectation (also called prevision) of g w.r.t. w, i.e., E(g),
represents a subject’s fair price for the function g. This

means that he should be disposed to accept the uncertain

rewards g−E(g)+ ε (i.e., to buy g at the price E(g)− ε)
and E(g)− g+ ε (i.e., to sell g at the price E(g)+ ε) for
every ε > 0. More generally, the supremum acceptable

buying price and the infimum acceptable selling prices for

g need not coincide, meaning that there may be a range

of prices [a,b] for which our subject is neither disposed to
buy nor to sell g at a price k ∈ [a,b]. His supremum ac-

ceptable buying price for g is then his lower expectation

E(g), and it holds that the subject is disposed to accept the
uncertain reward g−E(g)+ ε for every ε > 0; and his in-

fimum acceptable selling price for g is his upper prevision

E(g), implying that he is disposed to accept the reward

E(g)− g+ ε for every ε > 0. A consequence of this inter-

pretation is that E(g) =−E(−g) for every gamble g.

Under this behavioural interpretation, a state of ignorance

about a gamble g is modelled by setting E(g) = infg and

E(g) = supg. This means that our subject is neither dis-

posed to buy nor to sell g at any price k ∈ [infg,supg]. In
other words, our subject is disposed to buy (sell) g only

2Actually the results in [8] are more general and hold for a multivari-

ate prior near-ignorant model defined on a compact set. However, since

the present paper deals with the one-parameter exponential family, in the

following we focus our attention on the restriction of [8] to the imprecise

Beta model.

at a price strictly less (greater) than the minimum (maxi-

mum) reward that he would gain from g. This means that

the available information on w does not allow our subject

to set any meaningful buying or selling price for g, which

is equivalent to stating that our subject is in a state of igno-

rance.

In [11], it is proven that a closed and convex set of prob-

ability distributions can be equivalently characterized by

the lower (or upper) expectation functional that it gener-

ates as the lower (upper) envelope of the expectations ob-

tained from the distributions in such a set. Vice versa,

given a functional E(·) that satisfies some regularity prop-

erties [11, Ch. 2], it is possible to define a family M of

probability distributions that generates the lower expecta-

tion E(g) for any g. This establishes a one-to-one corre-

spondence between closed convex sets of probability dis-

tributions and lower expectations.

In case the available prior information is scarce, it there-

fore seems more natural to define M according to the

behavioural interpretation, i.e., in terms of the upper and

lower expectations it generates [7]. For instance, in prob-

lems where there is (almost) no prior information one

would expect the set M to be “large” in the sense that its

generated upper and lower expectations are relatively far

apart (vacuous or almost vacuous).

Modelling a state of prior ignorance aboutw is not the only

requirement for M , it must also produce non-vacuous

posterior inferences (otherwise it is useless in practice).

Hereafter, inspired by the work in [7], we define a set

of minimal properties that M or, equivalently, the lower

and upper expectations it generates, should satisfy to be

a model of prior ignorance and produce consistent and

meaningful posterior inferences. The first requirement for

M is coherence.

(A.1) Coherence. Prior and posterior inferences based on

M should be strongly coherent [11, Sec. 7.1.4(b)]. Under

the behavioural interpretation, this means that we should

not be able to raise the lower expectation (supremum

acceptable buying price) of a given gamble g taking into

account the acceptable transactions implicit in the other

lower expectation models.

In practice, strong coherence imposes joint constraints

on the prior, likelihood and posterior lower expectation

models, in the sense that, when considered jointly, they

should not imply inconsistent assessments. In [11, Sec.

7.8.1], it is proven that, in the case the prior and likelihood

lower expectation models are obtained as lower envelopes

of standard expectations w.r.t. sets of proper density

functions and the posterior set of densities is obtained

from these sets by element-wise application of Bayes’

rule for density functions, then strong coherence of the
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respective lower expectation models is satisfied.3

Besides coherence, other requirements for the set M are

that it should represent the state of prior ignorance about

w, but without producing vacuous posterior inferences.

Thus, M should be large enough to model a state of

prior ignorance w.r.t. a set of suitable gambles (i.e., a

set of gambles of interest G0 w.r.t. which we assess our

state of prior ignorance), but not too large to prevent

learning from taking place. These two contrasting require-

ments are captured by the following two properties for M .

(A.2) G0-prior ignorance. The prior upper and lower

expectations of some suitable set of gambles G0 under M
are vacuous, i.e., E[g] = infg(w) and E[g] = supg(w) for
all g ∈ G0.

(A.3) G -learning. For a chosen set of gambles G ⊇ G0

and for each g ∈ G satisfying E[g]− E[g] > 0, there

exists a finite δ > 0 (possibly dependent on g) such that

for each n ≥ δ and non-empty sequence of observations

yn = (y1, . . . ,yn), at least one of these two conditions is

satisfied:

E[g|yn] 6= E[g], E[g|yn] 6= E[g], (1)

where E[·|yn] and E[·|yn] denote the posterior lower and

upper expectations of g after having observed y1, . . . ,yn.
Furthermore, for each g ∈ G0, (1) must hold for any n > 0.

Property (A.2) states that M should be vacuous a

priori w.r.t. some set of gambles G0, i.e., the lower and

upper expectations of g ∈ G0 respectively coincide with

the infimum and the supremum of g. In case M includes

all possible distributions then (A.2) holds for any function

g. Here, conversely, we require that (A.2) is satisfied for

some subset of gambles G0. The subset of gambles G0

used in (A.2) should include the gambles g w.r.t. which we

state our condition of prior near-ignorance. Furthermore,

the set G0 should be as large as possible to guarantee that

also M is as large as possible, but no too large to be

incompatible with the requirement (A.3) of learning. In

fact, property (A.3) states that M should be non-vacuous

a posteriori for any gamble g ∈ G ⊇ G0, which is a

condition for learning from the observations. The set of

gambles G used in (A.3) should include the gambles g

w.r.t. which we are interested in computing expectations

(i.e., making inferences). The fact that G must include G0

is the only constraint on G , meaning that (A.3) requires

that M is not vacuous w.r.t. all these gambles for which

the prior near-ignorance has been imposed. Moreover, for

these gambles, it is required that (1) holds for any n > 0,

i.e., after one observation the condition of prior-ignorance

must already be left.

3 This holds under standard assumptions about the existence of den-

sity functions and the applicability of Bayes’ rule.

Since M is a model of prior near-ignorance, it is also de-

sirable that the influence of M on the posterior inferences

vanishes with increasing numbers of observations n. This

is captured by the following property.

(A.4) Convergence. For each gamble g ∈ G and

non-empty sequence of observations yn = (y1, . . . ,yn), the
following conditions are satisfied for n→ ∞:

E[g|yn] → E∗[g|yn],
E[g|yn] → E

∗[g|yn], (2)

where E∗[g|yn], E∗[g|yn] are the posterior lower and upper
expectations obtained as lower envelopes of standard

expectations w.r.t. the posterior densities derived, via

Bayes’ rule, from the likelihood model and the improper

prior density p(w) = 1 for all w ∈W .

Property (A.4) states that, for n → ∞, M should

give the same lower and upper expectations of g ∈ G as

those obtained from the improper prior density p(w) = 1.

The fact that E∗[g|yn] < E
∗[g|yn] accounts for the general

case in which the likelihood model is described by a

set of likelihoods (for a single likelihood it would be

E∗[g|yn] = E
∗[g|yn] = E∗[g|yn]). Although improper

priors produce posteriors which are often incoherent with

the likelihood model, (A.4) does not conflict with the

requirement of coherence in (A.1). In fact (A.4) is a

limiting property that holds only for n→ ∞ (furthermore,

incoherence usually vanishes at the limit). In order to

better understand properties (A.1)–(A.4), we show their

instantiation for the case of the exponential family in

Section 4. Before discussing these results, in the next

section we introduce the exponential families of densities

and review their main properties [4, Ch. 5].

3 Exponential Families

Consider a sampling model where i.i.d. samples of a ran-

dom variable Z are taken from a sample space Z .

Definition 1. A probability density p(z|x), parametrized
by x ∈ X ⊆ R, is said to belong to the one-parameter

exponential family if it is of the form

p(z|x) = f (z)[g(x)]−1 exp(cφ(x)h(z)) , z ∈Z (3)

where, given f ,h,φ and c, it results that g(x) =∫
z∈Z f (z)exp (cφ(x)h(z))dz < ∞. �
Sometimes it is more convenient to rewrite (3) in a differ-

ent form.

Definition 2. The probability density

p(y|w) = k(y)exp(yw− b(w)), y ∈ Ym, (4)

derived from (3) via the transformations y = h(z), Ym =
h(Z ), w = cφ(x), b(w) = ln(g(x)) and k(y) = f (z), is
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called the canonical form of representation of the expo-

nential family; w is called the natural (or canonical) pa-

rameter. �
The canonical form has some useful properties. The mean

and variance of Y are given by

E[Y |w] =
db

dw
, E[(Y −EY [Y |w])2|w] =

d2b

dw2
, (5)

where it has been assumed that d2b
dw2 (w) > 0; from (5)

it follows that db
dw

(w) ∈ Int(Y ) (i.e., interior of Y ) [5],

where Y ⊆ R is the smallest closed or semi-closed set

that includes the sample mean of Y (if it exists, otherwise

Y = Int(Y )). Notice that the domain of the observations

Ym can be discrete or continuous, while Y is always con-

tinuous. In the case of n i.i.d. observations yi = h(zi), it
follows that

p(yn|w) =
n

∏
i=1

p(yi|w) =
n

∏
i=1

k(yi)exp(n(ŷnw− b(w))), (6)

where ŷn = 1
n ∑n

i=1 yi is the sample mean of the yi which,

together with n, is a sufficient statistic of yn for inference

about w under the i.i.d. assumption. Furthermore, by inter-

preting the density function in (6) as a likelihood function

L(w), with yn = (y1, . . . ,yn), we can define the correspond-
ing conjugate prior.

Definition 3. A probability density p(w|n0,y0),
parametrized by n0 ∈ R+ and y0 ∈ Int(Y ), is said

to be the canonical prior of (4) if

p(w|n0,y0) = k(n0,y0)exp(n0(y0w− b(w))), (7)

where w ∈ W , n0 is the so-called number of pseudo-

observations, y0 is the so-called pseudo-observation and

k(n0,y0) is the normalization constant. �
When W = R, 0 < n0 < ∞ and y0 ∈ Int(Y ), (7) is a
proper density [5]. Some examples of densities conjugate
to a one-parameter exponential (canonical) family and
defined in W = R follow.

Gaussian with known variance: y ∈ Y = R, x ∈ R,
σ2 ∈ R+,

p(y|x,σ2) ∝ exp
(
− 1

2σ2 (y−x)2
)

∝ exp
(

1
σ2

(
yx− x2

2

))
,

with w= x and b(w) = x2/2. The conjugate prior (7) trans-
formed back to the original domain X is:

p(x|n0,y0) ∝ exp
(
− n0

2
(x− y0)2

)
,

which is a Gaussian with mean y0 and variance 1/n0.
Binomial-Beta: x ∈X = (0,1), y ∈ {0,1},

p(y|x) ∝ xy(1− x)(1−y)

= (1− x)exp
(
y ln

(
x

1− x

))

= exp(yw− b(w)) ,

w = ln(x/(1− x)), b(w) = − ln(1− x) = ln(1+ exp(w)).
Considering the change of variable dx = exp(w)/(1 +
exp(w))2dw, the conjugate prior (7) transformed back to

the original domain X is:

p(x|n0,y0) ∝ xn0y0−1(1− x)n0(1−y0)−1

which is a Beta density with n0 = s> 0 and y0 = t ∈ (0,1).

The pair likelihood and conjugate prior in the canonical

exponential family satisfies a set of interesting properties,

most of them are particularly useful to represent the na-

ture of the Bayesian “learning” process. A list of such

properties is given in the following lemmas, whose proof

is omitted (see [4, Ch. 5]).

Lemma 1. For a pair of likelihood and conjugate prior in

the canonical exponential family, it holds that:

(i) the posterior density for w is:

p(w|np,yp) = k(np,yp)exp(np(ypw− b(w))), (8)

where np = n+ n0 and yp = n0y0+nŷn
n+n0

;

(ii) the predictive density for future observations

(yn+1, . . . ,yn+m) is

p(yn+1, . . . ,yn+m|y1, . . . ,yn) =

m

∏
j=1

k(yn+ j)
k
(
n0 + n, n0y0+nŷn

n+n0

)

k
(
n0 + n+m, n0y0+(n+m)ŷn+m

n+m+n0

) .

(9)

�
Lemma 2. Suppose that the canonical conjugate prior

family is such that p(w|n0,y0) → 0 for w → supW and

w → infW . Then the prior mean of the function db
dw

is

E
[
db
dw

∣∣∣n0,y0
]

= y0 and the posterior mean is:

E

[
db

dw

∣∣∣np,yp
]

=
n0y0 + nŷn

n+ n0
. (10)

�
Notice that p(w|n0,y0)→ 0 forw→ supW andw→ infW
holds for any canonical priors such that W = R, but in

general it is not true for truncated priors, i.e., in the case

W ⊂ R. This is one of the reasons why it has been as-

sumed that W = R. In (5), it has been shown that d
dw

b(w)
is the mean of Y . Hence, d

dw
b(w) is the quantity about

which we will have prior beliefs before seeing the data

y and posterior beliefs after observing the data. Hence,

the results in Lemma 2 are particularly important, because

they provide us with a closed formula for the prior and

posterior mean of d
dw

b(w). For sampling models such that
d
dw

b(w) = x, i.e., linear exponential form (e.g., Gaussian,

Beta and Gamma density), Lemma 2 gives thus a closed

formula for the prior and posterior mean of x.

82 Alessio Benavoli & Marco Zaffalon



4 Sets of Conjugate Priors for Exponential

Families

Consider the problem of statistical inference about the real-

valued parameter w from noisy measurements (y1, . . . ,yn)
and assume that the likelihood is completely described by

the following probability density function (PDF) belong-

ing to the exponential family:

n

∏
i=1

p(yi|w) =
n

∏
i=1

k(yi)exp(n(ŷnw− b(w))), (11)

where the parameters of the likelihood, i.e., sample mean

ŷn = 1
n ∑n

i=1 yi and n ∈ R+, are known (the likelihood can

be modelled by a single PDF). By conjugacy and follow-

ing a Bayesian approach, as prior for w we may consider

the PDF p(w|n0,y0) defined in (7) for a given value of the

parameter y0 and n0. In the case there is not enough in-

formation about w to uniquely determine the values of the

parameters y0 and n0, we can consider the family of priors

p(w|n0,y0) obtained by letting y0 vary inY ′⊆ Int(Y ) and
n0 in some set Ay0 ⊆ R+, which could depend on y0. The

question to be addressed is whether such family of priors

satisfies the properties (A.1)–(A.4) discussed in Section 2.

The answer to this question is given in the next theorem.

Theorem 1. Consider as set of priors M the family of

conjugate priors p(w|n0,y0) with y0 spanning the setY ′⊆
Int(Y ), n0 spanning the set Ay0 ⊆ R+ (with Ay0 possibly

dependent on y0), under the assumptions: Y convex and

W = R. If and only if the following conditions hold:

(a) For each y0 ∈ Y ′ and n0 ∈ Ay0 , it holds that

p(w|n0,y0)→ 0 for w→ supW and w→ infW ;

(b) Y ′ = Int(Y );

(c) Ay0 satisfies the following constraints: 0 < infAy0 ,

supAy0 ≤ min(n0, c
|y0| ) for each y0 ∈ Int(Y ) and

given parameters n0,c > 0;

then, given the parameters n0 and c, M is the largest set

which satisfies properties (A.1)–(A.4), with G0 = { db
dw
} and

G including sufficiently smooth gambles.4 �
The proof of the theorem can be found in [1, Sec. 4].

Hereafter, we illustrate the intuition behind the theorem.

We distinguish three cases Y = R, Y = [a,∞) (or Y =
(−∞,a]) with a ∈ R, and Y ⊂ R bounded. In the last

two cases w.l.o.g. it can be assumed that Y = [0,∞) (or

Y = (−∞,0]) and, respectively, Y = [0,1] (by shifting

and scaling Y ); since Y has been assumed to be convex,

these three cases account for all the possibilities.

4 With sufficiently smooth gambles, we mean integrable w.r.t. the ex-

ponential family density functions with support in W and continuous on

a neighborhood of the point where the posterior relative to the improper

prior p(w) = 1 concentrates for n→ ∞.

Consider the case in which the observations belong to R
and the likelihood is a Gaussian density with known vari-

ance, so that Y = (−∞,+∞). The conjugate model under

considerations is thus a Gaussian-Gaussian model. In this

case, the set of priors M is equal to:

{
N

(
w;y0,σ

2
0

)
: y0 ∈ (−∞,+∞),

max(1/n0, |y0|/c) < σ2
0 < ∞

}
, (12)

where y0 is the prior mean and σ2
0 = 1/n0 the prior vari-

ance. Hence, M includes all the Gaussian densities with

mean free to vary in R and variance lower bounded by

1/n0 but linearly increasing with |y0|. Notice, in fact, that

if |y0| > c/n0, then σ2
0 ≥ |y0|/c. Hence, considering the

likelihood N (yi;w,σ2) for i= 1, . . . ,n, the corresponding
set of posteriors is equal to:

{
N

(
w;yp,σ

2
p

)
: yp = σ2

p

(
y0

σ2
0

+
nŷn

σ2

)
,

σ2
p =

(
1

σ2
0

+
n

σ2

)−1
, y0 ∈ (−∞,+∞),

max(1/n0, |y0|/c) < σ2
0 < ∞

}
,

(13)

where yp is the posterior mean. Since yp = (n0y0 +
nŷn)/(n+ n0) then, fixed n0 = 1/σ2

0 , for |y0| → ∞ it fol-

lows that |yp| = |n0y0 + nŷn|/(n+ n0) = |y0| → ∞. Simi-

larly, fixed y0, for n0 → ∞ it follows that |yp| = |y0|. In

other words, n0|y0|= ∞ implies a vacuous posterior mean

and, thus, no learning and no convergence. Theorem 1

states that a necessary and sufficient condition to guaran-

tee near-ignorancewithout preventing learning and conver-

gence to take place is by imposing the constraint:

|n0y0|< c < ∞,

which means that n0 must in general depend on y0. In

this case in fact for |y0| → ∞, it follows that |yp|= |n0y0 +
nŷn|/(n+ n0) < ∞. That is, the contribution of y0 to yp
must decrease as |y0| → ∞, otherwise the observations do

not contribute to yp (learning cannot take place). This is es-

sentially the meaning of the constraint |y0|/c< σ2
0 in (13),

i.e., the variance of the Gaussians in M must be greater

than |y0|/c. Furthermore, n0 < ∞ or, equivalently, the vari-

ance must also be greater than zero otherwise the Gaus-

sian density would coincide with a Dirac delta; this is the

reason of the constraint σ2
0 > 1/n0 > 0. Under these con-

straints, it can be verified that yp satisfies:

min

(−c+ nŷn

n+ n0
,
−c+ nŷn

n

)
≤

yp =
n0y0 + nŷn

n+ n0
≤max

(
c+ nŷn

n+ n0
,
c+ nŷn

n

)
,

(14)

and converges to ŷn (maximum likelihood estimate) for

n → ∞ (convergence property (A.4)). Observe that, for
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n0 suitably small, the set of priors M reduces to the fam-

ily of Gaussian priors with infinite variance discussed in [7,

Section 3.3] and the bounds in (14) become approximately

equal to:

−c+ nŷn

n
≤ n0y0 + nŷn

n+ n0
≤ c+ nŷn

n
. (15)

The main difference is that the family of priors defined in

Theorem 1 has been proved to be strongly coherent, while

no proof of coherence is given for the model in [7, Section

3.3]; the coherence of this model is still an open problem.

Consider now the case in which the observations are

counts, i.e., the likelihood is a Poisson distribution, Ym =
N and Y = [0,∞). The conjugate model under consider-

ation is now a Poisson-Gamma model. The set of priors

M transformed back to the original parameter space X
reduces to a set of Gamma densities:

M =
{
g(x|α,β ) : 0 < α = n0y0 ≤ c,

0 < β = n0 ≤min(n0,c/|y0|)
}
, (16)

where x,y0 ∈ (0,+∞) and g(x|α,β ) ∝ xα−1 exp(−βx) is

the Gamma density with parameters α and β . The set of
posteriors resulting from (16) is:

Mp =
{
g(x|α,β ) : α = n0y0 + nŷn, β = n+ n0,

y0 ∈ (0,+∞), 0 < n0 ≤min(n0,c/|y0|)
}

(17)

and the posterior mean is equal to yp = (n0y0 + nŷn)/(n+
n0). Notice again that, because of the constraint n0 ≤
min(n0,c/|y0|) it results that yp is always finite, satisfies5

nŷn

n+ n0
≤ yp =

n0y0 + nŷn

n+ n0
≤ c+ nŷn

n
,

and converges to ŷn (maximum likelihood estimate) for

n→ ∞.

Consider the case in which the observations are binary, i.e.,

the likelihood is a binomial distribution Ym = {0,1} and

Y = [0,1]. The conjugate model under considerations is

thus a Binomial-Beta model. It can be easily verified that

in this case the set of priors M transformed back to the

original parameter space X reduces to the general Impre-

cise Beta Model (IBM) discussed in [11, Section 5.4.3]:

M =
{
B(x;st,s(1− t)) : t ∈ (0,1),0 < s < n0

}
, (18)

where x ∈ (0,1), y0 = t, n0 = s and B(x;α,β ) is the

Beta density with parameters α and β . In this case, it

follows from Theorem 1 that y0 ∈ (0,1) and 0 < n0 ≤
5 Since ŷn ≥ 0, it results that c+nŷn

n
≥ c+nŷn

n+n0
and, thus, c+nŷn

n
is a right

bound for yp.

min(n0,c). Hence, if n0 < c the set of priors in Theo-

rem 1 reduces to (18). In this case, near-ignorance and

learning/convergence are compatible even if n0 does not

depend on y0. In fact, being |y0|< 1< ∞, the product n0y0
is always bounded provided that n0 < n0 < ∞.6 Finally

notice that in the special case s = n0, we obtain the IBM

discussed in [11, Section 5.3.1] and [3].

Observe that the family of priors M in Theorem 1 is com-

pletely determined by the two parameters c> 0 and n0 > 0.

The larger these parameters are the larger the family of pri-

orsM is and, thus, the more conservative are the posterior

inferences. The choice of these parameters is discussed in

[1, Sec. 5].

It is also interesting to compare the set of priors M in

Theorem 1 with another model for near-ignorance, the

Bounded Derivative Model (BDM) [12]. In the BDM,

MBDM includes all continuous proper probability density

functions for which the derivative of the log-density is

bounded by a positive constant. It can be verified that

BDM satisfies all the properties (A1)–(A4), with G0 and G
defined as in Theorem 1. BDM is a non-parametric model

and, in this sense, is more general than the model result-

ing from Theorem 1 that is restricted to the one-parameter

exponential family only. A drawback of this generality is

that inferences with BDM can in general be difficult to

compute [12, Sec. 6], while this is often not the case for

the model resulting from Theorem 1 because of conjugacy.

Conversely, a model for statistical inferences based on a

set of densities belonging to the exponential family is pre-

sented in [9, Ch.4], [10]. The main difference w.r.t. the

present work is that the model in [10] is not a model of

prior near-ignorance, as pointed out by the authors, i.e.,

the set Y ′ in Theorem 1 is chosen in [10] to reflect the

prior information on y0 and, thus, the posterior inferences

depend on this information. Since no constraint between

n0 and y0 is assumed, the model in [10] can also violate

(A.3)–(A.4) in the case Y ′ = Int(Y ), and hence it can

produce vacuous inferences.

5 A Sensitivity Analysis Interpretation of

Prior Near-Ignorance

In Section 2, we have considered an interpretation of prior

near-ignorance in terms of lower and upper expectations,

i.e., behavioural dispositions to buy and sell gambles. In

particular, with the properties (A1)–(A4), we have given

general conditions for coherence, prior near-ignorance,

learning and convergence, which hold for any set of distri-

butions M . Then, in Section 4, we have specialized these

6In [13] the authors propose a functional relationship between n0 and

y0 in the exponential families with a different aim w.r.t. that of the present

paper; that is highlighting prior-data conflict in the case of inference

drawn from a set of informative priors, i.e., near-ignorance is not satis-

fied. In this case, n0 may depend on y0 also in the IBM.
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conditions to the case in which M includes densities be-

longing to the one-parameter exponential family and, for

this set of densities, we have shown that (A1)–(A4) are

equivalent to a special choice of the domains for the pa-

rameters of the exponential priors.

An alternative approach is to start directly from the set

of priors M in the one-parameter exponential family and

then to perform a sensitivity analysis of the quantities of

interest (posterior inferences) to the choice of the prior pa-

rameters. This is typically done by deriving the quantities

of interest w.r.t. the parameters of the conjugate priors, and

looking for a set of parameters that sharply changes the in-

ferences.

In this respect, consider a function g( db
dw

)7 and its Taylor

series expansion around the posterior parameter yp, i.e.:

g

(
db

dw

)
= g(yp)+

(
db

dw
− yp

)
g′(yp)

+
1

2

(
db

dw
− yp

)2

g′′(yp)+ . . . (19)

where g′(yp) = dg

d( db
dw )
|yp and so on for higher order deriva-

tives. In statistical inference, we are interested in comput-

ing the expectation of g or, equivalently, of (19) w.r.t. the

posterior density k(np,yp)exp(np(ypw− b(w))), i.e.:

E[g|yn] =
∫

g

(
db

dw

)
k(np,yp)exp(np(ypw− b(w)))dw

= g(yp)+
1

2
g′′(yp)E

[(
db

dw
− yp

)2
∣∣∣∣∣y

n
]

+
1

3!
g′′′(yp)E

[(
db

dw
− yp

)3
∣∣∣∣∣y

n
]
+ . . . (20)

where, for short notation, {y1, . . . ,yn} = yn has been in-

troduced. The posterior expectation E[g|yn] depends on
yp = (n0y0 +nŷn)/(n+n0) which, in turn, depends on the
prior parameters n0 and y0. The sensitivity of E[g|yn] to the
prior parameters can be obtained by differentiating E[g|yn]
w.r.t. n0 and y0. However, since the value of n0 may de-

pend on the value of y0 and vice versa, it is more interest-

ing to compute the sensitivity of E[g|yn] to variations of

n0y0. Define n0y0 = r and n0 = n0(r), then

dyp

dr
=

n+ n0− (r+ nŷn)
dn0
dr

(n+ n0)2
. (21)

where n0 depends on r. Thus, it follows that
dE[g|yn]

dr
is

7To simplify the derivations, we have assumed that g is an analytic

function. Although not general, this holds for many gambles g.

equal to

dyp

dr

dg(yp)
dyp

+
1

2

dyp

dr

dg′′(yp)
dyp

E
[(

db
dw
− yp

)2∣∣∣yn
]

+
1

2

dyp

dr
g′′(yp)

dE
[(

db
dw
− yp

)2∣∣∣yn
]

dyp
+ . . .

(22)

From the relationship between a derivative and its differ-

ence quotient, one gets

|Er+∆[g|yn]−Er[g|yn]| ≤
∣∣∣∣
dE[g|yn]

dr

∣∣∣∣ |∆| (23)

where Er+∆[g|yn] is the expected value of g computed at

n0y0 = r + ∆, Er[g|yn] is the expected value of g com-

puted at n0y0 = r and ∆ is a scalar such that r + ∆ ∈
[minn0y0,maxn0y0].

Theorem 2. There exists a finite δ > 0 (possi-

bly dependent on g) such that, for each n ≥ δ and

non-empty set of observations y1, . . . ,yn, the difference

maxr,∆ |Er+∆[g|yn]−Er[g|yn]| is bounded and converges to
zero for n→ ∞, if max |n0y0|< ∞ and n0 < ∞. �
Proof: If max |n0y0| < ∞, then it is also true that max |∆| =
|maxn0y0−minn0y0| < ∞. With max |∆| being bounded, a con-

dition for maxr,∆ |Er+∆[g|yn]−Er[g|yn]| to be bounded is that

|dE[g|yn]/dr|< ∞. Thus, also being n0 < ∞, for n→ ∞ it

follows that yp → ŷn, np → n and the posterior density

p(w|np,yp) becomes a Dirac delta in ŷn. Then it results

that limE
[(

db
dw
−yp

)m ∣∣∣yn
]

= 0 for any m = 1,2, . . . and

limdyp/dr = 0 (since yp = ŷn, the derivative of yp w.r.t. r is null).

Thus, |dE[g|yn]/dr| converges to zero for n→ ∞. Furthermore,

because p(w|np,yp) is always a well-defined PDF if |n0y0| < ∞

and n0 < ∞, by continuity arguments we can also conclude that

there exists a finite δ > 0 such that |dE[g|yn]/dr| is bounded for

any n > δ . �
Thus, we have again proven that max |n0y0| < c and n0 ≤
n0 < ∞ are sufficient conditions for learning and conver-

gence,8 but now following an approach based on sensi-

tivity analysis. Consider the case g
(
db
dw

)
= db

dw
, assume

that p(w|np,yp) is a Beta density and n0 = s > 0. Then,

from (21)–(22) it follows that dyp/dr = dE[g|yn]/dr =
1/(n+ s) (because n0 = s is constant). Since y0 ∈ (0,1),
then 0 < n0y0 = r < s and, thus, max |∆|= s, we conclude

that maxr,∆ |Er+∆[g|yn]−Er[g|yn]| ≤ s
n+s

, which is exactly
the imprecision (i.e., the difference between the upper and

lower mean) of the IBM.

Consider the Gaussian case and assume n0 ≈ 0. For

g
(
db
dw

)
= db

dw
it results that dyp/dr = dE[g|yn]/dr = 1/n.

In this case the boundedness of max |∆| is ensured if

|n0y0| ≤ c < ∞, which implies max |∆| = 2c. Therefore,

8 Theorem 1 is more general than Theorem 2, since it holds for more

general functions g. Furthermore, the conditions derived there are not

only sufficient but also necessary for (A.1)–(A.4).
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(23) becomes maxr,∆ |Er+∆[g|yn]−Er[g|yn]| ≤ 2c
n
, which is

the imprecision of (15). Therefore, we have arrived at sim-

ilar conclusions of those in Theorem 1 but via a sensitivity

analysis. This approach allows to give another interpreta-

tion of the imprecision, e.g., s/(n+ s) and 2c/n, in terms

of the maximum value of the product |dE[g|yn]/dr||∆|.

6 Imperfect observations

In real world applications, there is always a probability of

making mistakes during the observation process. Often, if

this probability is small, one assumes that the data are per-

fectly observable in order to use a simple likelihood model

(e.g., a density belonging to the exponential family); doing

so, one implicitly assumes that there is a sort of continuity

between models with perfectly observable data and mod-

els with small probability of errors in the observations. In

other words, one expects that a small error in the mod-

elling of the observation mechanism leads to a small error

in the inference. However, as observed in [8], this may be

not true for inferences derived from a prior near-ignorance

model based on set of distributions. To better understand

this aspect, we introduce the imperfect observation mech-

anism described in [8]. An imperfect observation mech-

anism can be modelled as a two step process: (i) ideal

observations y′1, . . . ,y
′
n are generated according to the like-

lihood L(y′1, . . . ,y
′
n|w); (ii) y′1, . . . ,y

′
n are perturbed based

on a distribution p(y1, . . . ,yn|y′1, . . . ,y′n) and imperfect ob-

servations y1, . . . ,yn are produced. Hence, the likelihood

of imperfect observations can be modelled as:

p(yn|w) =
∫

Y n
m

p(yn|y′n)L(y′n|w) dy′n, (24)

where, for the sake of space, the notation yn =
(y1, . . . ,yn) ∈ Y n

m and y′n = (y′1, . . . ,y
′
n) ∈ Y n

m has been in-

troduced; p(yn|y′n) = ∏n
i=1 p(yi|y′i) is any PDF such that

p(yi|y′i) > 0 for all yi,y
′
i ∈ Ym; L(y′n|w) = ∏n

i=1L(y′i|w)
is the likelihood corresponding to the ideal unknown ob-

servations y′i (we assume that it belongs to one-parameter

canonical exponential family of distributions). Since the

observations can also be discrete, p(yn|y′n) and L(y′n|w)
can also be probability mass functions and the integral in

(24) becomes a sum. For the sake of notation, we use the

integral notation for both continuous and discrete case, but

in the latter case (24) becomes:

p(yn|w) = ∑
y′∈Y n

m

p(yn|y′n)L(y′n|w).

Assume we have no prior information about w and we use

the model in Theorem 1 to represent our state of ignorance.

Since p(y1, . . . ,yn|w) might not belong to the exponential

family of distributions, a question to be addressed is if

properties (A3)–(A4) continue to hold also in this case.

The answer is in general negative as shown in [8]. In fact,

assuming the imperfect observation mechanism (24), the

authors prove that, for the Imprecise Beta model (as dis-

cussed in the Introduction, the results in [8] are more gen-

eral), property (A.3) does not hold (no learning from data

takes place) and, consequently also (A.4) does not hold (no

convergence). In this case, the only way to satisfy (A.3)–

(A.4) is to not allow y0 → 0,1; this means that y0 must

vary in [ε,1− ε] with 0 < ε < 0.5. That is, (A.3)–(A.4)

can be satisfied if and only if (A.2) (prior near-ignorance)

does not hold [8]. A similar conclusion is derived in [6]

using more general arguments. This has an important con-

sequence, namely that in this case, the amount of imper-

fection introduced by p(yn|y′n) (as long as it is positive)

does not matter, we cannot be ignorant a priori without

also being vacuous a posteriori.

A further question to be addressed is if this is true for

any conjugate model (e.g., Gaussian-Gaussian, Poisson-

Gamma etc.), whose likelihood is perturbed as described

in (24). In order to prove that, we will use the following

results.

Lemma 3. Consider the prior p(w|n0,y0) =
k(n0,y0)exp(n0(y0w − b(w))). For y0 → supY or

y0 → infY and n0 < ∞, it holds that k(n0,y0) → 0 and

exp(n0(y0w− b(w))) concentrates on the value w∗ such

that db(w)/dw|w=w∗ = y0. �
This can be proven by using the same arguments in the

proof of [1, Cor. 1] (notice that w∗ is a maximum of

p(w|n0,y0)).
Lemma 4. Consider the observational mechanism (24)

and assume that: p(yn|y′n) > 0 for each yn,y′n ∈ Y n
m ,

L(y′n|w) belongs to the exponential family of distribu-

tions and W = R. Define Lgn(w) = ln p(w|n,yn,y0,n0) =
ln(p(yn|w)p(w|n0,y0)/p(yn)) and assume that for any

well-defined prior p(w|n0,y0), with 0 < n0 < ∞ and y0 ∈
Int(Y ), and for every n there is a strict local maximum mn

of p(w|n,yn,y0,n0) satisfying:

dLgn

dw
(mn) = 0, σ2

n =−
(
d2Lgn

dw2
(mn)

)−1
> 0 (25)

and that mn converges when n→ ∞. Define Bρ(w∗) = {w :

|w−w∗|< ρ} and assume also that the posterior satisfies:

(c1) σ2
n → 0 for n→ ∞.

(c2) For any ε > 0 there exists δ > 0 and ρ > 0 such that,

for any n > δ and w ∈ Bρ(mn), it holds that:

1− a(ε)≤
d2Lgn
dw2 (w)

d2Lgn
dw2 (mn)

≤ 1+ a(ε), (26)

where a(ε) > 0 and tends to zero for ε → 0.

(c3) For any ρ > 0
∫

Bρ (mn)
p(w|n,yn,y0,n0) dw→ 1, for n→ ∞.
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Let φn be equal to (wn − mn)/σn, with wn ∼
p(w|n,yn,y0,n0). Then, given (c1) and (c2), (c3) is

a necessary and sufficient condition for φn to converge in

distribution to φ , where p(φ) = N (φ ;0,1). �
The proof of this lemma can be found in [4, Sec. 5.1].

Essentially, Lemma 4 states that, for large n, (c1),(c2) to-

gether ensure that inside a small neighborhood of mn the

function p(w|n,yn,y0,n0) becomes highly peaked and be-

haves as a normal density. Condition (c3) ensures that the

probability outside any neighborhood of mn becomes neg-

ligible for n→∞. Under these conditions,w has an asymp-

totic posterior limit N (w;mn,σ
2
n ).

Theorem 3. Assume conditions in Lemma 4 hold9 and

that the gambles g ∈ G defined in Theorem 1 are inte-

grable w.r.t. p(w|n,yn,y0,n0). Then, for the set of priors

M in Theorem 1, (A.1) and (A.2) are always satisfied,

while (A.3) and (A.4) hold if and only if Y = R and, thus,

infY =−∞ and supY = ∞. �
Proof: Since coherence and G0-prior ignorance properties do

not depend on the likelihood (for coherence this holds since

p(yn|w) is separately coherent), the fact that (A.1) and (A.2)

are still verified is a direct consequence of Theorem 1.10 First

we prove the necessity of the conditions of the theorem, by

showing that in the case infY 6= −∞ or supY 6= ∞, (A.3)–

(A.4) do not hold. Consider a gamble g ∈ G and the poste-

rior p(w|n,yn,y0,n0) obtained in correspondence of the prior

p(w|n0,y0), which is equal to

p(w|n,yn,y0,n0) =

∫
Y n

p(yn|y′n)p(y′n|w)p(w|n0,y0) dy′ndw
∫
W

∫
Y n

p(yn|y′n)p(y′n|w)p(w|n0,y0) dy′ndw
(27)

and can be rewritten as:

∫
Y n

p(yn|y′n)
n

∏
j=1

k(y′j)k(n0,y0)

k(np,y′p)
p(w|np,y′p) dy′ndw

∫
W

∫
Y n

p(yn|y′n)
n

∏
j=1

k(y′j )k(n0 ,y0)

k(np ,y′p)
p(w|np,y′p) dy′ndw

. (28)

by using the fact that L(y′n|w)p(w|n0,y0) = p(y′n)p(w|np,y′p),
with11

p(y′n) = p(y′n|n0,y0) =
n

∏
j=1

k(y′j)
k (n0,y0)
k
(
np,y′p

) , (29)

where np = n+n0 and y′p = (n0y0 +∑n
i=1 y

′
i)/(n+n0).

Consider the case in which Y = [0,1] (i.e, Ym = {0,1} or Ym =
[0,1]). Because of Lemma 3, for y0→ 0 (y0→ 1) and y′1, · · · ,y′n 6=
0 (y′1, · · · ,y′n 6= 1), it holds that k (n0,y0)/k

(
np,y

′
p

)
→ 0 and,

thus, that p(y′n)→ 0 apart from the case in which y′1 = · · ·= y′n =
0 (y′1 = · · · = y′n = 1) where the ratio k (n0,y0)/k

(
np,y

′
p

)
> 0.

9This means that the imperfect observation mechanism still allows

asymptotic normality to hold for any prior p(w|n0,y0) with fixed 0 <
n0 < ∞ and y0 ∈ Int(Y ).

10More precisely, from Theorem 1, it can be derived that the likelihood

p(yn|w), the set of priors M in the exponential family and the correspond-

ing set of posteriors are strongly coherent.
11Equation (29) can be derived form (9).

Therefore, for y0 → 0, p(y′n) concentrates on y′1, · · · ,y′n = 0.

From Lemma 3, it also follows that p(w|np,y′p) concentrates on
w∗ such that db(w)/dw|w=w∗ = 0 when y′p → 0. Thus, for any

choice of ε > 0, by continuity arguments, it is possible to find a

y
0
∈ Int(Y ) and δ > 0 such that

∫

Bε (w∗)
p(w|n,yn,y0,n0) dw > 1− ε,

for any 0 < y0 ≤ y
0
and n > δ .12 In other words, for y0 → 0,

the posterior p(w|n,yn,y0,n0) concentrates on w∗. Similarly,

for y0 → 1, the posterior p(w|n,yn,y0,n0) concentrates on w∗

such that db(w)/dw|w=w∗ = 1. Under continuity conditions for

g∈ G in a neighborhood of w∗ (w∗), this implies that, for y0 → 0

(y0 → 1), the posterior expectation of g, i.e., E[g|n,yn,n0,y0],
concentrates on g(w∗) (on g(w∗)).13 Hence, for the continuous

function g = db(w)/dw, since g(w) = y0 and, thus, g(w∗) = 0

and g(w∗) = 1, it follows that E[g|n,yn,y0,n0] = 0 = E[g] for
y0 → 0 and E[g|n,yn,y0,n0] = 1 = E [g] for y0 → 1, i.e., prior

and posterior lower and upper expectations coincide. It can thus

be concluded that (A.3) does not hold (no learning from data)

and, consequently also (A.4) does not hold (no convergence).

Consider now the case Y = [0,+∞) (or Y = (−∞,0]), then if

y0 → 0 the ratio k (n0,y0)/k
(
np,y

′
p

)
→ 0 apart from the case in

which also ŷ′n = 0, where y′p → 0 and k (n0,y0)/k
(
np,y

′
p

)
> 0.

Therefore, for the same arguments of the case Y = [0,1], it fol-
lows that for g = db(w)/dw, E[g|n,yn,n0,y0] = g(w∗) = 0. This

means that E[g|n,yn,n0,y0] = 0, it does not matter the value of yn.

Therefore, we conclude that (A.4) does not hold. (A.3) holds for

some gambles. For instance, for the gamble g= db(w)/dw, (A.3)
holds, since the upper expectation differs from its prior value for

any n > 0 (but the lower expectation is always zero). Hence, the

validity of (A.3) depends on the choice of the set G . In particular,

if G includes a function g which gets its infimum and supremum

for y0→ 0 and, respectively, y0→ limn→∞ ŷ′n 6= 0, then for n→∞

the prior lower and upper expectations coincide respectively with

the posterior lower and upper expectations and, thus, (A.3) does

not hold.

Finally assume that infY = −∞, supY = ∞ and, thus, Y =
(−∞,∞). Consider the parameters np = n+n0 and y

′
p = (n0y0 +

∑n
i=1 y

′
i)/(n+ n0) of the posterior density p(w|np,y′p). Under

the conditions of Theorem 1, i.e., y0 ∈ Int(Y ) and 0 < n0 <

min(n0, c
|y0| ), it results that y

′
p is bounded as in (14). From this

fact it follows that conditions (c1) holds for any y0 ∈ Int(Y ) and
0 < n0 < min(n0, c

|y0| ) since y′p → y′n for n→ ∞. For (c2), by

continuity arguments is always possible to find an ε in the defini-

tion of (c2), for which (26) is satisfied for any y0 ∈ Int(Y ) and
0 < n0 < min(n0, c

|y0| ) and, thus, for any prior in M . It is in fact

sufficient to consider the largest δ for which (26) holds for any

y′p in (14). This upper δ must exist finite, otherwise Lemma 4 can-

not hold. Same considerations hold for (c3). Thus, for any prior

inM satisfying hypotheses of Theorem (1), asymptotic normality

holds. Under continuity conditions for g∈G in a small neighbor-

hood of mn, this implies that also (A.4) and, consequently, (A.3)

12In the case w∗ =−∞, Bε (w∗) must be intended as the open interval,

e.g., (−∞,w−1/ρ) for some w ∈W .
13This was also proven in [8, Ths. 11–12].
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hold. This proves that infY =−∞ and supY = ∞ are necessary

and sufficient conditions for (A.3)–(A.4). �
The theorem states that for a set of Gaussian priors near-

ignorance and learning/convergence are compatible even

in the case of imperfect observations while this is for in-

stance not the case for a set of Beta priors. The main

point is that for the latter, when ŷ′n = 0, y′p = (n0y0 +
nŷ′n)/(n0 + n) can be made as close as desired to the left

boundary of Int(Y ) and, thus, from Lemma 3 the poste-

rior p(w|n′p,y′p) can be made as closer as desired to a Dirac

delta. Thus, in the integration in (27) the only meaningful

term is the one relative to the case ŷ′n = 0 and, therefore,

p(w|n, ŷn,n0,y0 = 0) = p(w|n′p,y′p = 0). Conversely, in

the Gaussian case, since |n0y0| < ∞ it follows that |y′p| =
|n0y0 + nŷ′n|/(n0 + n) = ∞ only if |ŷ′n| → ∞, but this case

must have probability zero otherwise Lemma 4 would not

be satisfied. This ensures that p(w|n, ŷn,n0,y0) converges
in distribution to N (w;mn,σ

2
n ) for any value of n0,y0 in

Theorem 1. To better understand the peculiarity of the

Gaussian density, assume that p(yi|y′i) = N (yi;y′i,σ
2
r )14,

L(y′i|x) = N (y′i;x,σ
2) and consider

p(yn|x) =
∫

y′n∈Y n

n

∏
i=1

N (yi;y′i,σ
2
r )N (y′i;x,σ

2) dy′n.

(30)

Since N (yi;y′i,σ
2
r )N (y′i;x,σ

2) is equal to

N (yi;x,σ2 + σ2
r )N (y′i;σ

2
s (yi/σ2 + x/σ2

r ),σ2
s ),

where σ2
s = σ2σ2

r /(σ2 + σ2
r ), (30) becomes p(yn|x) =

∏n
i=1N (yi;x,σ2 +σ2

r ). Therefore, we can see that in this
case the effect of the imperfect observation mechanism

is just that of increasing the variance of the measurement

noise.

7 Conclusions

This paper has discussed the problem of learning and prior

near-ignorance for sets of priors in the one-parameter ex-

ponential family. In particular, for conjugate likelihood-

prior models in the one-parameter exponential family of

distributions, we show that, by letting the parameters of the

conjugate exponential prior vary in suitable sets, it is pos-

sible to define a set of conjugate priors M which guaran-

tees prior ignorancewithout producing vacuous inferences.

This result is obtained following both a behavioural and a

sensitivity analysis interpretation of prior near-ignorance.

We have also discussed the incompatibility of learning and

prior near-ignorance for sets of priors in the one-parameter

exponential family of distributions in the case of imperfect

observations. In particular, we have shown that learning

and prior near-ignorance are compatible under an imper-

fect observation mechanism provided that the support of

the priors in M is the whole real axis. Future work will

14This satisfies the hypotheses of Theorem 2.

address the following issues: extension of the model to

the multivariate case; extension to more general family of

densities.
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Abstract

Decision theory is used to choose a portfolio. Elicita-
tion methods was used based on the utility function
and from expert opinion thus, enabling the creation
of a utility function for the investor and another for
the a priori distribution on economic indicators. The
model chosen for an investment portfolio was formu-
lated based on decision theory, incorporating aspects
of systematic and unsystematic risk. The model was
developed so as to structure an efficient way to under-
stand the application of decision theory in the finan-
cial market as well as the application of the Imprecise
Dirichlet Model-IDM. The IDM allows the use of im-
precise probability. Finally, the IDM was compared
to the Markowitz method and also, to the decision
model, using only expert opinion, considering an al-
location over time to verify which of the three models
was the best one. The final conclusion is that expert
opinion should not be neglected in her compiling a
portfolio.

Keywords. Linear Programming, Elicitation, Port-
folio Selection, Financial.

1 Introduction

In the financial market, the portfolio selection prob-
lem consists of distributing the total amount available
for investment among the financial “products” in the
market. Hitherto, the Markowitz portfolio selection
procedures, in [10], use ad hoc procedure. One of
the numbers used most frequently as a guide, was the
average value of the investment payback, usually es-
timated from past data. The Markowitz procedure
is essentially a trade-off between the average and the
standard deviation of the (future) payback. It is im-
plemented as a quadratic programming problem: ei-
ther one minimizes the standard deviation (risk, in
the jargon) subject to the constraint that the aver-
age must be greater than some previously determined
value (usually taken to be zero), or one which maxi-

mizes the average payback, subject to an upper bound
constraint on the risk. This article suggests using de-
cision theory in the portfolio selection problem. It is
divided into five sections. Introduction sets the con-
text and present of the other sections. The second
is a brief review of articles related to portfolio selec-
tion and imprecise probability. The third presents a
decision model that incorporates elements of the econ-
omy, such as indicators of economic scenarios that re-
sult in the compiling the portfolio. The fourth section
presents methods to elicit the utility function and ex-
pert knowledge. the measures are used in comparison
with the Imprecise Dirichlet Model – IDM. Finally,
some conclusions are drawn from the main results.

According to [8] “Developments in portfolio are stim-
ulated by two basic requirements: (1) adequate model-
ing of utility functions, risks and constratints; (2) effi-
ciency, i.e., ability to handle large numbers of instru-
ments and scenarios.” This paper presents a model
that satisfies both conditions.

2 A Review of the Literature

Markets in which the price reflects the available in-
formation are called efficient markets. The idea of
efficient markets is the premise for the Markowitz
method. The estimated average return, R(A) and
the estimated risk σ̂ of an asset, are expressed by
the mathematical expectation of past returns and its
standard deviation. The equations below represent
the estimate of the expected return and risk of an
asset:

R(A) =
∑n
t=1Rt
n

(1)

σ̂(A) =
∑n
t=1(Rt −R(A))2

n− 1
(2)

The number of observations is represented by n, and

89



Rt represents the return at time t.
Markowitz method is based on the formation of an as-
set portfolio so that the risk attributed to each asset
can be minimized. This risk is called unsystematic
risk. In the Markowitz method, the risk that is not
being considered is the market risk, known as system-
atic risk. Markowitz idea consists is to diversify risk.
Thus, the portfolio comprises assets with a negative
correlation. Therefore, to the extent that one asset
generates losses for the portfolio, another will gener-
ate earnings. The average return R(P ) and average
risk σ(P ) of a portfolio are expressed by the following
equations:

R(P ) =
n∑

j=1

RjWj (3)

σ(P ) =




n∑

i=1

n∑

j=1

WiWjρi,jσiσj




1/2

(4)

where

• The percentage of investment in each asset is Wj ;

• σj represents the risk of each asset;

• ρi,j are the coefficients of correlation between the
return of two assets.

To obtain the percentage of investment in each asset
the nonlinear programming method is used, in which
the variables of choice are: the percentages of applica-
tion. The functional objective is the risk of the Port-
folio and the restrictions are quite logical. Given that
the percentage of implementation is a probability, it
will be positive and the sum of the percentages will
be equal to one. The problem is expressed as follows:

min
Wj

σ(P )

s.a
∑
Wj = 1 , Wj > 0

2.1 Probability in Finance Theory

An increasing number of studies are being developed
in order to apply imprecise probability to portfolio
models. At first, the models attempt to introduce the
concept of fuzziness into the necessary measures for
implementing Markowitz model. Examples of fuzzy
being applied to the development of a portfolio are

[13], [6] and [2]. Another application of imprecise
probability in portfolio management is to seek con-
ditions for separations of the investment fund. In [7]
there is an introduction of classical conditions in or-
der to divide funds, and in [12] there is an application
subadditive probabilities, where the possibility of in-
ertia in the choice of optimal portfolios is proved. The
studies by applying imprecise probability to the econ-
omy, but the ideas are going in the direction of finding
coherent risk measures and/or price arbitrage of as-
sets.

3 The Decision Model

The model was proposed in [1], which used a simple
characterization of the economic scenario, by reducing
it to a unique economic indicator θ ∈ [0, 1]. The obser-
vations x (time series data) were modeled in the same
way as economic scenarios. For example, if four eco-
nomic indicators were used, one of them would have
16 scenarios. These scenarios were ordered from worst
to best, and an integer number was attached to each
of them. The better the scenario, the larger the inte-
ger. So, the likelihood function is, for that model, a
binomial distribution.

P (x|θ) =
(
n

x

)
θx(1− θ)n−x

The prior distribution of θ is the Beta distribution

π(θ) =
Γ(α+ β)
Γ(α)Γ(β)

θα−1(1− θ)β−1.

3.1 The elements of the problem

The notation is as follows:

ξi = ith financial product (ithasset);

ai = fraction of the available initial capital to be in-
vested in asset ξi;

p = net return (payback) of the portfolio , p ∈
[−M,M ], M > 0;

GIPt = gross internal product in period t;

IRt = inflation rate in period t;

PRt = prime rate in period t;

UNt = Unemployment in period t;

The states of nature are defined as follows. First, one
defines an intermediate variable ωi:

Let Xt be an economic indicator, if Xt+1 is better
for the economy than Xt, one then writes ωt+1 = 1;
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otherwise, ωt+1 = 0. Since there are four economic
indicators (GIPt,IRt, PRt, URt) there will be 16 eco-
nomic scenarios for each period (one month). Table 1
shows the 16 scenarios which will constitute the states
of nature in the decision theory model.

Table 1: The Possible 16 Scenarios.
Scenarios ω1 ω2 ω3 ω4

θ1 0 0 0 0
θ2 0 0 0 1
θ3 0 0 1 0
θ4 0 0 1 1
θ5 0 1 0 0
θ6 0 1 0 1
θ7 0 1 1 0
θ8 0 1 1 1
θ9 1 0 0 0
θ10 1 0 0 1
θ11 1 0 1 0
θ12 1 0 1 1
θ13 1 1 0 0
θ14 1 1 0 1
θ15 1 1 1 0
θ16 1 1 1 1

So, Θ = {θ1, θ2 . . . θ16}.
Scenarios θ1 and θ16 are the worst and the best, re-
spectively, for economy. The remaining ones are not
naturally orderable, since the effects they have in the
economy will depend upon a series of other charac-
teristics of the specific country. Thus, the θjs are
essentially categorical.

3.2 Data

A time series of the 100 months is available for each
of the four economic indicators, as well as for the fi-
nancial assets to be used in the portfolio. It was thus
possible to establish the evolution of the scenarios.
These observations, xj , correspond to a sample of a
multinomial probability distribution:

P (x|θ) =
n!

16∏

j=1

(xj !)

θ
xj

j

Table 2 shows the number of times that each of the
scenarios occurred.

3.3 Dirichlet Prior Distribution

To incorporate expert opinion in this model, it is natu-
ral to use the conjugate prior distribution of the multi-

Table 2: scenarios occurring.
x1 x2 x3 x4 x5 x6 x7 x8

1 4 8 7 4 6 9 4
x9 x10 x11 x12 x13 x14 x15 x16

6 6 4 13 6 5 6 11

nomial, which is the Dirichlet prior. The Dirichlet
prior density then is:

γ(θ) =
Γ(ν)

16∏

j=1

Γ(αj)

16∏

j=1

θ
αj−1
j

where ν =
∑
αj , αj > 0,

∑
θj = 1.

The parametrization used in [15] will also be used
here:

π(θ) =
Γ(ν)

16∏

j=1

Γ(stj)

16∏

j=1

θ
stj−1
j

where ν = s
∑
tj ,
∑
θj = 1, s > 0; s is called a

hyperparameter.

3.4 Dirichlet Posterior Distribution

When combined, by Bayes rule, with the multinomial
likelihood function P (x|θ), the Dirichlet prior density
generates density function a posteriori

π(θ|x) =
Γ(υ)

k∏
j=1

Γ(αj + xj)

k∏

j=1

θ
αj−1+xj

j ,

where υ =
∑
αj + xj . The set of all distributions a

posteriori is defined by:

t∗ =
nj + stj
N + s

. (5)

3.5 The Action Space

The investment alternatives constitute the action
space A = {a}. Each a is a mix of financial assets,
and is a vector of nonnegative numbers that add up
to one. The following assets were used:

• Bank Certified Deposit (CDB) (30 days rentabil-
ity average);
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• Gold - percentage of monthly variation;

• Ibovespa - Sao Paulo Stock Monthly Average
Growth Rate;

• Financial Assets Fund (FAF) - Accumulated
monthly rentability.

Table 3 shows a descriptive statistics of those assets,
as well as the result of applying of the Markowitz
portfolio (MP) selection procedure. In this procedure,
the optimal action corresponds to CDB -0.9638, Gold
- 0.0106, Ibovespa - 0.0049 and FAF - 0.0205.

The available series corresponds to the same period as
those of the economic indicators, and were obtained
from the Brazilian Central Bank.

Table 3: Descriptive Statistics.
Assets Mean Min Max Std. Dev.

CDB 2.06 1.15 5.20 0.91

GOLD 1.43 -16.40 70.00 8.95

IBOVESPA 1.73 -39.55 28.02 11.54

FAF 1.61 -17.98 17.07 5.67

MP 2.04 0.89 5.24 0.92

3.6 The Consequence Function

In [3], the choice of the analytical expression of the
consequence function considers some aspects:

• States of nature and actions are merged in the
right sense; θ and a work independently of each
other, but they are merged to make up the prob-
ability distribution of p;

• It represents the behavior which is usually ob-
served in the investment payback: unimodality,
and bounded variance and asymmetry; some ro-
bustness is desirable, i.e., the persistence of a dis-
tribution’s characteristic behavior under pertur-
bations in the paraments;

• It should be analytically tractable when in asso-
ciation with the other analytical expressions the
decision rule when calculating.

In the portfolio selection model [3] the following con-
sequence function was suggested:

f(p|θ, a) = [M(1 +R(a))θ(1− θ)]−1 if (6)

M(1 +R(a))
[
θ

2
(3 + θ)− 1

]
+ µ(a) ≤ p and

p ≤M(1 +R(a))
[
θ

2
(5− θ)− 1

]
+ µ(a);

f(p|θ, a) = 0, otherwise,

where a = [aj ] is the vector of fractions attributed
to each asset; this corresponds to an action; µ(a) =
average value of the portfolio, R(a) =

(
1− µ(a)

µ(a)+σ(a)

)

a measure of the risk of the portfolio. It is important
to look at the consequence function (equation 6). A
closer look will shed some light in the behavior of
this function: the larger the value of θ, the better the
economy. For θ = 1

2 one has:

θ

2
(3 + θ)− 1 = −1

8
and

θ

2
(5− θ)− 1 =

1
8

.

If µ(a) = 0 then one has a uniform distribution be-
tween −(1/4)M and (1/4)M . For any portfolio, a has
a uniform distribution between −(1/8)M(1+R(a))+
µ(a) and (1/8)M(1 +R(a)) + µ(a)

In this model, the generalization of the consequence
function is:

f(p|θ, a) =
[
2M(1 +R)τ

∏
θj

]−1

if

M(1 +R)
[∑

njθj + τ
∏

θj

]
+ µ ≥ p and

M(1 +R)
[∑

njθj − τ
∏

θj

]
+ µ ≤ p ;

f(p|θ, a) = 0 otherwise,

where τ is a proportionality constant and nj repre-
sents the impact of each θj in the consequence func-
tion.

3.7 Loss Function

Consider the quadratic utility function:

v(p) = k0 + k1p− k2p
2.

The loss function is denoted by L(θ, a). It is defined
as:
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L(θ, a) = −k0 − k1

[
M(1 +R)

[∑
njθj

]
+ µ

]

+k2

[
M(1 +R)

[∑
njθj

]
+ µ

]2
+

+
1
3
k2

[
M(1 +R)τ

∏
θj

]2

3.8 The Bayes risk

To apply of the Bayes rule the following calculations
are necessary:

1.
u(f(p|θ, aj)) =

∫
u(p)f(p|θ, aj)dp.

2.
L(θ, aj) = −u(f(p|θ, aj)).

3.
Rd(θ) =

∑

x

P (x|θ)L(θ, d(x)).

4.

rd =
∫ 1

0

π(θ)Rd(θ)dθ (Bayes risk).

5.

rd =
∫ 1

0

[∑

x

π(θ)P (x|θ)L(θ, d(x))

]
dθ.

6.

rd =
∫ 1

0

[∑

x

π(θ|x)P (x)L(θ, d(x))

]
dθ.

7.

rd =
∑

x

P (x)
∫ 1

0

π(θ|x)L(θ, d(x))dθ.

8. To minimize rd by a choice of d, which is the
same as to minimize, for each x, the term

∫ 1

0

π(θ|x)L(θ, d(x))dθ,

by a choice of d(x).

To facilitate the calculations one denotes
Γ(ν)

k∏
j=1

Γ(αj+xj)

= ω

rd =
∫ 1

0

−ω[
k∏

i=1

θαi−1+xi
i ]×

×[k0 + k1

[
M(1 +R)

[∑
njθj

]
+ µ

]

−k2

[
M(1 +R)

[∑
njθj

]
+ µ

]2
×

×1
3
k2

[
M(1 +R)τ

∏
θj

]2
dθ

∴ rd = −[k0ω

∫ 1

0

∏
θ
αj−1+xj

j dθ+

−
∫ 1

0

k1[M(1 +R)
∑

njθj + µ]ω
∏

θ
αj+xj−1
j dθ−

−
∫ 1

0

k2[M(1 +R)
∑

njθj + µ]2ω
∏

θαj−1+xjdθ+

+
1
3
k2ωM

2(1 +R)2

∫ 1

0

τ
∏

θ2
j

∏
θ
αj−1+xj

j dθ

One thus obtains the expression of the risk of adopting
a decision rule:

rd = −{k0 + k1M(1 +R)ω×

k∑

i6=j

[
nj

(αj + xj + 1)Π(αi + xi)

]
+

k1µ− k2[M2(1 +R)2ω×



k∑

i6=j

n2
j

(αj + xj + 1)Π(αi + xi)


+

2
k∑

j=1;i<j

njni(
∏

t:t 6=j 6=i
(αt + xt))−1

(αj + xj + 1)(αi + xi + 1)
+

M(1 +R)ω
k∑

j=1 ;j 6=i

nj(
∏

(αi + xi))−1

(αj + xj + 1)
+ µ]+

1
3
τωM2(1 +R)2k2

k∏

j=1

1
(αj + xj + 1)

}
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4 The Expert Versus The IDM

4.1 Utility

The elicitation of the utility by the original method
developed by Von Neumann and Morgenstern occurs
when an individual responds to only one question
about the likelihood such that he becomes such indi-
vidual indifferent between a consequence, P , or about
a game with a probability λ to win P or (1−lλ) to get
P . The questions are put in the form game or lottery.
Game layout can also vary depending on operational
convenience to applied method.

An elicitation protocol (some questions) was applied
to the individual in order for him to declare the value
of λ for which he feels indifferent between a certain
amount and a game (lottery). It should be noted that
there is no “right answer” for each question. However,
it is necessary to be careful about obtaining a good
insight in order to obtain good accuracy. The answers
are individual and must be tailored to the individual
psychology of risk. There will never be perfect accu-
racy; one must not confuse rationality with perfection.

The assumption for use of a von Neumann-
Morgenstern weak cardinal utility function is that
these are two goods, one of them more desirable,
P , and the other one is less desirable, P , which as-
signs two arbitrary utilities. When these values P
and P are distant from each other, it is very diffi-
cult to choose the value of λ for a given value P ,
where P < P < P . Thus, we must ask what is the
value of λ which makes P indifferent to a lottery be-
tween P and P in different overlapping limits. Later,
as the utility function is an interval measure, λ val-
ues must be passed to the same. It is intended to
elicit the utility function of money in a range from
- R$ 95,000.00 (minus ninety-five thousand reais) to
R$ 95,000.00 (ninety-five thousand reais). After the
questions, a regression is used to infer the error of the
the decision-maker when Like answered the questions.
A quadratic function expression was used. In which
the were parameters k0 = 0.7025, k1 = 0.0047, and
k2 = 1.7608× 10−5, for one individual (an investor).

4.2 The Expert

Keynes, at the beginning of his book, Treatise on
Probability, cites Leibniz, who is already tired of say-
ing that there is a new logic that deals with degrees of
probability. Keynes advocates the hypothesis that in
the long term, we’ll all be dead and that a historical
series, that would make predictions about our future,
would when Like answered exist. When there are few
data or no data, the a priori knowledge of the expert
should be used. A new elicitation procedure of a pri-

Figure 1: The Decision Maker’s utility function.

ori knowledge of the expert was presented in [5] and
[11].

The method used to elicit of the expert’s prior dis-
tribution has the basic assumption that the expert
has a vague knowledge about the state of nature, θ;
It is assumed he can only make a finite amount of
comparative probabilistic assertions when answering
questions about the likelihood of the event belonging
to one of two given ranges, IA or IB . For example, the
expert will respond if it is more likely theta belongs
to IA = [θ1, θ2, θ3] or I − B = [θ4, θ5]. This method
expresses the expert’s knowledge using a family of
probability. Using this method allows, among other
things, to make inferences about facts that cannot be
presented by a historical series, but the facts there are
and the probability of their occurrence is very high.
These events change the decision on whether to invest
or not in a financial asset. However, how significant
is this change?

The model for solving two linear programming prob-
lems, mathematically, is expressed as follows: First of
all, it is necessary to solve the maximization problem
and later the minimization problem. Both are subject
to the same set of constraints. These problems can be
expressed as follows:

max(min)θj

2n∑

j=1

cjθj (7)

subject to:

aik

k∑

j=i

θj − alm
m∑

j=l

θj ≤ bs (8)
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αjθj ≤ θj+1, j = 1, 2, . . . , 2n− 1, α > 0 (9)

βjθj+1 ≤ θj , j = 1, 2, . . . , 2n− 1, β > 0 (10)

θj ≥ 0, j = 1, 2, . . . , 2n (11)

2n∑

j=1

θj = 1 (12)

The values of cj were randomly determined in order to
allow a random search process. The restriction 8 be-
comes a questions in a questionnaire where the expert
must answer them, and depending on the responses
the signal may be ≤ or ≥.

Depending on the combination of parameters aik, alm
e bs, the expert’s opinion can be collected in various
ways. Constraints 9 and 10 are used when one wants
to use a a priori distribution, so that such distribu-
tion may be as informative as possible. Otherwise, a
good option is to suppress these restrictions. The re-
maining restrictions are considered the basic ones ac-
ceded to obtain a probability distribution. To obtain
the probability distributions from an expert’s opin-
ion, he/she must be consistent in his/her responses.
If a response is not consistent with all the other ones,
the feasible set of restrictions will be empty. The ex-
pert must not answer these questions. The expert
does not answer the questions when he/she cannot
say anything about the fact of the likelihood of θ be-
longing or not belonging to one of the existing inter-
vals. The questions which the expert does not answer
will not enter the constraints of the linear program-
ming problem. Questions will be displayed accord-
ing to the indicators shown in [5]. The model defines
new constructs such as vagueness, precision, concor-
dance, overall vagueness, conflicts, decidability, har-
mony, quality of inference and amount of information.
The elicitation method for linear programming also
allows the combination of bodies of evidence.

After analysing a questionnaire referring to the 16
scenarios presented in Table 1 and solving the linear
programming problem above, for different values of
cj , the result shown in Table 4 was obtained. This re-
sult can be interpreted as a convex set of probabilities
within a range with an upper and lower probability
for each state of nature. Any combination of values
within the ranges can be used as a prior distribution
of the expert.

Table 4: Expert opinion.
Scenarios π(θ) π(θ)

θ1 0,00% 6,25%
θ2 0,00% 1,67%
θ3 5,00% 5,00%
θ4 4,58% 5,00%
θ5 1,67% 5,00%
θ6 1,67% 3,33%
θ7 3,33% 3,33%
θ8 0,00% 2,50%
θ9 3,33% 4,17%
θ10 7,08% 8,33%
θ11 10,83% 12,50%
θ12 3,33% 6,67%
θ13 5,83% 6,67%
θ14 6,67% 7,50%
θ15 7,50% 9,17%
θ16 25,83% 26,25%

4.3 Imprecise Dirichlet Model

One of the hypotheses of the model is the existence of
a prior distribution, π(θ). In [15] a way is presented
for obtaining posterior distributions without having a
prior distribution. This model is known as the impre-
cise Dirichlet model (IDM). From the set of posterior
Dirichlet distributions, one obtains upper and lower
probabilities for the event θj . The lower probability is
obtained by making tj → 0 and the upper probability
is obtained by making tj → 1 in Equation 5. One will
then get:

P (θj |x) =
nj + s

N + s
, and

P (θj |x) =
nj

N + s
.

where N is the number of observations about θ. In
the example, N = 100. As discussed in [15], s = 1
corresponds to a frequentist outlook, and s = 2 to
a cautious Bayesian. Table 5 shows the results that
were obtained by the IDM in these two cases.

4.4 Comparisons

The comparison among the three forms of selecting a
portfolio is considering the time in which information
is available. The criterion of minimizing the maxi-
mum risk will be used; This result is obtained by cal-
culating the lowest upper risk. Using the upper pos-
terior distributions and the upper probabilities of the
expert, the Monte Carlo method was used to calculate
which is the action of lowest and highest risk. During
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Table 5: Upper and Lower Probability.
s s = 1 s = 2

P (θ|x) P P P P
P (θ1|x) 0.0099 0.0198 0.0098 0.0294
P (θ2|x) 0.0396 0.0495 0.0392 0.0588
P (θ3|x) 0.0792 0.0891 0.0784 0.0980
P (θ4|x) 0.0693 0.0792 0.0686 0.0882
P (θ5|x) 0.0396 0.0495 0.0392 0.0588
P (θ6|x) 0.0594 0.0693 0.0588 0.0784
P (θ7|x) 0.0891 0.0990 0.0882 0.1078
P (θ8|x) 0.0396 0.0495 0.0392 0.0588
P (θ9|x) 0.0594 0.0693 0.0588 0.0784
P (θ10|x) 0.0594 0.0693 0.0588 0.0784
P (θ11|x) 0.0396 0.0495 0.0392 0.0588
P (θ12|x) 0.1287 0.1386 0.1275 0.1471
P (θ13|x) 0.0594 0.0693 0.0588 0.0784
P (θ14|x) 0.0495 0.0594 0.0490 0.0686
P (θ15|x) 0.0594 0.0693 0.0588 0.0784
P (θ16|x) 0.1089 0.1188 0.1078 0.1275

the data series, the portfolio with lowest upper risk
was calculated while the information was obtained.
The return that an investor would obtain over the 100
months by using the Markowitz method for compiling
a portfolio was calculated as well. The cumulative re-
turn by the IDM during the period analyzed was the
following: for s = 1 it was 557.71%, for s = 2, it was
519%. If the investor had used the Markowitz method
the cumulative return would be 754.98%. The return
would have been 820 % if the expert’s opinion had
been used.

5 Conclusions

An interesting point regarding the model is that the
formulation is general, broad and flexible. Thus, there
is the option of using other analytical expressions.
Another more general observation is that the better
the economic theory being used in the preparation of
constructs, the better the results should be. The main
conclusions of this article are the following:

• Subjective aspects can be used such as: the util-
ity of the investor and expert’s opinion can be
measured and used to guide the decision-making
in the financial markets;

• The expert’s opinion about uncertain states of
the world can be used as a measure of system-
atic risk. Thus, uncertainty about events like
the presidential election, agreements and interna-
tional wars are measured and incorporated into
the problem of choosing the investment;

• The imprecise Dirichlet model presents an impor-
tant advanced in making the decisions with insuf-
ficient information. Besides, this model should
be used in problems involving the choice of in-
vestment portfolios. It is possible to incorporate
the expert’s opinion. Moreover, information from
these bodies of evidence should be used together,
since the result of the application shows that it
is not correct to disregard the expert opinion;

• The use of analytical models can lead to theoret-
ical conclusions about the investor’s behavior;

• Analytical models are also easy to implement:
they can be used in a spreadsheet or a calculator.

The Consequence Function is perfect for the imple-
mentation of models based on Condicional Value-at-
Risk (CVAR) [14] and [8]. Comparisons between the
model presented in this article and CVAR are objects
of future works.
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Abstract 
In this paper we provide the algebraic description of the 
minmax problem solutions, which are considered in 
Huber-Strassen theory providing effective algorithms of 
searching least favorable pairs. This investigation gives 
also new insights to understanding well-known algo-
rithms for maximizing Shannon entropy and other func-
tionals. 
Keywords. 2-monotone capacities, least favorable pairs, 
Huber-Strassen theory, Kullback–Leibler distance.  
 

1   Introduction 
In 1973 Huber and Strassen [13] have published their 
prodigious paper showing that the optimal test between 
composite hypotheses described by 2-alternative capaci-
ties can be reduced to testing two simple hypotheses 
described by usual probability measures called a least 
favorable pair. This result was derived for Polish spaces 
and supplied with other remarkable results. In particular, 
the case of 2-alternative capacities cannot be extended 
for a wider class of coherent upper probabilities, the 
likelihood ratio does not depend on the chosen least 
favorable pair, i.e. this likelihood ratio is unique; any pair 
of probability measures minimizing a functional of a 
certain type has to be least favorable. In addition, they 
have shown the way of constructing the optimal test for 
independent experiments with observations described by 
2-alternative capacities. After this famous work, there 
were some works generalizing Huber-Strassen results by 
using other topological assumptions [7,17], for special 
neighborhood models [12,16], or even for more general 
theories of imprecise probabilities [2,3,11] (see the over-
view of the results in [3]). However, most of the results 
are not constructive: they are based on the theorems 
establishing existence of least favorable pairs without 
showing how to obtain them. However, for some special 
neighborhood models there are explicit solutions for 
finding least favorable pairs (see results obtained by 
Österreicher [15], Rieder [16], and Bednarski [4]). Au-
gustin [2] proposed a method for finding least favorable 

pairs for models on finite spaces, based on linear pro-
gramming. 
On the other hand, we can observe that recently devel-
oped algorithms [1,14] for computing the maximum 
entropy functional for 2-monotone capacities are evi-
dently based on recovering the likelihood ratio between 
2-monotone capacity and equiprobable probability distri-
bution. But this fact has not been recognized yet.  
In the paper we try to get more explicit expressions of 
Huber-Strassen results for a finite case. This allows us to 
get the description of all possible least favorable pairs 
and to construct the algorithm for searching them. This 
algorithm generalizes the procedure for computing the 
maximal entropy functional considered in [1]. 
 

2   Technical preliminaries 
Let X  be a finite universal set and 2X=A  is the algebra 
consisting of all subsets of X . A set function 

: [0,1]μ →A  is called a monotone measure [9] or ca-
pacity [8] if 1) ( ) 0μ ∅ = , ( ) 1Xμ = ; and 2) ,A B∈A , 
A B⊆  implies ( ) ( )A Bμ μ≤ . We write 1 2μ μ≤  for 

monotone measures 1 2,μ μ  on A  if 1 2( ) ( )A Aμ μ≤  for 
all A∈A . In this paper we consider the following fami-
lies of monotone measures: 
1) monM  is the set of all monotone measures on A ; 

2) prM  is the set of all probability measures on A , i.e. 

pr monM M⊆  and additionally ( ) ( ) ( )A B A Bμ μ μ∪ = +  
for disjoint sets ,A B∈A ; 

3) lowM  is the set of all lower probabilities [18] on A , 
i.e. low monM M⊆  and for any lowMμ ∈  there exists 

prP M∈  such that Pμ ≤ ; 

4) cohM  is the set of all coherent lower probabilities [18] 
on A , i.e. for any cohMμ ∈  and B∈A  there exists 

prP M∈  such that Pμ ≤  and ( ) ( )B P Bμ = ; 
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5) 2 monM −  is the set of all 2-monotone measures [8] on 
A , i.e. 2 mon monM M− ⊆  and ( ) ( )A Bμ μ+ ≤  

( )A Bμ ∪ + ( )A Bμ ∩  for any ,A B∈A . 

For any monMμ ∈  we define the set 

( ) { }|prcore P M Pμ μ= ∈ ≥ , Clearly ( )core μ ≠ ∅  if 

lowMμ ∈ . We also remind that 

2mon low coh mon prM M M M M−⊃ ⊃ ⊃ ⊃ . In the sequel we 
use also the upper probability measures that can be got 
from lower probability measures using dual relation. A 
dual monotone measure dμ  of μ  is computed by 

1 ( )d cAμ μ= − , where A∈A  and \cA X A=  is the 
complement of A . Let us remind also that measures, 
which are dual to coherent lower probabilities, are called 
coherent upper probabilities [18], and also if 2 monMμ −∈  
then μ  is 2-alternative monotone measure [8], i.e. it 
characterizes by the following inequality: 

( ) ( )d dA Bμ μ+ ≥ ( )d A Bμ ∪ + ( )d A Bμ ∩ . 

 

3   Huber-Strassen theory, finite case 
In this section we consider the Huber-Strassen theory for 
the finite case: we establish connections between Huber-
Strassen theory and canonical sequences of monotone 
measures [5] and provide an effective algorithm for find-
ing least favorable pairs. 
Let us remind that the Huber-Strassen theory solves the 
problem of the Neymann-Pearson testing between two 
hypotheses 0H  and 1H  described by 2-monotone meas-
ures 0μ  and 1μ  on an algebra A . We assume here that 
A  is the powerset of some nonempty set X . According 
to this theory the testing problem can be reduced to the 
classical case, i.e. there exist probability measures (a 
least favorable pair) ( )0 0P core μ∈  and ( )1 1P core μ∈  
such that the optimal test for any level of significance 
can be obtained by using 0P  and 1P . The searching of 

0P  and 1P  is closely connected to the following optimi-
zation problem: 

{ }
0 1

0 1, 2
( ) min (1 ) ( ) ( )d d X

d d c

A
q t t A t A
μ μ

μ μ
∈

= − + , 

where [0,1]t ∈ . Obviously, the value 
0 1,

( )d dq t
μ μ

 gives us 

the exact upper probability of error if we use the Bayes-
ian classifier and the prior probability of 0H  is (1 )t−  
and the prior probability of 1H  is t . Hence, the expres-
sion for 

0 1,d dq
μ μ

 can be rewritten as  

( )
( )

0 1 0 0

1 1

0 1, ,2
( ) min max (1 ) ( ) ( )d d X

c

P coreA
P core

q t t P A tP A
μ μ μ

μ
∈∈
∈

= − + . 

This optimization problem can be considered also for 
coherent lower probabilities, but for this case it is impos-
sible to choose ( ) ( )0 0 1 1,P core P coreμ μ∈ ∈  for any 

0 1, cohMμ μ ∈ , such that  

{ }
0 1

0 1, 2
( ) min (1 ) ( ) ( )d d X

d d c

A
q t t A t A
μ μ

μ μ
∈

= − + =  

{ }0 1
2

min (1 ) ( ) ( )
X

c

A
t P A tP A

∈
− + , 

in general. Let us denote 

0 1, ( )tμ μ =L  { }0 12 (1 ) ( ) ( ) ( )X d d cA t A t A q tμ μ∈ − + =  

for [0,1]t∈  and 
0 1 0 1, ,

(0,1)

( )
t

tμ μ μ μ
∈

= ∪L L . 

We analyze first the properties of 
0 1,μ μL . We will show 

that 
0 1,μ μL  is a lattice and measures 0

dμ  and 1μ  are addi-
tive on it. 
Proposition 1. Let 0 1 2, monMμ μ −∈  and assume that 

0 1, ( )A tμ μ∈L , 
0 1, ( )B sμ μ∈L , where t s≤ . Then 

0 1, ( )A B tμ μ∩ ∈L  and 
0 1, ( )A B sμ μ∪ ∈L . In addition, 

0 0( ) ( )d dA A Bμ μ= ∩  and ( )1 1( )B A Bμ μ= ∪  if t s< . 

Proof. Let 
0 1, ( )A tμ μ∈L , 

0 1, ( )B sμ μ∈L  and t s≤ . Then 

0 1 0 1, ,
( ) ( )d d d dq t q s

μ μ μ μ
+ =  

0 1 0 1(1 ) ( ) ( ) (1 ) ( ) ( )d d c d d ct A t A s B s Bμ μ μ μ− + + − + =  

( )0 0 0(1 ) ( ) ( ) ( ) ( )d d ds A B s t Aμ μ μ− + + − +  

( )1 1 1( ) ( ) ( ) ( ).d c d c d ct A B s t Bμ μ μ+ + −  

Because 0 1,d dμ μ  are 2-alternative, we get the following 
inequality: 

0 1 0 1, ,
( ) ( )d d d dq t q s

μ μ μ μ
+ ≥  

( )0 0 0(1 ) ( ) ( ) ( ) ( )d d ds A B A B s t Aμ μ μ− ∩ + ∪ + − +  

( )( ) ( )( )( )1 1 1( ) ( )c cd d d ct A B A B s t Bμ μ μ∩ + ∪ + − =  

( )( )0 1(1 ) ( ) cd ds A B s A Bμ μ⎡ ⎤− ∪ + ∪ +
⎣ ⎦

 

( )( )0 1(1 ) ( ) cd dt A B t A Bμ μ⎡ ⎤− ∩ + ∩ +
⎣ ⎦

 

( )( )1 1( ) ( ) cd c ds t B A Bμ μ⎡ ⎤− − ∪ +
⎣ ⎦

 

0 0( ) ( ) ( )d ds t A A Bμ μ⎡ ⎤− − ∩⎣ ⎦ . 

Since ( )( )1 1( ) 0cd c dB A Bμ μ− ∪ ≥ , 0 ( )d Aμ − 0 ( )d A Bμ ∩  

0≥ , and, by our assumption,  
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0(1 ) ( )ds A Bμ− ∪ + ( )( )
0 1

1 ,
( )d d

cds A B q s
μ μ

μ ∪ ≥ , 

0(1 ) ( )dt A Bμ− ∩ + ( )( )1
cdt A Bμ ∩ ≥

0 1,
( )d dq t

μ μ
, 

we get that there is the only possibility that  

( )( )
0 1

0 1 ,
(1 ) ( ) ( )d d

cd ds A B s A B q s
μ μ

μ μ− ∪ + ∪ = , 

( )( )
0 1

0 1 ,
(1 ) ( ) ( )d d

cd dt A B t A B q t
μ μ

μ μ− ∩ + ∩ = , 

and if s t> , then 

( )( )1 1( ) 0cd c dB A Bμ μ− ∪ = ,  

0 0( ) ( ) 0d dA A Bμ μ− ∩ = , 

i.e. 
0 1, ( )A B tμ μ∩ ∈L  and 

0 1, ( )A B sμ μ∪ ∈L . 

Corollary 1. 
0 1,μ μL  is a lattice, and monotone measures 

0
dμ  and 1μ  are additive on 

0 1,μ μL . 

Proof. It is clear that 
0 1,μ μL  is a lattice. It follows from 

Proposition 1. Let 
0 1, ( )A tμ μ∈L , 

0 1, ( )B sμ μ∈L  and t s< . 

Then, by Proposition 1, 0 0( ) ( )d dA A Bμ μ= ∩  and 

( )1 1( )B A Bμ μ= ∪ . Since 0
dμ  is 2-alternative, 

0 0 0 0( ) ( ) ( ) ( )d d d dA B A B A Bμ μ μ μ+ ≥ ∩ + ∪ , 

i.e. 0 0( ) ( )d dB A Bμ μ≥ ∪ , and this is possible if 

0 0( ) ( )d dB A Bμ μ= ∪ , i.e.  

0 0 0 0( ) ( ) ( ) ( )d d d dA B A B A Bμ μ μ μ+ = ∩ + ∪ . 

Analogously, since 1μ  is 2-monotone, 

1 1 1 1( ) ( ) ( ) ( )A B A B A Bμ μ μ μ+ ≤ ∩ + ∪ , 

i.e. 1 1( ) ( )A A Bμ μ≤ ∩ , and this is possible if 

1 1( ) ( )A A Bμ μ= ∩ , i.e.  

1 1 1 1( ) ( ) ( ) ( )A B A B A Bμ μ μ μ+ = ∩ + ∪ . 

Consider the case, when (0,1)s t= ∈ . Then 

( ) ( )0 0 1 1(1 ) ( ) ( ) ( ) ( )d d d c d ct A B t A Bμ μ μ μ− + + + =

( )0 0(1 ) ( ) ( )d dt A B A Bμ μ− ∩ + ∪ +

( ) ( )( )1 1( ) ( )d c d ct A B A Bμ μ∩ + ∪ . 

Because 0 0 0 0( ) ( ) ( ) ( )d d d dA B A B A Bμ μ μ μ+ ≥ ∩ + ∪  and 

1 1 1 1( ) ( ) (( ) ) (( ) )d c d c d c d cA B A B A Bμ μ μ μ+ ≥ ∩ + ∪ , this is 
possible if 0 0 0 0( ) ( ) ( ) ( )d d d dA B A B A Bμ μ μ μ+ = ∩ + ∪  and 

1 1 1 1( ) ( ) (( ) ) (( ) )d c d c d c d cA B A B A Bμ μ μ μ+ = ∩ + ∪ , i.e. 
monotone measures 0

dμ  and 1μ  are additive on 
0 1,μ μL . 

Further we will consider sublattices L  of 
0 1,μ μL  such 

that 
0 1, ( )tμ μ∩ ≠ ∅L L  for any (0,1)t∈ . The notable 

examples of these lattices are { } (0,1)t t
A

∈
 and { }

(0,1)t t
A

∈
, 

where 
,0 1 ( )

t
A t

A A
μ μ∈

= ∩
L

, 
,0 1 ( )

t
A t

A A
μ μ∈

= ∪
L

. Notice that 

0 1,, ( )t tA A tμ μ∈L  by Proposition 1. 

Consider now the case, when 0 1, prMμ μ ∈ . 

Proposition 2. Let 0 1, prP P M∈ . Then for any [0,1]t ∈  

{ }
0 1, ( ) 2 |X

tP P tt A A A A= ∈ ⊆ ⊆L , 

where ( ) ( ){ }0 1| (1 ) { } { }tA x X t P x tP x= ∈ − <  and 

( ) ( ){ }0 1| (1 ) { } { }tA x X t P x tP x= ∈ − ≤ . 

Proof. According to the definition 
0 1, ( )P PA t∈L  iff it 

minimizes the value 

( ) ( ) ( )0 1 0 1(1 ) ( ) 1 ( ) (1 ) { } { } ,
x A

t P A t P A t t P x tP x
∈

− + − = + − −⎡ ⎤⎣ ⎦∑
and we get the minimum if ( ) ( )0 1(1 ) { } { } 0t P x tP x− − ≤  

for all x A∈  and ( ) ( )0 1(1 ) { } { } 0t P x tP x− − ≥  for all 
x A∉ , and the above condition implies the statement of 
the proposition. 
Remark 1. We can express the statement of Proposition 
2 using the likelihood ratio of probability measures 0P  
and 1P . For this reason, let us introduce two functions 

: [0, ]Xπ → +∞  and : [0, ]Xπ → +∞  by  

1) ( ) ( )0 1( ) ( ) { } { }x x P x P xπ π= =  if at least one of the 

values ( )0 { }P x  and ( )1 { }P x  is greater than zero (we 

define ( ) ( )x xπ π= = +∞  if ( )0 { } 0P x >  and 

( )1 { } 0P x = ); 

2) ( ) 0xπ =  and ( )xπ = +∞  if ( )0 { } 0P x =  and 

( )1 { } 0P x = . 

Then  

{ }| ( ) (1 )tA x X x t tπ= ∈ < −  

and  

{ }| ( ) (1 )tA x X x t tπ= ∈ ≤ − . 

Our next problem is to find sufficient and necessary 
conditions, under which 

0 10 1
,,

( ) ( )d d P Pq t q t
μ μ

= , [0,1]t∈ , for 

probability measures ( )0 0P core μ∈  and ( )1 1P core μ∈ . 
The solution of this problem is presented below. 
Lemma 1. Let 0 1 2, monMμ μ −∈ . Assume also that 

( )0 0P core μ∈  and ( )1 1P core μ∈  such that 
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0 10 1
,,

( ) ( )d d P Pq t q t
μ μ

=  for all [0,1]t∈ . Then 

0 1 0 1, ,( ) ( )P Pt tμ μ ⊆L L  for all [0,1]t∈ .  

Proof. Assume that the conditions of the lemma are ful-
filled, and 

0 1, ( )B tμ μ∈L . Then 

0 1
0 1 0 1,

( ) (1 ) ( ) ( ) (1 ) ( ) ( ).d d
d d c cq t t B t B t P B tP B

μ μ
μ μ= − + ≥ − +

 
Because 

0 10 1
,,

( ) ( )d d P Pq t q t
μ μ

=  by our assumption, we have  

0 1, 0 1( ) (1 ) ( ) ( )c
P Pq t t P B tP B= − + , 

i.e. 
0 1, ( )P PB t∈L . The lemma is proved. 

Obviously, there are some cases, when 
0 1 0 1, ,( ) ( )P Pt tμ μ =L L  for probability measures from Lemma 

1. In these cases it is possible to recover the likelihood 
ratio of ( )0 1,P P  as shown in the following lemma. 

Lemma 2. Let the conditions of Lemma 1 be fulfilled and 

0 1 0 1, ,( ) ( )P P t tμ μ=L L  for all [0,1]t∈ . Then the likelihood 

ratio of ( )0 1,P P  is uniquely defined on X  by 

1) ( ) 0xπ =  and ( )xπ = +∞  if 10 \x A A∈ ; 

2) { }( ) ( ) sup /(1 ) | , [0,1]tx x t t x A tπ π= = − ∈ ∈  if 1x A∈ ; 

3) ( ) ( )x xπ π= = +∞  if ( )10\x X A A∈ ∪  

Proof. Let us show that the formulas for π  is valid. We 

see that ( ){ }0 0| { } 0A x X P x= ∈ =  and  

( ){ }1 1| { } 0A x X P x= ∈ > . Therefore, formulas 1) and 3) 

are valid. Let (0,1)t∈ , then  

{ } ( )| ( ) (1 ) \t s
t s

x X x t t A Aπ
>

∈ = − =∩ , 

i.e. the formula 2) is also valid. The lemma is proved.  
Remark 2. Let us notice that functions ( )xπ  and ( )xπ , 
considered in Lemma 2 can be computed for every pair 
of 2-monotone measures 0 1 2, monMμ μ −∈ . We call these 
functions as in Huber-Strassen theory, a likelihood ratio 
of 2-monotone measures 0 1,μ μ . 

Lemma 3. Let 0 1 2, monMμ μ −∈  and let ( )0 0P core μ∈  

and ( )1 1P core μ∈  be such that 
0 10 1

,,
( ) ( )d d P Pq t q t

μ μ
=  for 

all [0,1]t∈ . Then the likelihood ratio of ( )0 1,P P  is equal 

to the likelihood ratio of ( )0 1,μ μ  in all points, where at 

least ( )0 { } 0P x >  or ( )1 { } 0P x > . 

Proof. For these points the likelihood ratio of ( )0 1,P P  
can be computed by  

{ }( ) ( ) sup /(1 ) | , [0,1]tx x t t x B tπ π= = − ∈ ∈ , 

where tB  is the maximal element of 
0 1, ( )P P tL . Consider 

also maximal elements tA  of lattices 
0 1, ( )tμ μL , [0,1]t∈ . 

Because ( ) ( )0 0t tP B P A= , ( ) ( )0 0t tP B P A= , and 

t tA B⊆  by Lemma 1 and Proposition 2, we find that 

( ) ( )0 1{ } { } 0P x P x= =  for all \t tx B A∈ . Therefore, 

{ }( ) ( ) sup /(1 ) | , [0,1]tx x t t x A tπ π= = − ∈ ∈ . 

The proposition is proved. 
Proposition 3. Let 0 1 2, monMμ μ −∈ , and let tA  be the 
minimal elements of 

0 1, ( )tμ μL , [0,1]t∈ . Assume also that 

( )0 0P core μ∈  and ( )1 1P core μ∈ . Then  

0 10 1
,,

( ) ( )d d P Pq t q t
μ μ

=  for all [0,1]t∈  iff 

1) ( ) ( )0 0
d

t tP A Aμ= , ( ) ( )1 1t tP A Aμ=  for all [0,1]t∈ ; 

2) the likelihood ratio of ( )0 1,P P  is equal to the likeli-

hood ratio of ( )0 1,μ μ  in all points, where at least 

( )0 { } 0P x >  or ( )1 { } 0P x > . 

Proof. The necessary statement of the proposition fol-
lows from Lemma 1 and Lemma 3. Let us show suffi-
ciency. Let ( )xπ  and ( )xπ  define the likelihood ratio of 

( )0 1,P P , then the maximal and minimal elements of 

0 1, ( )P P tL  are defined by  

{ }| ( ) (1 )tB x X x t tπ= ∈ < − , 

{ }| ( ) (1 )tB x X x t tπ= ∈ ≤ − . 

Obviously, 2) implies that t t tB A B⊆ ⊆ , i.e. 

0 1, ( )t P PA t∈L  by Proposition 2, and 

0 1, 0 1( ) (1 ) ( ) (1 ( )t tP Pq t t P A t P A= − + − =  

0 1
0 1 ,

(1 ) ( ) (1 ( )) ( )d d
d

t tt A t A q t
μ μ

μ μ− + − = . 

The proposition is proved. 
The existence of probability measures, considered in 
Proposition 3, is shown in the next proposition.  

Proposition 4. Let 0 1 2, monMμ μ −∈ , tA  and tA  be 
maximal and minimal elements of 

0 1, ( )tμ μL , respectively. 

Then there are ( )0 0P core μ∈  and ( )1 1P core μ∈  such 
that  

1) ( ) ( )0 0
d

t tP A Aμ= , ( ) ( )1 1t tP A Aμ=  for all [0,1]t∈ ; 

2) 
0 10 1

,,
( ) ( )d d P Pq t q t

μ μ
=  for all [0,1]t∈ .  
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Proof. Let functions ( )xπ  and ( )xπ  define the likeli-
hood ratio of ( )0 1,μ μ . Because we consider the finite 

case, there is an increasing sequence { }1 2 1, ,..., mt t t − , such 
that 1 2 10 ... 1mt t t −< < < < =  and ( ) (1 )k kx t tπ = −  if 

1
\

k kt tx A A
+

∈ , 1,..., 2k m= − . Let us denote 
ktkB A= , 

1,..., 1k m= − , ( ) 10\mB X A A= ∪ . Observe that 

( ) ( ) (1 )k kx x t tπ π= = −  if 1 \k kx B B+∈ , 1,..., 1k m= − , 
and also ( ) ( ) 0x xπ π= =  if 1x B∈ , and ( ) 0xπ =  and 

( )xπ = +∞  if \ mx X B∈ . According to the condition 1), 
we should find a pair of probability measures ( )0 1,P P  
satisfying the conditions:  

( ) ( ){ }0 0 0| , , 1,...,d d
pr k kP P M P P B B k mμ μ∈ ∈ ≤ = = ,  (1) 

( ) ( ){ }1 1 1| , , 1,...,pr k kP P M P P B B k mμ μ∈ ∈ ≥ = = .  (2) 

These families of probability measures can be obviously 
described by canonical sequences of monotone meas-
ures1. For this purpose, let us consider a sequence of sets 

{ } 1

m
k k

B
=

Γ =  and limit measures ( )0
dμ

Γ
 and ( )1μ Γ

 gener-

ated by canonical sequences of monotone measures by 
the sequence Γ . Then obviously, the conditions (1) and 
(2) are equivalent to ( ){ }0 0| d

prP P M P μ
Γ

∈ ∈ ≤  and 

( ){ }1 1|prP P M P μ
Γ

∈ ∈ ≥ . 

Because { } 1

m
k k

B
=

Γ =  is an increasing sequence, we can 

use the explicit expressions for limit measures ( )0
dμ

Γ
 

and ( )1μ Γ
 as follows: 

( )
1

0 0 1 0 1
1

( ) (( ) ) ( )
m

d d d
k k k

k
A A B B Bμ μ μ

+

− −Γ
=

⎡ ⎤= ∩ ∪ −⎣ ⎦∑ , 

( ) [ ]
1

1 1 1 1 1
1

( ) (( ) ) ( )
m

k k k
k

A A B B Bμ μ μ
+

− −Γ
=

= ∩ ∪ −∑ , 

where 0B = ∅  and 1mB X+ = . Let us analyze what kind 
of additional conditions for a pair of probability meas-
ures 0P  and 1P  should be fulfilled. According to condi-
tion 2) of Proposition 3 a pair ( )0 1,P P  should have the 

same likelihood ratio as ( )0 1,μ μ  in all points, where at 

least ( )0 { } 0P x >  or ( )1 { } 0P x > . In other words, 0P  and 

1P  have the constant positive likelihood ratio on sets 

1\k kB B − , 2,..., 1k m= − , excluding points, where 

( )0 { } 0P x =  or ( )1 { } 0P x = . This means that conditional 

probability measures ( )
10 \k kB B

P
−

 and ( )
11 \k kB B

P
−

 defined by  

                                                 
1 A reader can find the main results on canonical sequences of 
monotone measures in [5] and a brief description of them in 
[6].  

( )
1

0 1 0 1
0 \

0 0 1

(( ) ) ( )
( )

( ) ( )k k

k k k
B B

k k

P A B B P B
P A

P B P B−

− −

−

∩ ∪ −
=

−
, 

( )
1

1 1 1 1
1 \

1 1 1

(( ) ) ( )
( )

( ) ( )k k

k k k
B B

k k

P A B B P B
P A

P B P B−

− −

−

∩ ∪ −
=

−
 

are the same. Introduce also into consideration monotone 
measures  

( )
1

0 1 0 1
0 \

0 0 1

(( ) ) ( )
( )

( ) ( )k k

d d
d k k k

d dB B
k k

A B B B
A

B B
μ μ

μ
μ μ−

− −

−

∩ ∪ −
=

−
, 

( )
1

1 1 1 1
1 \

1 1 1

(( ) ) ( )
( )

( ) ( )k k

k k k
B B

k k

A B B B
A

B B
μ μ

μ
μ μ−

− −

−

∩ ∪ −
=

−
. 

Assume that measures ( )
1

0 \k k

d

B B
μ

−

, ( )
11 \k kB B

μ
−

 are defined 

for 1,...,k m=  if the corresponding divisor 

0 0 1( ) ( )d d
k kB Bμ μ −−  or 1 1 1( ) ( )k kB Bμ μ −−  is not equal to 

zero. Then using expressions for ( )0
dμ

Γ
 and ( )1μ Γ

, we 

have ( ) ( )
1 1

0 0\ \k k k k

d
B B B B

P μ
− −

≤  and ( ) ( )
1 11 1\ \k k k kB B B B

P μ
− −
≥ , 

or combining with ( )
10 \k kB B

P
−

 and ( )
11 \k kB B

P
−

, we get  

( ) ( ) ( ) ( )
1 1 1 1

1 1 0 0\ \ \ \k k k k k k k k

d
B B B B B B B B

P Pμ μ
− − − −

≤ = ≤ ,  

where 2,..., 1k m= − . To prove that a probability meas-
ure prP M∈  with ( ) ( )

1 1
1 0\ \k k k k

d
B B B B

Pμ μ
− −

≤ ≤  exists, let 

us show first that the inequality ( ) ( )
1 1

1 0\ \k k k k

d
B B B B

μ μ
− −

≤  

holds, i.e. 

1 1 1 1 0 1 0 1

1 1 1 0 0 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

d d
k k k k

d d
k k k k

A B B A B B
B B B B

μ μ μ μ
μ μ μ μ

− − − −

− −

∪ − ∪ −
≤

− −
 (3) 

for any 1\k kA B B −⊆ . Let us notice that the choice of 
sets kB  implies that  

1 0 1 1 1 1(1 ) ( ) (1 ( ))d
k k k kt B t Bμ μ− − − −− + − =  

1 0 1 1(1 ) ( ) (1 ( ))d
k k k kt B t Bμ μ− −− + − . 

Or equivalently,  

0 0 1 1

1 1 1 1

( ) ( )
( ) ( ) 1

d d
k k k

k k k

B B t
B B t

μ μ
μ μ

− −

− −

−
=

− −
. 

Therefore, if the inequality (3) is not fulfilled for some 
1\k kA B B −⊆ , then 

0 1 0 1 1

1 1 1 1 1

( ) ( )
( ) ( ) 1

d d
k k k

k k k

A B B t
A B B t

μ μ
μ μ

− − −

− − −

∪ −
<

∪ − −
, 

but this contradicts to the choice of 1kB − , because in this 
case 

1 0 1 1 1(1 ) ( ) ( )d
k k kt B Bμ μ− − −− − >  

1 0 1 1 1(1 ) ( ) ( )d
k k kt A B A Bμ μ− − −− ∪ − ∪ . 
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Because ( )
11 \k kB B

μ
−

 is 2-monotone and ( )
1

0 \k k

d

B B
μ

−

 is 2-

alternative, the existence of P  follows from [10, Lemma 
4.3].  
It remains to show how to define values of probability 
measures ( )0 { }P x  and ( )1 { }P x  if 1x B∈ , 1\m mx B B −∈ , 
or \ mx X B∈ . (It is worth to keep in mind that it is often 

1B = ∅  or 1\m mB B − = ∅ .) 

If 1x B∈ , then ( )0 { } 0P x =  and values ( )1 { }P x  should 

be chosen such that ( ) ( )
1 11 1B B

Pμ ≤ . 

If 1\m mx B B −∈ , then ( )1 { } 0P x =  and values ( )0 { }P x  

should be chosen such that ( ) ( )
1 1

0 0\ \m m m m

d
B B B B

P μ
− −

≤ . 

If \ mx X B∈ , then ( )0 { } 0P x =  and ( )1 { } 0P x = . 

Let us notice that the constructed pair of probability 
measures ( )0 1,P P  has the same likelihood ratio as 

( )0 1,μ μ  in all points, where at least ( )0 { } 0P x >  or 

( )1 { } 0P x > . It means that 
0 10 1

,,
( ) ( )d d P Pq t q t

μ μ
=  for all 

[0,1]t∈  by Proposition 3. The proposition is proved. 

Remark 3. Let us notice that Proposition 4 establishes 
the existence of a least favorable pair, because the opti-
mal test for any level of significance can be obtained by 
probability measures 0P  and 1P , considered in Proposi-
tion 4. In some sense, a least favorable pair ( )0 1,P P  gives 

an approximation of ( )0 1,μ μ  and its exactness depends 

on the chosen ( )0 1,P P . The exact approximation should 
give the best approximation of sets 

0 1, ( )tμ μL , [0,1]t∈  in 

a sense that the cardinality of 
0 1 0 1, ,( ) \ ( )P P t tμ μL L  should 

be minimal. It happens if { }
0 1, ( ) | tP P tt A A A A= ⊆ ⊆L  

for all [0,1]t∈ , where tA  and tA  are maximal and 
minimal elements of 

0 1, ( )tμ μL , respectively. In this case 

the likelihood ratios of ( )0 1,P P  and ( )0 1,μ μ  coincide.  

Corollary 2. Let 0 1 2, monMμ μ −∈  and we use the nota-
tion from Proposition 4 and its proof. Then every least 
favorable pair of probability measures 0P  and 1P  can be 
represented as 

( ) ( )( )( )
1

1

0 0 0 1 0 \
2

k k

m
d d

k k B B
k

P B B Pμ μ
−

+

−
=

= −∑ , 

( ) ( )( )( )
11 1 1 1 1 \

1
k k

m

k k B B
k

P B B Pμ μ
−

−
=

= −∑ , 

where conditional probability measures satisfy the fol-
lowing inequalities: 

( ) ( )
1 11 1B B

Pμ ≤ ; 

( ) ( ) ( ) ( )
1 1 1 1

1 1 0 0\ \ \ \k k k k k k k k

d
B B B B B B B B

P Pμ μ
− − − −

≤ = ≤ , 

2,..., 1k m= − ; 

( ) ( )
1 1

0 0\ \m m m m

d
B B B B

P μ
− −

≤ . 

The algorithm for searching sets kB , 2,..., 1k m= − , is 
based on the following lemma.  
Lemma 4. The construction of sets kB , 1, 2,...,k m= , 
can be based on the following: 
a) 1B  is the set with the smallest cardinality such that 

( ) ( ){ }1 1 1 0max | ( ) 0dB B Bμ μ μ= = ; 

b) Let us assume that sets 0B = ∅ , 1B , …, 1kB − , 2k ≥ , 
have been constructed. Then if ( )1 1 1kBμ − <  the next kB  
should be chosen from the set Ω  of possible solutions of 
the following optimization problem 

( ) ( )

( ) ( )
( ) ( )1

1 1 1

0 0 1

1 1 1

min
k

k

d d
k

B BB kB B

B B
B B

μ μ

μ μ
μ μ−

−

−

⊂
−>

−
−

. 

If the set Ω  is not singleton, then we should choose set 
kB  with the smallest cardinality such that  

( ) ( )1 1maxk B
B Bμ μ

∈Ω
= . 

c) the set mB  ( ( )1 1 1mBμ − = ) is the set with the smallest 
cardinality from the family  

{ }1 0| , ( ) 1d
mB B B Bμ−∈ ⊇ =A . 

The above conditions define sets kB , 1, 2,...,k m= , 
uniquely.  
Proof. The conditions a) and c) follow easily from the 
definition of sets 1B  and mB . Let us show that b) is true. 
We prove first that the set kB  should be chosen from Ω . 
Assume to the contrary kB ∉Ω . Then there is a 2XB∈  
such that  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 0 1 0 0 1

1 1 1 1 1 1

d d d d
k k k

k k k

B B B B
B B B B

μ μ μ μ
μ μ μ μ

− −

− −

− −
>

− −
. 

Let us notice that 
( ) ( )
( ) ( )

0 0 1 1

1 1 1 11

d d
k k k

k k k

B B t
B B t

μ μ
μ μ

− −

− −

−
=

− −
, i.e. we 

can rewrite the last inequality as  

( ) ( )
( ) ( )

0 0 1 1

1 1 1 11

d d
k k

k k

B B t
B B t

μ μ
μ μ

− −

− −

−
<

− −
, 

or 

( ) ( ) ( )1 0 1 11 d
k kt B t Bμ μ− −− − <  

( ) ( ) ( )1 0 1 1 1 11 d
k k k kt B t Bμ μ− − − −− − . 
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However, the last inequality contradicts to the choice of 
11 ktkB A
−− = .  

Let us show that we should choose set B∈Ω  with the 
maximal value ( ) ( )1 1 1kB Bμ μ −− and with the smallest 
cardinality. Assume that ,k kB B′ ′′∈Ω . Then  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0 0 1 0 0 1 1

1 1 1 1 1 1 11

d d d d
k k k k k

k k k k k

B B B B t
B B B B t

μ μ μ μ
μ μ μ μ

− − −

− − −

′ ′′− −
= =

′ ′′− − −
, 

and, obviously, ( )
0 1, 1,k k kB B tμ μ −′ ′′∈L . 

Let us check the sign of the following difference: 

( ) ( ) ( )( )0 11 1d
k k k kt B t Bμ μ′ ′Δ = − + − −  

( ) ( ) ( )( )0 11 1d
k k k kt B t Bμ μ⎡ ⎤′′ ′′− − − =⎣ ⎦  

( ) ( ) ( )( ) ( ) ( )( )0 0 1 11 d d
k k k k k kt B B t B Bμ μ μ μ′ ′− − − − −  

( ) ( ) ( )( ) ( ) ( )( )0 0 1 11 d d
k k k k k kt B B t B Bμ μ μ μ⎡ ⎤′′ ′′− − − −⎣ ⎦ . 

Assuming that ( ) ( )1 1 0k kB Bμ μ′ − > , we get 

( ) ( ) ( )( )1
1 1

1

1
1

k k
k k k

k

t t
t B B

t
μ μ−

−

−⎡ ⎤
′ ′′Δ = − −⎢ ⎥−⎣ ⎦

, 

i.e. 0Δ < , and we should choose the set B  in Ω  with 
the largest value 1( )Bμ  and, of course, with the smallest 
cardinality, because this follows from the definition of 
the set 

kt
A . The set kB  is defined uniquely by above 

conditions, because Ω  coincides with the lattice 
( )

0 1, 1ktμ μ −L . The lemma is proved. 

Example 1. Consider 2-monotone measures 0μ  and 1μ  
defined on the algebra 2X , where { }1 2 3 4, , ,X x x x x= , 
with values given in Table 1. Let us describe the algo-
rithm proposed for searching favorable pairs of probabil-
ity measures if the first hypothesis is described by 0μ , 
and the second hypothesis is described by 1μ . Applying 
the algorithm we get 1B = ∅ ; the set 1B  should be cho-

sen to minimize the value 
( )
( )

0

1

d B
B

μ
μ

. Clearly, { }2 1B x=  

and 
( )
( )

0 2

1 2

0.02 1
0.3 15

d B
B

μ
μ

= = . Then minimizing the value 

( ) ( )
( ) ( )

0 0 2

1 1 2

d dB B
B B

μ μ
μ μ

−
−

 for 2B B⊃ , we get that { }3 1 3,B x x=  

and 
( ) ( )
( ) ( )

0 3 0 2

1 3 1 2

0.3 0.02 7
0.7 0.3 10

d dB B
B B

μ μ
μ μ

− −
= =

− −
. By analogy, 

4B X=  and 
( ) ( )
( ) ( )

0 4 0 3

1 4 1 3

1 0.3 7
1 0.7 3

d dB B
B B

μ μ
μ μ

− −
= =

− −
. Now it is 

easy to calculate the likelihood ratio. In our case, 

( ) ( ) ( )x x xπ π π= = , and ( )1 1/15xπ = ; ( )3 7 /10xπ = , 

and ( ) ( )2 4 7 / 3x xπ π= = . We see that in our case 

( )
10 \k kB B

P
−

, ( )
11 \k kB B

P
−

, 2,3k = , are Dirac measures. For 

searching ( )
4 30 \B B

P , ( )
4 31 \B B

P , we need to solve the fol-

lowing inequalities: 

1x  2x  3x  4x  0μ  0
dμ  1μ  

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
0 
1 
1 

0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 

0.55 
0.55 
0.7 
0.7 
0.8 
0.8 
0.98 

1 

0 
0.02 
0.2 
0.2 
0.3 
0.3 
0.45 
0.45 

1 
1 
1 
1 
1 
1 
1 
1 

0 
0.3 
0 

0.3 
0 

0.7 
0 

0.7 
0 

0.3 
0 

0.6 
0 

0.7 
0 
1 

 
Table 1: Values of monotone measures.  

( ) ( ) ( ) ( )
4 3 4 3 4 3 4 3

1 1 0 0\ \ \ \

d
B B B B B B B B

P Pμ μ≤ = ≤ . 

This system of inequalities can be rewritten as  

( ) { }( )
( ) { }( )

( ) { }( ) ( ) { }( )

4 3

4 3

4 3 4 3

0 2\

0 4\

0 2 0 4\ \

150 ,
70

0 1,

1.

B B

B B

B B B B

P x

P x

P x P x

⎧ ≤ ≤⎪
⎪

≤ ≤⎨
⎪

+ =⎪
⎩

 

It is easy to find any solution of this system of inequali-
ties can be represented as  

( ) { }( )
( ) { }( )

4 3

4 3

0 2\

0 4\

0 15 / 70
(1 )

1 55 / 70
B B

B B

P x
a a

P x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ = + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
, 

where [0,1]a∈ . Thus, we have the following solution 
for favorable pairs: 

{ }( )
{ }( )
{ }( )
{ }( )

0 1

0 2

0 3

0 4

0.02 0.02
0 0.15

(1 )
0.28 0.28
0.7 0.55

P x

P x
a a

P x

P x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

,  

{ }( )
{ }( )
{ }( )
{ }( )

1 1

1 2

1 3

1 4

0.3 0.3
0 45 / 700

(1 )
0.4 0.4
0.3 165 / 700

P x

P x
a a

P x

P x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠

, 
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where [0,1]a∈ . Let us notice that if [0,1)a∈  the least 
favorable pair ( )0 1,P P  has the same likelihood ratio as 

( )0 1,μ μ , but { }( ) { }( )0 2 1 2 0P x P x= = , when 1a = , this 
pair does not give us sufficient information how to con-
struct the optimal test, when we observe the outcome 2x .  

For illustration, we can also calculate sets tA : 

1tA B= = ∅  if 1
1 15

t
t
≤

−
 (or 10

16
t≤ ≤ ); 

2tA B=  if 1 7
16 17

t< ≤ ; 

3tA B=  if 7 7
17 10

t< ≤ ; 

4tA B X= =  if 7 1
10

t< ≤ . 

 

4   Characterization of least favorable pairs 
by functionals 
The next theorem is the analog of the result proved by 
Huber and Strassen [13]. Its proof gives us also some 
corollaries that are useful for computing functionals 
using least favorable pairs. 
Theorem 1. Let 0 1 2, monMμ μ −∈  and let Φ  be any twice 
continuously differentiable function on [0,1] , such that 

0′′Φ > . Then the pair ( ) ( ) ( )0 1 0 1,Q Q core coreμ μ∈ ×  
minimizes the functional 

( ) ( )0
0 1 0 1

0 1

,
X

dP
H P P d P P

dP dP
⎛ ⎞

= Φ +⎜ ⎟+⎝ ⎠
∫  

among all ( ) ( ) ( )0 1 0 1,P P core coreμ μ∈ ×  iff 

0 1 0 1, ,( ) ( )P P Q Qq t q t≤  for all [0,1]t∈ . 

Proof. Let us denote by 0

0 1

( )
( ) 1

dPxy
x dP dP
π

π
= =

+ +
, where 

( )xπ  is the likelihood ratio of probability measures 0P  
and 1P . We derive first the explicit expression for 

0 1, ( )P Pq t  using the result formulated in Proposition 2: 

( )
0 1, 0 1( ) (1 ) ( ) 1 ( )P P t tq t t P A t P A= − + − =

0 1(1 ) 1
y t y t

t dP t dP
≤ ≤

⎛ ⎞
− + − =⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫

( )0
0 1

0 1

(1 )
y t

dP
t d P P

dP dP≤

⎛ ⎞
− + −⎜ ⎟+⎝ ⎠
∫

( )1
0 1

0 1y t

dP
t d P P t

dP dP≤

⎛ ⎞
+ + =⎜ ⎟+⎝ ⎠

∫  

( ) ( )0 1 0 1(1 ) (1 )
y t y t

t yd P P t y d P P t
≤ ≤

− + − − + + =∫ ∫

( )0 1( )
y t

y t d P P t
≤

− + +∫ . 

Therefore, 
0 1 0 1, ,( ) ( )P P Q Qq t q t≤  for all [0,1]t∈  iff  

( )
0

0 1

0
0 1

0 1dQ
t

dQ dQ

dQ
t d Q Q

dQ dQ
≤

+

⎡ ⎤
− + ≥⎢ ⎥+⎣ ⎦

∫  

( )
0

0 1

0
0 1

0 1dP
t

dP dP

dP
t d P P

dP dP
≤

+

⎡ ⎤
− +⎢ ⎥+⎣ ⎦

∫            (4) 

for all [0,1]t∈ . Introduce into consideration an arbitrary 
positive integrable function ϕ  on [0,1] . Then the condi-
tion (4) can be equivalently transformed to  

( )
0

0 1

1
0

0 1
0 10

( )
dQ

t
dQ dQ

dQ
t t d Q Q dt

dQ dQ
ϕ

≤
+

⎛ ⎞
⎜ ⎟⎡ ⎤

− + ≤⎜ ⎟⎢ ⎥+⎣ ⎦⎜ ⎟
⎝ ⎠

∫ ∫

( )
0

0 1

1
0

0 1
0 10

( )
dP

t
dP dP

dP
t t d P P dt

dP dP
ϕ

≤
+

⎛ ⎞
⎜ ⎟⎡ ⎤

− +⎜ ⎟⎢ ⎥+⎣ ⎦⎜ ⎟
⎝ ⎠

∫ ∫ . 

Let us denote  

( ) ( )
1

0 1 0 1
0

, ( ) ( )
y t

H P P t t y d P P dtϕ
≤

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ . 

We transform next the functional H  to the form, which 
is used in the theorem. After changing the order of inte-
gration, we get 

( ) ( ) ( )
1

0 1 0 1, ( )
X y

H P P t t y dt d P Pϕ
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠
∫ ∫ . 

Let ( )
1

( ) ( )
y

y t y t dtϕΦ = −∫ . Then 
1

( ) ( )
y

y t dtϕ′Φ = −∫  and 

( ) ( ) 0y yϕ′′Φ = > . Notice that for this function Φ : 
(1) 0Φ =  and (1) 0′Φ = . Let 1( ) ( )y y by aΦ = Φ + + , 

where ,a b∈  . Observe that this is the general possible 
choice of twice differentiable function with 0ϕ′′Φ = > . 
Then  

( ) ( )0
1 0 1 0 1

0 1

,
X

dP
d P P H P P

dP dP
⎛ ⎞

Φ + = +⎜ ⎟+⎝ ⎠
∫  

( ) ( )0 0 1 0 1, 2
X X

b dP a d P P H P P a b+ + = + +∫ ∫ . 

The theorem is proved. 
Corollary 3. Let us use assumptions and notations from 
Theorem 1. Then  
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( ) ( )0
0 1 0 1

0 1

,
X

dP
H P P d P P

dP dP
⎛ ⎞

= Φ + =⎜ ⎟+⎝ ⎠
∫

( )0 1

1

,
0

( ) ( ) (1) (1)P Pt q t t dt′′ ′− Φ −Φ −Φ∫ . 

Obviously we can use Theorem 1 for solving optimiza-
tion problems using least favorable pairs. This result is 
formulated below.  

Corollary 4. Let 0 1 2, monMμ μ −∈  and let 
: [0,1] ( , ]Φ → −∞ +∞  be any twice continuously differen-

tiable function on (0,1) , such that ( ) 0y′′Φ ≥  for all 
(0,1)y∈ ; in addition 

0
(0) lim ( )

y
y

→+
Φ = Φ  and 

1 0
(1) lim ( )

y
y

→ −
Φ = Φ . Then any least favorable pair 

( ) ( ) ( )0 1 0 1,Q Q core coreμ μ∈ ×  minimizes the functional 

( ) ( )0
0 1 0 1

0 1

,
X

dP
H P P d P P

dP dP
⎛ ⎞

= Φ +⎜ ⎟+⎝ ⎠
∫  

among all ( ) ( ) ( )0 1 0 1,P P core coreμ μ∈ × . 

Proof. Let Φ  be any twice continuously differentiable 
function on [0,1]  such that ( ) 0y′′Φ ≥  for all [0,1]y∈ . 
Then this result obviously follows from Corollary 3, 
namely, from the formula: 

( ) ( )0 1

1

0 1 ,
0

, ( ) ( )P PH P P t q t t dt Cϕ= − +∫ , 

If ( ) ( ) ( ) ( )0 1 0 1 0 1, , ,Q Q P P core coreμ μ∈ ×  and ( )0 1,Q Q  
is a least favorable pair, then 

0 1 0 1, ,( ) ( )P P Q Qq t q t≤  for all 

[0,1]t∈  and obviously ( ) ( )0 1 0 1, ,H P P H Q Q≥ . If 

( )0 1,P P  is also a favorable pair, then 
0 1 0 1, ,( ) ( )P P Q Qq t q t=  

for all [0,1]t ∈  and ( ) ( )0 1 0 1, ,H P P H Q Q= . 

Consider now the general case, formulated in the corol-
lary. For any 0ε >  introduce the functional  

( ) ( ) ( )0 1 0 1,
X

H P P y d P Pε ε= Φ +∫ , 

where  

1) ( ) 2( ) ( )( ) 0.5 ( )( )y y yε ε ε ε ε ε′ ′′Φ = Φ +Φ − + Φ −  if 
[0, ]y ε∈ ; 

2) ( ) ( )y yεΦ = Φ  if ( ,1 )y ε ε∈ − ; 

3) ( ) (1 ) (1 )( 1)y yε ε ε ε′Φ = Φ − +Φ − + − +  

20.5 (1 )( 1)yε ε′′Φ − + −  if [1 ,1]y ε∈ − . 

Then εΦ  is a twice continuously differentiable function 
on [0,1]  such that ( ) 0yε′′Φ ≥  for all [0,1]y∈ . This 
implies that ( ) ( )0 1 0 1, ,H Q Q H P Pε ε≤  if 

( ) ( ) ( ) ( )0 1 0 1 0 1, , ,Q Q P P core coreμ μ∈ ×  and ( )0 1,Q Q  is a 
least favorable pair. Clearly that 

( ) ( )0 1 0 10
, lim ,H Q Q H Q Qεε→

= ≤  

( )0 10
lim ,H P Pεε→

= ( )0 1,H P P . 

The corollary is proved. 

Because the value ( )0 1,H P P  does not depend on a cho-

sen favorable pair ( ) ( ) ( )0 1 0 1,P P core coreμ μ∈ × , it can 

be expressed through the values of measures 0
dμ  and 1μ  

on the chain { }0 1, ,..., mB B B . This result is given in the 
next corollary. 
Corollary 5. Assume that we use notations from Corol-
lary 2 and ( ) ( ) ( )0 1 0 1,P P core coreμ μ∈ ×  be a least 

favorable pair. Let 0 1
dν μ μ= + . Then 

( ) ( ) ( )
( ) ( ) ( ) ( )( )0 0 1

0 1 1
1 1

,
d dm

k k
k k

k k k

B B
H P P B B

B B
μ μ

ν ν
ν ν

−
−

= −

⎛ ⎞−
= Φ −⎜ ⎟⎜ ⎟−⎝ ⎠
∑ . 

Proof. Notice that ( ) ( )0 1{ } { } 0P x P x= =  if \ mx X B∈ . 
Therefore, 

( ) ( )
( ) ( ) ( ) ( )( )0

0 1 0 1
0 1

{ }
, { } { }

{ } { }
mx B

P x
H P P P x P x

P x P x∈

⎛ ⎞
= Φ +⎜ ⎟⎜ ⎟+⎝ ⎠
∑ , 

and by Corollary 2 
( )

( ) ( )
0

0 1

{ }
{ } { }

P x
P x P x

=
+

 

( ) ( )
( ) ( ) ( ) ( )

0 0 1

0 0 1 1 1 1

d d
k k

d d
k k k k

B B
B B B B

μ μ
μ μ μ μ

−

− −

−
− + −

 if 1\k kx B B −∈  

and ( ) ( )0 1{ } { } 0P x P x+ ≠ ; ( )0 1\k kP B B − = ( )0
d

kBμ −  

( )0 1
d

kBμ −  and ( ) ( ) ( )1 1 1 1 1\k k k kP B B B Bμ μ− −= − . 
Hence, the formula in the corollary is true. 
Example 2. The Kullback–Leibler divergence (distance) 
between probablity measures 0P  and 1P  is defined as  

1
1 0 1

0

( , ) lnKL
X

dP
D P P dP

dP
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∫ . 

In applications, we need to minimize 1 0( , )KLD P P  if 

( ) ( ) ( )0 1 0 1,P P core coreμ μ∈ × . In particular, if 

{ }1,..., nX x x=  and { }( )0 1/iP x n= , then  

{ }( ) { }1 0 1 1
1

( , ) ln ln( )
n

KL i i
i

D P P P x P x n
=

= + =∑  

( )1 ln( )S P n− + , 

where ( ) { }( ) { }1 1 1
1

ln
n

i i
i

S P P x P x
=

= −∑  is the Shannon 

entropy. Let us transform the functional KLD  to the form 
used in Theorem 1.  
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( )1 1
1 0 1 0

0 1 0

( , ) lnKL
X

dP dP
D P P d P P

dP dP dP
⎛ ⎞

= +⎜ ⎟ +⎝ ⎠
∫ . 

Let 0

0 1

dP
y

dP dP
=

+
. Then ( )1 0 1 0( , ) ( )KL

X

D P P y d P P= Φ +∫ , 

where 1( ) (1 ) ln yy y
y

⎛ ⎞−
Φ = − ⎜ ⎟

⎝ ⎠
. Notice that in this case 

2

1( ) ( ) 0
(1 )

y y
y y

ϕ ′′= Φ = ≥
−

 for all (0,1)y∈ , i.e. by 

Corollary 4 any least favorable pair 
( ) ( ) ( )0 1 0 1,Q Q core coreμ μ∈ ×  minimizes the functional 

1 0( , )KLD P P  among all ( ) ( ) ( )0 1 0 1,P P core coreμ μ∈ × . It 
is remarkable, that we can use the algorithm for finding 
least favorable pairs in the problem of maximizing the 
Shannon entropy functional. In this case, we get explic-
itly the same algorithm proposed firstly for belief meas-
ures [14] and then justified for 2-monotone measures [1]. 
 

5   Concluding remarks 
This work gives a new look on Huber-Strassen results, 
presented here in the explicit form. Some of them are 
even strengthened (see Proposition 4 and Corollary 2) or 
clarified (see Theorem 1 and Corollaries 4-6). As a result 
we have an effective algorithm for searching least favor-
able pairs and also the way for minimizing functionals on 
2-monotone measures described in Theorem 1 and its 
corollaries. As shown in [5], it is possible to generalize 
canonical sequences of 2-monotone measures generated 
by any chain of sets. This generalization can be useful for 
describing least favorable pairs for the general case of 2-
monotone measures. 
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Abstract

This paper proposes the use of Binary Probability
Trees in the propagation of credal networks. Stan-
dard and binary probability trees are suitable data
structures for representing potentials because they al-
low to control the accuracy of inference algorithms by
means of a threshold parameter. The choice of this
threshold is a trade-off between accuracy and com-
puting time. Binary trees enable the representation
of finer-grained independences than probability trees.
This leads to more efficient algorithms for credal net-
works with variables with more than two states. The
paper shows experiments comparing binary and stan-
dard probability trees in order to demonstrate their
performance.

Keywords. Bayesian and Credal networks, Inference
algorithms, Imprecise probabilities, Variable elimina-
tion, Probability trees

1 Introduction

A Bayesian network (BN) is a probabilistic graphical
model where precise assessments for the conditional
probability mass functions of the variables in the net-
work given the values of their parents are used. A
credal network (CN) is also a graphical structure (a
directed acyclic graph (DAG) [13]) which is similar
to a BN [17], but now the conditional mass functions
belong to convex sets of mass functions (credal sets).

There has been an increasing interest in propagation
algorithms for CNs in the last years. Different algo-
rithms have been proposed for propagation in CNs
using standard probability trees (SPTs) [11, 10, 7].
In this paper we propose to apply binary probability
trees (BPTs) [8] to propagate in CNs with the variable
elimination (VE) algorihtm.

The remainder of this paper is organized as follows:
In Section 2 we introduce Bayesian and credal net-
works, and the problem of inference on them. Section

3 explains the use of standard and binary probabil-
ity trees to obtain compact representations of poten-
tials and presents how they can be approximated by
pruning them. Section 4 explains how to use the VE
algorithm to propagate in CNs using BPTs. Section
5 provides details of the experimental work. Finally,
Section 6 gives the conclusions.

2 Inference in Credal Networks

Bayesian and credal networks are based on a set of
random variables X = {X1, . . . ,Xn} and a directed
acyclic graph (DAG) G, whose nodes are associated
with the variables of X. Let us assume that each
variable Xi takes values on a finite set of states ΩXi

(the domain of Xi). We shall use xi to denote one
of the values of Xi, xi ∈ ΩXi

. If I is a set of in-
dices, we shall write XI for the set {Xi|i ∈ I}. The
Cartesian product ×i∈IΩXi

will be denoted by ΩXI
.

The elements of ΩXI
are called configurations of XI

(represented as xI). We use |Ω| to denote the cardi-
nality of a set Ω. We denote by x↓XJ

I the projection
of the configuration xI to the set of variables XJ ,
XJ ⊆ XI . We denote by Πi the set of parents of
Xi in G and πi ∈ ΩΠi

a configuration for the vari-
ables in Πi. P (Xi) is the mass function for Xi and
P (xi) the probability that Xi = xi. P (Xi|πi) denotes
the probability mass function for Xi conditional on
Πi = πi. A mapping from a set ΩXI

into R+
0 will be

called a potential p for XI . The process of inference in
probabilistic graphical models requires the definition
of two operations on potentials: combination p1 ⊗ p2

and marginalization p↓XJ . If p1 and p2 are potentials
for XI and XJ respectively then p1⊗p2 is a potential
for XI∪J that can be obtained by pointwise multipli-
cation. If p is a potential for XI , and J ⊆ I then
p↓XJ is a potential for XJ that can be obtained by
summing out all the variables not in XJ .

In a BN, each node labelled with a variable Xi

has attached a conditional probability distribution
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P (Xi|Πi), that defines a conditional mass function
P (Xi|πi) for Xi given each πi ∈ ΩΠi

. A BN deter-
mines the following joint probability distribution:

P (x) =
n∏

i=1

P (xi|πi) ∀x ∈ ΩX (1)

where xi and πi are the projections of x to Xi and
Πi respectively. Let be E ⊂ X the set of observed
variables and e ∈ ΩE the instantiated value. Each
observation, Xi = ei, can be represented by means of
a Dirac function defined as δXi

(xi; ei) = 1 if ei = xi,
xi ∈ ΩXi

, and δXi
(xi; ei) = 0 if ei 6= xi. An algorithm

that computes the a posteriori distribution P (xq|e)
for each xq ∈ ΩXq

, Xq ∈ X \E, (Xq is a queried vari-
able) by making local computations is called a propa-
gation algorithm. This distribution verifies:

P (xq|e) ∝
∑

XR

∏

Xi∈X

P (xi|πi)
∏

Xi∈E

δXi
(xi; ei) (2)

where XR = X \ {{Xq},E}. In fact, the previous
formula is the expression for P (xq, e). P (xq|e) can be
obtained from P (xq, e) by normalization.

CNs relax the precise probability assessments of BNs.
In this work we suppose that the conditional mass
functions of a CN are required to belong to a credal
set defined as follows. A credal set for a variable Xi

is a convex, closed set of probability distributions and
shall be denoted by K(Xi). We assume that every
credal set has a finite number of extreme points (also
called vertices), although it may contain an infinite
number of mass functions. A credal set can be iden-
tified by enumerating its vertices.

An extensive conditional credal set [14] about Xi given
the set of parent variables Πi will be a closed, convex
set K(Xi|Πi) of mappings P : Xi ×Πi −→ [0, 1], ver-
ifying

∑
xi∈ΩXi

P (xi, πi) = 1, ∀πi ∈ ΩΠi
. Again, an

extensive conditional credal set can be determined by
its set of extreme points which we assume to be finite:
Ext[K(Xi|Πi)] = {P1, . . . , Pl}. In a CN each vari-
able is associated with an extensive conditional credal
set K(Xi|Πi). In this paper, we suppose that a local
credal set K(Xi|Πi = πi) is given for each πi of Πi.
This is described by Rocha and Cozman [19] as sepa-
rately specified credal sets. For example Fig. 1 shows
a CN with two variables (X and Y ). Conditional in-
formation for X is given by two separately specified
credal sets (K(X|Y = y1) and K(X|Y = y2)). From
the separately specified credal sets, we obtain the ex-
tensive conditional credal set with:

K(Xi|Πi) = {P |P (xi, πi) ∈ K(Xi|Πi = πi),
∀πi ∈ ΩΠi

} (3)

X

Y

K(Y ) y1 y2

r1 0.1 0.9
r2 0.2 0.8

K(X|Y = y1) x1 x2

p1 0.2 0.8
p2 0.3 0.7

K(X|Y = y2) x1 x2

q1 0.4 0.6
q2 0.6 0.4

Figure 1: A simple credal network

Table 1 shows the extensive conditional credal set
K(X|Y ) obtained from the separately specified credal
sets K(X|Y = y1) and K(X|Y = y2) of Figure 1.

K(X|Y ) x1, y1 x2, y1 x1, y2 x2, y2

p1, q1 0.2 0.8 0.4 0.6
p1, q2 0.2 0.8 0.6 0.4
p2, q1 0.3 0.7 0.4 0.6
p2, q2 0.3 0.7 0.6 0.4

Table 1: An extensive conditional credal set

As in BNs, the topology G, of a CN represents in-
dependence relations between variables using the d-
separation criterion. The meaning of such indepen-
dences depends on which concept of independence for
credal sets is adopted. This paper uses the concept
of strong independence [13, 12]. The strong extension
K(X) of a CN is the largest joint credal set such that
every variable is strongly independent [13, 12] of its
nondescendants nonparents given its parents. It is
the joint credal set that contains every possible com-
bination of vertices for all credal sets in the network,
where the vertices are combined by multiplication as
in Expression 1 [13]. That is, the strong extension
K(X) of the CN is the convex hull (CH) of the col-
lection of joint mass functions that can be obtained
with every possible combination of the vertices of the
separately specified credal sets K(Xi|πi):

K(X) = CH{P (X) : P (x) =
n∏

i=1

P (xi|πi),

∀x ∈ ΩX,∀πi ∈ ΩΠi
, P (Xi|πi) ∈ K(Xi|πi)} (4)

A CN can be regarded as a collection of BNs [1] where
the topology is given by G. The joint probability of
each BN is defined by one of the vertices of K(X).
So, the CN defines the following collection of joint
probabilities:

P(X) = {Pk(X)}nv

k=1 (5)

where nv is the number of vertices in Ext[K(X)].

This paper is dedicated to inference in the strong ex-
tension of a CN, in particular, to the computation of
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tight bounds for the probability values of a queried
variable Xq given a set of observed variables E.

The combination of two credal sets is the convex hull
of the set obtained by multiplying a mapping of the
first credal set with a mapping of the second credal set
(repeating the probabilistic combination for all pairs
of vertices of the two credal sets). The marginaliza-
tion of a credal set is defined by marginalizing each
mapping of the credal set. A more detailed descrip-
tion of these operations can be found for example in
[9]. With these operations, we can carry out the same
propagation algorithms as in the probabilistic case.

K(X) can also be defined as the multiplication (com-
bination) of all the (extensive) conditional credal sets
K(Xi|Πi) in the credal network:

K(X) =
n∏

i=1

K(Xi|Πi) (6)

The computation of the a posteriori credal set
K(Xq|E) for a queried variable Xq given some evi-
dence E can be done in similar way as in Bayesian
networks (expression 2) by calculating K(Xq,E).

K(Xq,E) = (K(X)
∏

Xi∈E

δXi
(xi; ei))↓Xq (7)

The vertices in K(Xq,E) are mappings from ΩXq

in [0, 1]. K(Xq|E) can be calculated by normaliz-
ing the vertices in K(Xq,E). If Ext[K(Xq,E)] =
{Pk(Xq)}nv

k=1 is the set of vertices of K(Xq,E), then
the computation of tight bounds for the a posteriori
probabilities of Xq given the evidence E can be done
with:

P (xq|e) = min
k=1,...,nv

Pk(xq)∑
xq

Pk(xq)

P (xq|e) = max
k=1,...,nv

Pk(xq)∑
xq

Pk(xq)
(8)

Exact computation in CNs has a high complexity [5],
much more than in BNs. It could be done by propa-
gating in the nv BNs defined by the CN.

3 Standard and Binary Trees

Probability trees [20] and binary probability trees
[8] have been used as flexible data structures that
enables the specification of context-specific indepen-
dences (see [4]) and provides exact or approximate

representations of probability potentials. SPTs and
BPTs are usually a more compact representation of
potentials than tables, because they allow inference
algorithms to take advantage of context-specific in-
dependences. In previous works we have defined de-
tailed algorithms [20, 8] for making the basic oper-
ations (combination, marginalization and restriction)
on potentials, directly over SPTs and BPTs.

3.1 Probability Trees

A standard probability tree T is a directed labelled
tree, in which each internal node represents a variable
and each leaf represents a non-negative real number.
Each internal node has one outgoing arc for each state
of the variable that labels that node; each state labels
one arc. The size of a tree T , denoted by size(T ), is
defined as its nodes count.

A subtree of T is a terminal tree if it contains only
one node labelled with a variable name, and all the
children are numbers (leaf nodes).
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BA C p(A, B,C)

B

C A

A 0.5 0.7 0.3

0.2 0.3

b1

B

C A

0.25 0.30.70.5

Figure 2: Potential p, its representation as a proba-
bility tree and its approximation after pruning

Figure 2 displays a potential p and its representation,
using a SPT. This tree shows that the potential is
independent of the value of A in the context {B =
b1, C = c2} (the value in the potential is 0.5 for {A =
a1, B = b1, C = c2} and {A = a2, B = b1, C = c2}).
The tree contains the same information as the table,
but only requires five values, while the table contains
eight values. Furthermore, SPTs enable even more
compact representations. This is achieved by pruning
certain leaves, replacing them with the average value,
as shown in the second tree shown in Fig. 2. The
trade-off is a loss of accuracy.

3.2 Binary Probability Trees

A binary probability tree BT is similar to a SPT. It
can also be defined as a directed labelled tree, where
each internal node is labelled with a variable, and
each leaf is labelled with a non-negative real number.
But in this case, each internal node has always two
outgoing arcs, and a variable can label several nodes
in the path from the root to a leaf node. Another
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difference is that, for an internal node labelled with
Xi, the outgoing arcs can generally be labelled with
more than one state of the domain of Xi, ΩXi

. The
size of a BPT (i.e., the number of nodes) is equal to
twice the number of leaves minus one.

For example, Fig. 3 (ii) shows a BPT for the table
in (i). In the figure, we use a superscript number at
each node of the tree, in order to easily identify it.
The domain of A, ΩA, is {a1, a2, a3}, and the domain
of B, ΩB , is {b1, b2, b3}. This potential can also be
represented with the SPT shown in Fig. 3 (iii). It
can be seen that the BPT contains only five leaves,
whereas the SPT contains seven. The SBT shown in
Fig. 3 (iii) is able to capture a context-specific inde-
pendence: the potential does not depend on B when
A = a1. The BPT in Fig. 3 (ii) captures the previ-
ous independence, but it is also able to capture other
fine-grained independences. For example, the poten-
tial does not depend on B when A = a2 and B 6= b3

(B = b1 or B = b2). This independence cannot be
represented with the SPT of Fig. 3 (iii).

(i)

BB

(ii) (iii)

P (A|B)
a1

a2

a3

b3b1

0.3 0.3
0.45 0.45 0.2
0.25 0.25 0.5

0.3
b2

A
a2a1 a3

0.3
b3b3b1 b1

0.45 0.45 0.2 0.25 0.25 0.5

b2 b2

A(1)

a1

b3
B(4)

A(3)

a2

B(5)

0.45(6) 0.2(7) 0.25(8) 0.5(9)

a2, a3

b1, b2 b1, b2

a3

b3

0.3(2)

Figure 3: Potential P (A|B) as table, BPT, and SPT

3.3 Constructing standard and binary trees

In [20] and [8] we have proposed a methodology for
constructing a SPT T or a BPT BT from a potential
p. These methods were inspired by the methods for
inducing classification trees, such as Quinlan’s ID3
algorithm [18], which builds a decision tree from a set
of examples. But the measure used as the splitting
criterion in SPTs and BPTs was specifically adapted
to probabilities. Here we summarize the procedure
for BPTs. For SPTs, a similar procedure is used.

Let p be a potential for a set of variables XI . It is
generally possible to obtain several BPTs for p, de-
pending on the order assigned to the variables of XI

in the internal nodes of the tree, and the distribution
at each internal node of the available variable states
over its outgoing arcs.

The process begins with a BPT BT 0 with only one
node (a leaf node) labelled with the average of the
potential values: Lt =

∑
xI∈ΩXI

p(xI)/|ΩXI
|.

A greedy step is then applied successively until we
obtain an exact BPT, or until a given stop criterion is
satisfied. At each step, a new BT j+1 is obtained from

the previous one, BT j . The greedy step requires the
choice of a splitting criterion. It consists of expanding
one of the leaf nodes t in BT j with a terminal tree
(with t rooting the terminal tree, and two new nodes
tl and tr as children of t). Node t will be labelled
with one of the candidate variables. Suppose Ωt

Xi
,

Ωt
Xi
⊆ ΩXi

, is the set of availabe states of Xi at node
t. It is also necessary to distribute the set of available
states Ωt

Xi
of the chosen candidate variable Xi into

two subsets, Ωtl

Xi
and Ωtr

Xi
, to label the two outgoing

arcs (left and right) of t. This process is illustrated
in Fig. 4, where the terminal node t in tree BT j is
expanded using variable B. The set of available states
of B at node t, Ωt

B = {b1, b2, b3} was partitioned into
the sets Ωtl

B = {b1} and Ωtr

B = {b2, b3}. After applying
this process, we say that the leaf node t has been
expanded with variable Xi and the sets of states Ωtl

Xi

and Ωtr

Xi
.

t

a1
A

0.3

a2, a3

b1
B

A

tl tr

a2, a3

b2, b3

a1

0.3

BT j+1

BT j

Figure 4: Expansion of the terminal tree t with B

The choice of the splitting criterion requires a distance
to measure the goodness of the approximation of a
BPT BT for a given potential p. If we denote by
BT and p the probability distributions (normalized
potentials) proportional to BT and p, respectively,
then the distance from a BPT BT to a potential p is
measured using the Kullback-Leibler divergence [16]:

D(p,BT ) =
∑

xI∈ΩXI

p(xI) log
p(xI)
BT (xI)

(9)

Kullback-Leibler’s divergence is always positive or
zero. It is equal to zero if BT provides an exact rep-
resentation of the potential p. It is a standard diver-
gence used in information theory to measure the dif-
ference between two probability distributions. Here
we use it to measure differences between potentials
that are not really probability distributions (they rep-
resents conditional credal sets containing transparent
variables), but experiments show that its use is a good
heuristic procedure applied when reordering the vari-
ables of a tree or when pruning leaf nodes.

In [8] we proposed as splitting criterion to choose the
partition that maximizes the information gain ob-
tained for the current BPT BT j after performing the
mentioned expansion on leaf node t. For SPTs the
information gain is calculated with:
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I(t,Xi) = D(p, Tj)−D(p, Tj(t,Xi)) (10)

where Tj(t,Xi) is the SPT Tj after expanding node t
with the variable Xi.

For BPTs the information gain obtained after expand-
ing node t is calculated with:

I(t,Xi,Ωtl

Xi
,Ωtr

Xi
) = D(p,BT j)

−D(p,BT j(t,Xi,Ωtl

Xi
,Ωtr

Xi
)) (11)

where BT j(t,Xi,Ωtl

Xi
,Ωtr

Xi
) is BT j after expanding

node t with variable Xi and a partition of its available
states Ωt

Xi
into sets Ωtl

Xi
and Ωtr

Xi
.

It is immediate to see that I(t,Xi,Ωtl

Xi
,Ωtr

Xi
) ≥ 0. By

maximizing I(t,Xi,Ωtl

Xi
,Ωtr

Xi
) in the current greedy

step, we manage to minimize Kullback-Leibler’s dis-
tance to potential p in that step.

The information gain (expressions 10 and 11) ob-
tained by expanding node t, can be efficiently calcu-
lated in SPTs and BPTs (see Proposition 1 in [20, 8]).

The methodology explained in this section for build-
ing a SPT or BPT can also be used to reorder the
variables (or the split sets) of a SPT or BPT resulting
from an operation of combination or marginalization.
This enables us to move the most informative vari-
ables to the upper levels of the tree. So, if a pruning
operation is applied, only the less informative vari-
ables will be removed. The process to reorder a BPT
BT is the same as the one for building a BPT from
a potential p. Here, p is the potential that BT repre-
sents. So, we can build a new BPT applying the same
procedure explained in this section.

3.4 Pruning standard and binary trees

During the inference process it is possible that some
trees have a large size, making it impossible to obtain
any result with the available memory of our computer.
Pruning of SPTs [20] was proposed as a way to con-
trol the size of trees during the propagation process.
This operation has also been extended to BPTs [8].
In this way, we can obtain a result from an inference
algorithm although it will be approximate. Basically,
a pruning in a SPT or BPT consists of replacing a
terminal tree by the average of values that it repre-
sents. For example, if we wish to prune the terminal
tree rooted by node (4) in the BPT of Fig. 3 (ii),
we must replace it by (0.45 + 0.45 + 0.2)/3. In [6]
we demonstrated that the pruned tree obtained with
the previous procedure is the tree that minimizes the

Kullback-Leibler divergence between the exact poten-
tial and all the trees with the same structure as that
pruned tree.

In [20, 8] it is proposed to repeat the pruning process
until the tree contains no terminal tree which infor-
mation loss is under a given threshold ∆. The infor-
mation loss is also calculated with the difference of the
Kullback-Leibler’s distances, before and after pruning
(expressions 10 and 11). The goal of the pruning of
a tree involves detecting leaves that can be replaced
by one value without a big increment in Kullback-
Leibler’s divergence of the potential represented by
that tree, before and after pruning.

Again, the information loss can be locally computed
at node t in the current SPT or BPT.

4 Propagating credal sets using
binary probability trees

The simpler approximate algorithm for propagating
credal sets using SPTs is based on the Variable Elim-
ination algorithm [11]. VE is one of the most pop-
ular algorithms for computing a posteriori informa-
tion in probabilistic graphical models using local com-
putations. It was independently proposed by Shafer
and Shenoy [21], Zhang and Poole [22] and Dechter
[15]. The input of this algorithm is a set of potentials
and a queried variable. It iteratively eliminates vari-
ables from the set of potentials by using combination
and marginalization until only the queried variable
remains in the set of potentials.

In this paper, we propose to use also the VE algorithm
to propagate in CNs, but using BPTs (see Algorithm
1) to represent the credal sets K(Xi|Πi). In CNs,
all the variables should be removed (by marginaliza-
tion) except the queried variable and the transparent
variables (see bellow for an explanation of transpar-
ent variables). Here, the set of potentials is the set
{K(Xi|Πi)} of extensive conditional credal sets in the
CN.

For each Xi, we originally have a collec-
tion of m separately specified credal sets
{K(Xi|π1), . . . ,K(Xi|πm)}, where m is the number
of configurations of Πi. The problem is transformed
into an equivalent one by using a transparent vari-
able Tπi

for each configuration of the parents of
Xi (πi ∈ ΩΠi

). Tπi
will have as many cases as

the number of vertices in the separately specified
credal set K(Xi|πi). Each vertex of the extensive
conditional credal set K(Xi|Πi) can be obtained by
fixing each transparent variable Tπi

to one of its
values. This transformation is equivalent in size to
the one proposed by Antonucci et al. in [1], although
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that one requires modifications in the graph of the
CN.

SBTs and BPTs enable an extensive conditional
credal set K(Xi|Πi) to be represented efficiently when
it comes from m separately specified credal sets
{K(Xi|π1), . . . ,K(Xi|πm)} and with a single data
structure (the necessary space for the tree is propor-
tional to the sum of the necessary spaces for the m
local trees). In Fig. 5, we can see one example where
a BPT represents the extensive conditional credal set
K(X|Y ) associated to the two separately specified
credal sets K(X|Y = y1) and K(X|Y = y2). In the
BPT in Fig. 5, we can obtain the extreme points of
K(X|Y ) by fixing Ty1 and Ty2 to each one of its val-
ues. For example, if the BPT is restricted to Ty1 = t1y1

and Ty2 = t2y2
, we obtain a new BPT that gives us the

extreme point of K(X|Y ) associated to p1 and q2.
The tree avoids repetition of probability values, re-
ducing the space necessary with respect to the table
representation.

x1 x2 x3

0.2

0.3 0.3 0.4

0.4 0.4

K(X|Y = y1)

p1

p2

x1 x2 x3

0.4

K(X|Y = y2)

q1

q2

0.4 0.2

0.6 0.2 0.2

X

0.2 0.4

x1

0.3 0.4

x3

0.4 0.2 0.6 0.2

X
x1, x3

X
x2

X
x2, x3 x1 x2, x3x1, x2

Ty1

t1y1
t2y1

t1y2
t2y2

Ty2

Y
y2y1

Figure 5: A binary probability tree for K(X|Y )

Algorithm 1: Variable Elimination
Input : K = {K(Xi|πi) : i = 1, . . . , n} the set of separately

specified credal sets in the CN; e the set of observed
values, e ∈ ΩE; a variable of interest Xq ,
Xq ∈ X \E; and ∆ the threshold for pruning

Output: P (xq |e) and P (xq|e) for each xq ∈ ΩXq , Xq ∈ X \E

1 Get the set SBT of binary trees, building each binary tree
BT i from the credal sets K(Xi|πi), ∀πi ∈ ΩΠi

(as in Figure 5)

2 Transform each BT i into BT R(e)
i (restrict to evidence)

3 Reorder variables and split sets in every BT i

4 Prune each BT i with the ∆ threshold
5 foreach Y ∈ X \ (E ∪ {Xq}) do
6 Let SY = {BT i|Y ∈ s(BT i)}
7 Calculate BT prod =

Q

BT i∈SY
BT i

8 Calculate BT sum = BT ↓s(BT prod)\Y

prod

9 Reorder variables and split sets in BT sum

10 Prune BT sum using the ∆ threshold
11 SBT = {(SBT \ SY }) ∪ BT sum

12 Calculate BT q =
Q

BT i∈SBT BT i

13 Get P (xq |e) and P (xq|e) by normalizing the vertices in BT q

In our version of the VE algorithm (Algorithm 1),
each conditional credal set K(Xi|Πi) is represented
with a BPT as in Fig. 5 from the set of separately

specified credal sets {K(Xi|πi),∀πi ∈ ΩΠi
}. This is

done in step 1 of the algorithm. The evidence (if
available) is incorporated with restriction operations
(step 2). Then each tree is reordered (step 3) so that
the most informative variables appear in the upper
levels of the tree, using the procedure described in
Section 3.3. Step 4 consists of pruning the trees using
a given ∆ threshold in order to reduce their sizes as
much as possible. The loop (step 5) deletes a variable
(non-transparent) in each iteration. The combination
of trees containing the variable to be removed is per-
formed in step 7. This operation is made directly over
trees (see [8]). The resulting tree is marginalized to
discard the variable to be removed using marginaliza-
tion (step 8). Again, this operation is made directly
over the tree (see [8]). Steps 9 and 10 reorder the
variables of the tree (see Section 3.3) and prune it re-
spectively. The pruning operation can select any vari-
able (normal or transparent one) in the tree. Finally,
the resulting trees (all of them will be defined only
on the queried variable and on transparent variables)
are combined to produce a single tree (step 12). Fi-
nally the upper and lower bounds for the probability
of the queried variable can be obtained by normaliz-
ing each one of the vertices in BT q (step 13) using
expression 8. The pruning reduces the complexity of
posterior operations. The more transparent variables
are pruned the less vertices appears in the final credal
set obtained with the BPT in step 12 of the algo-
rithm. When a ∆ = 0.0 threshold is used, no variable
will be pruned unless there are context specific inde-
pendences in the potentials. In the worst case, using
∆ = 0.0, the BPT obtained in step 12 corresponds to
a credal set with nv possible vertices.

With respect to the complexity of Algorithm 1, using
∆ = 0.0, if the potentials do not contain any context
specific independence, no pruning will be done, and
so inference is equivalent to make nv propagations
in a BN. This is the worst case. Using values of ∆
greater than 0.0 we can reduce the size of potentials
and so computing times. A theoretical evaluation of
the computational complexity is out of the scope of
this paper.

5 Experiments

In order to compare the performance of SPTs and
BPTs we have used two classical BNs (Alarm [2] and
Insurance [3]). The number of states for the variables
in these networks is maintained as in their original
specifications. These networks contain variables with
more than two states. For each model, we obtained a
CN by randomly generating separately specified con-
ditional credal sets for each variable Xi and each con-
figuration of the parents of Xi. The number of vertices
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at each K(Xi|πi) is selected as follows: For a given
percentage of the configurations in ΩΠi

we associated
a given number of vertices in the credal sets K(Xi|πi).
For the rest of configurations we used only one ver-
tex. This allows us to control the potential size of the
strong extension of the CN, so that exact inference is
not too difficult to be done in our computers, in order
to allow the comparison of the error of approximate
inference with respect to the exact one. The process
to randomly select the probabilities for the vertices
at each separately specified credal set K(Xi|πi) is as
follows. When only one vertex must be used we take
the probability values in the original BN. When sev-
eral vertices are used we take as basis the probabil-
ity distribution in the original BN (P (Xi|πi)). If a
value equal to 0.0 is found for a given configuration
of P (Xi|πi), it will be kept for that configuration. If
a value equal to v, v > 0.0, is found, we select a new
uniform random value in the interval [−v, v] (nega-
tive values are converted into positive). The resulting
vertex is then normalized. This procedure do not pro-
duce too much context specific independences in the
resulting potentials, but we must take into account
that these kind of independences are present in our
representation of extensive conditional credal sets by
means of trees. For example, in Fig. 5 the potential
do not depend on Ty2 when Y = y1.

Several experiments have been done using different
variables for each network. In some cases we have
considered that some of the variables of the network
are observed. In Table 2 we show for each experi-
ment (Ex), the chosen variable (Var), the name of the
network, the number of observed variables (|E|), the
number of vertices per credal set (nvpc), the percent-
age of configurations (per) of ΩΠi

that will contain
nvpc vertices, and the potential size of the strong ex-
tension (nv) of the CN. In the calculus of nv we sup-
pose that the barren nodes for the given query have
been removed from the network.

Ex Var Network |E| nvpc per nv

1 Venttube Alarm 0 3 90 354294
2 Expco2 Alarm 0 3 17 177147
3 RiskAversion Insurance 0 3 70 177147
4 DrivHist Insurance 0 3 31.5 177147
5 Venttube Alarm 6 3 12.25 354294
6 DrivHist Insurance 9 3 12 944784

Table 2: Experiments we have done

We have measured the maximum required size of
SPTs and BPTs during the propagation (biggest tree
used in the computations), the mean square error for
the a posteriori bounds of the queried variable and
the running time used by the propagation algorithm.
The mean square error for a queried variable Xq is
measured using the following expression:

v

u

u

t

P

xq∈ΩXq
((P ∗(xq|e) − P (xq|e))2 + (P

∗
(xq|e) − P (xq|e))2)

2 · |ΩXq |
(12)

where P ∗(xq|e, P
∗
(xq|e) are the approximate lower

and upper bounds and P (xq|e, P (xq|e) the exact ones.

These parameters (mean square error, maximum size
and time) are measured running the Algorithm 1 with
several values for the ∆ threshold using SPTs and
BPTs. We have used values for ∆ in the interval
[10−7, 10−2]. Each experiment was run ten times.
Each time, we began randomly generating the proba-
bilities for each credal set. So, average of mean square
error, maximum size and time (in seconds) are calcu-
lated and reported in figures 6 to 11 for the different
experiments. For each experiment, we show the aver-
age mean square error versus largest tree size required
in the two versions of the propagation algorithm (us-
ing SPTs and BPTs) and the average mean square
error versus average time required in the two versions
of the propagation algorithm (using SPTs and BPTs).

As expected with both kind of trees, high values of ∆
cause large errors but require lower computing time
and smaller trees. Small values of ∆ give small errors
but require a high computing time and large trees.

The figures allow to compare propagation with SPTs
and BPTs for each experiment. In some cases, we
can see a noticeable reduction in the size and required
time using BPTs with respect to SBTs: that is, the
same level of error can be achieved with BPTs, but
with a very important reduction in size and time. This
is the case of Experiment 1 for VENTTUBE variable
(4 states) in Alarm network (Fig. 6), Experiment 3
for RiskAversion (4 states) in Insurance network (Fig.
8), Experiment 5 for VENTTUBE variable in Alarm
network using 6 observed variables (Fig. 10). There
are also cases where the performance of SPTs and
BPTs is quite similar. For example, see Experiment
2 for EXPCO2 variable (4 states) in Alarm network
(Fig. 7) or Experiment 6 for DrivHist in Insurance
network using 9 observed variables (Fig. 11).

We have also tried to propagate using tables for repre-
senting the extensive conditional credal sets, like the
one in Table 1, but our computer run out of memory
in all the experiments in about 18 minutes. This is
because a table does not allow to capture the context
specific independences for transparent variables, and
so the size of potentials increases quicker for tables in
the propagation process, even if we do not use prun-
ing in trees. We have also compared the maximum
tree size and computing time. Obviously computing
time increases when bigger trees are used (figures are
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Figure 6: Inference for VENTTUBE in Alarm network (no evidence)
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Figure 7: Inference for EXPCO2 in Alarm network (no evidence)
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Figure 8: Inference for RiskAversion in Insurance network (no evidence)

not includes because of the space).

6 Conclusions

In this paper we have proposed the use of BPTs to
propagate in CNs. BPTs and SPTs make possible
to control the accuracy of the propagation by means

of a given threshold ∆ used for pruning the trees.
The choice of ∆ is a trade-off between accuracy and
computing time. The experiments show that BPTs
offer better performance than SPTs in some cases,
and similar one in other cases. So, we think that
BPTs is a better representation for the potentials of
a CN.
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Figure 9: Inference for DrivHist in Insurance network (no evidence)
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Figure 10: Inference for VENTTUBE in Alarm network (evidence in 6 variables)
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Figure 11: Inference for DrivHist in Insurance network (evidence in 9 variables)

In the future we intend to perform more exhaus-
tive experiments so we can characterize the situations
where BPTs will be better than SPTs. In this way we
will check the complete list of unobserved variables in
these networks and in other classical BNs. We will
also analyze the impact of the number of vertices in
the conditional credal sets in the performance of BPTs

with respect to SPTs.
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Abstract

We deal with the statistical matching problem and in
particular we study the problem related to the manag-
ing of inconsistencies. In fact, when logical relations
among the variables are present incoherence can arise
in the probability evaluations. The aim of this pa-
per is to remove such incoherences by using different
methods. Specific precise distances minimization or
least committal imprecise probability extensions are
adopted. We compare these methods using a prac-
tical example that brings to light the peculiarities of
the statistical matching problem.

Keywords. Statistical matching, incoherence, infer-
ence, specialized discrepancy measure.

1 Introduction

In several economic applications there is a need to
consider different data sources and to integrate the in-
formation coming from them [3, 13, 23, 25, 26]. In par-
ticular, we deal with the so called statistical match-
ing problem, that can be represented by the follow-
ing simple situation: there are two different sources,
A and B, with some overlapping variables and some
variables collected only in one source. Let X repre-
sent the common variables, Y denotes the variables
collected only in A, and Z those only in B. Thus, the
data consist of a first sample (X, Y ) and a second
sample on (X, Z). In this context data are missing
by design since they have been already collected sep-
arately, and to get jointly data on Y and Z would be
expensive and time-consuming.

Traditionally, to cope with these problems the avail-
able data are combined with assumptions strong
enough to point-identify the joint probability distri-
bution (see references in [26]): we recall, for example,
those based on a conditional independence assump-
tion, i.e. the variables Y and Z are independent con-
ditional on X.

However, in several situations the independence as-
sumption is not adequate, as first raised by Sims [31]
(see also [25, 28, 29, 32]). Other methods aim at in-
corporating auxiliary information about relationships
between Y and Z to avoid or to relax conditional in-
dependence assumption (see, e.g. [32]). Although this
is an important case, it is not always feasible because
the required external knowledge may not be available.

Actually, since there are many distributions on
(X, Y, Z) compatible with the available partial infor-
mation on (X, Y ) and (X, Z), it is too restrictive to
consider just one of the compatible distributions, ob-
tained perhaps by taking a specific assumption (as
already noted in [14, 17, 30] and for the missing data
problem [11, 22, 34]).

This problem has been faced in a coherent conditional
probability setting in [35, 36]: coherence allows us to
check the compatibility of partial (conditional) assess-
ments, to manage further available knowledge, for ex-
ample coming from field experts; moreover it allows us
to draw inferences by considering all the compatible
distributions.

A further remarkable advantage of using this ap-
proach is that we are able to consider multiple in-
tegration, that is important for real applications (for
instance, see [33] for some economic Hungarian ap-
plications based on the combination of three different
surveys).

Moreover, this approach [36] allows to manage logi-
cal constraints characterizing the relevant links among
variables describing the phenomenon. In particular,
in [36] it is proved that when there is no logical con-
straint among the variables, coherence is always satis-
fied by also requiring conditional independence, then
this hypothesis is legitimate from a syntactical point
of view (even if it is useful to look for all compati-
ble coherent extensions). On the other hand, when
logical constraints are present it is necessary to check
global coherence of the relevant partial assessments
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drawn from the different sources and if coherence is
not satisfied we need to remove incoherences. In [35]
this is done by looking for the “minimal” incoherent
assessments and to remove them in order to restore
coherence by using the L1 norm.

The aim of this paper is to deal with incoherences
and to look for the coherent assessment “closest”
to the given one with respect to different distances
(L1, L2, Kulback-Leibler divergence, discrepancy).
Then, when coherence is restored we can draw in-
ference: for each (conditional) event we can directly
build the interval of all coherent probability values
solely on the base of a partial assessment, i.e. it is
not needed to artificially fulfill the missing values of
the data base. It is important to remark that the
interval bounds are computed analytically.

Actually, our aim is in the same line of those based on
multiple imputation [30] and its extension [26], which
aims at approximating the lower and upper bounds
for the quantities of interest in the multinormal set-
ting. A similar approximation for these bounds is
carried out in [14] on the base of maximum likelihood
approach.

To let this paper be as much as possible self-contained,
in Section 2 we introduce the basic notions and char-
acteristic of coherent conditional partial assessments,
either based on precise p or on imprecise lub evalu-
ations given on a finite domain E . Coherence of an
assessment is required to perform a sound inference
that for partial assessments coincide with a coherent
extension. Hence also basic extension notions, both
for the precise and imprecise context, are given. Af-
terwards in Section 3 the main (pseudo)distances be-
tween conditional assessments are introduced. It is
in fact thanks to their minimization that consistent
correction of incoherent assessments will be possible.
Such (pseudo)distances can be based on geometrical
properties, e.g. L1 and L2 norms, or on information
theoretic foundation, e.g. KL divergence, or can de-
rive from proper scoring rules, e.g. discrepancy ∆,
suitably tailored for partial conditional assessments.
In Subsection 3.1 it is sketched an alternative way
of restoring consistency: whenever it is possible to
identify a coherent sub-assessment (G,p|G), it can be
coherently extended to the rest of the initial domain
F = E \ G. This inevitably produces an imprecise
conditional probability assessment. Subsequently, in
Section 4, the statistical matching problem is refor-
mulated inside a conditional probability assessment
framework and conditions are given that guarantee
the coherence of the whole assessment. On the con-
trary, whenever there are logical constraints among
the variables under investigation, even starting from
separately coherent sources of information, the whole

assessment could result incoherent. In Section 5 this
is well described by a simple example. This section
is the core of our contribution, where the previous
concepts are merged together and the two main ap-
proaches for inconsistency correction, the minimiza-
tion of (pseudo)distances or the extension of a coher-
ent sub-assessment, are specialized to the statistical
matching problem. It is also shown how the pecu-
liarity of the statistical matching suggests a special-
ization of the general discrepancy ∆ into a peculiar
one ∆mix. This new discrepancy is a mixture of the
original one applied to the different scenarios and the
consequent inconsistency correction, obtained by its
minimization, leaves unchanged the marginal distri-
bution of the common variables X. To better show
the advantages and drawbacks of the proposed meth-
ods, in Section 6 we introduce an example built from
data taken from [14]. The final short concluding Sec-
tion 7 sums up the proposed methodologies.

2 Preliminaries about coherent
conditional probability

Whenever several sources of information, that could
represent expert’s opinions and/or knowledge bases,
are merged together, we can generally start to deal
with an overall domain E = [E1|H1, . . . , En|Hn].

The events Ei’s represent the situations under consid-
eration, while the Hi’s usually represent the different
contexts, or scenarios, under which the Ei’s are eval-
uated.

The basic events E1, . . . , En,H1, . . . , Hn can be en-
dowed with logical constraints, that represent depen-
dencies among particular configurations of them (e.g.
incompatibilities, implications, partial or total coinci-
dences, etc.).

In the following EiHi will denote the logical connec-
tion “Ei and Hi” (Ei∧Hi), Ec

i will indicate “not Ei”,
the contrary of Ei, and the event H0 =

∨n
i=1 Hi will

represent the whole set of contexts.

Starting with the basic events E1, . . . , En,H1, . . . , Hn,
it is possible to span a sample space Ω = {ω1, . . . , ωk},
where ωj represents a generic atom that is the elemen-
tary element in the algebra generated by the Ei and
Hi. Note that the sample space Ω, together with H0,
are not part of the assessment but only auxiliary tools.

Every probability mass function α : P (Ω) → R cor-
responds to a non-negative vector α = [α1, . . . , αk],
with αj = α(ωj), then for every event E it results
α(E) =

∑
ωj⊆E αj .

We need to introduce a nested hierarchy among prob-
ability distributions sets:
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• A =
{

α,
∑k

1 αi = 1, αj ≥ 0, j = 1, . . . , k
}

;

• A0 =
{
α ∈ A|α(H0) = 1

}
;

• A1 = {α ∈ A0|α(Hi) > 0, i = 1, . . . , n}.

It is easy to see that the set A1 is a convex set and
A0 is the closure of A1 in the usual topology.

We focus our attention on coherent (conditional)
probability assessments p, that can be reduced to the
compatibility with a conditional probabilities, as in-
troduced by Dubins [15] and De Finetti [12] (see also
Krauss [18] and Rényi [27]).

Definition 1 Let E = [E1|H1, . . . , En|Hn] be an ar-
bitrary set of conditional events, an assessment p
on E is said to be a coherent conditional probabil-
ity if there exists a conditional probability P (·|·) de-
fined on B × (B \ ∅) (with B the algebra spanned by
E1, H1, ..., En,Hn) which restriction to E coincides
with p.

Every probability distribution α ∈ A1 generates a
coherent conditional probability assessment qα on E
through the usual formula

qαi =
∑

ωj⊆EiHi

αj/
∑

ωj⊆Hi

αj for all i = 1, . . . , n. (1)

Note that qα is a continuous function of α when α ∈
A1. When α ∈ A0, the previous formula (1) defines
qα only on

Eα := {Ei|Hi ∈ E , α(Hi) > 0} . (2)

To cover the case of conditioning events with null
probability, in fact we need to resort to a suitable
class of probability distributions α1, . . . ,αl agreeing
with P (·|·) (for more details refer to the characteriza-
tion theorem reported e.g. in [9, 10]).

Coherence is crucial since it is a prerequisite for a
sound inference, that means extension of the given
assessment to any new conditional event. In fact the
following theorem, essentially due to [12], holds:

Theorem 1 Let p be an assessment on an arbitrary
family E; then there exists a (possibly not unique) co-
herent extension of p to any family K ⊃ E if and only
if p is a coherent conditional probability on E.

Moreover, if p is a coherent conditional probability on
E, then the coherent probability values for any condi-
tional event F |K ∈ K \ E belong to a closed interval
[pF |K , pF |K ].

The aforementioned coherent interval [pF |K , pF |K ]
can be obtained by solving specific linear optimization

problems (for details refer again to [10]) based on suit-
able classes of probability distributions {α1, . . . ,αl}
agreeing with p.

The notion of coherence also apply to imprecise con-
ditional assessments, i.e. whenever the numerical part
of the assessment is elicited through interval values

lub = ([lb1, ub1], . . . , [lbn, ubn]). (3)

Of course, some of the intervals [lbi, ubi] could degen-
erate to a precise value pi.

For assessments such as (E , lub), although defined on
finite spaces, there could be different kinds of consis-
tency requirements (for a detailed exposition, among
others, refer to [24]). The basic consistency notion
is the so called avoiding of partial loss, while in this
paper we focus on the most stringent one: (strong)
coherence. By taking into account a Bayesian sen-
sitivity analysis interpretation, coherent lower-upper
conditional probability assessments (E , lub) are such
that intervals’ lower (upper) extremes lbi (ubi) can be
obtained as lower (upper) envelopes of sets of coher-
ent precise conditional probability assessments on E .
It follows that to have a coherent lower-upper assess-
ment (E , lub), there should exist a set of probability
classes α1, . . . ,αl such that they induce probabilities
for the Ei|Hi inside the ranges [lbi, ubi], and moreover
each lower (lbis) and upper (ubis) bound on a condi-
tional event is attained in at least one distribution.

Also, starting from a coherent lower-upper assess-
ment (E , lub), it is possible to infer coherent bounds
[pF |K , pF |K ] for the probability of any target condi-
tional event F |K through specific sequences of linear
optimization problems and/or satisfiability of logical
configurations (for details refer to [4]).

3 Coherent adjustments

Given an incoherent conditional probability assess-
ment, for example, on a domain arising from the merg-
ing of separately coherent partial probability assess-
ments, we need to restore coherence in a way to pre-
serve, as much as possible, the information on the ini-
tial assessments, without introducing exogenous infor-
mation. This goal is obtained generally by minimizing
some kind of distance among partial conditional as-
sessments.

(Pseudo)distances among probability distributions
are usually defined through divergencies (e.g. Eu-
clidean distance, Kulback-Leibler divergence, Csiszár
f-divergences, etc.). Some of them can be applied only
among unconditional probability distributions; others
could be applied in our context of partial conditional
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assessments, but could have no probabilistic justifica-
tion, being purely geometrical tools.

Given two conditional assessments p = [p1, . . . , pn]
and q = [q1, . . . , qn] on the same set of conditional
events E , the most widely adopted divergencies among
them are:

1. L1(p,q) =
n∑

i=1

|qi − pi|;

2. L2(p,q) =
n∑

i=1

(qi − pi)2;

3. KL(p,q) =
n∑

i=1

(qi ln(qi/pi)− qi + pi).

L1 and L2 are usual metric distances, endowed with
all their geometric properties, but until now remain
without an intuitive probabilistic interpretation for
conditional assessments. Moreover, their use in con-
ditional context could lead to numerical troubles due
to non-convexity of coherent assessments, as the fol-
lowing simple example borrowed from [2] shows:

Example 1 Consider E = [A|H, B|AH, AB|H] with
A,B, H logically independent. Hence the sample space
is composed by 8 atoms, 4 of them inside H0 ≡ H.
The set of coherent assessments QE is formed by the
triples [q1, q2, q3] ∈ [0, 1]3 with q3 = q1 q2.

Then, the set QE is evidently non-convex.

KL is the so called logarithmic Bregman divergence.
In the unconditional framework, such divergence is
the most frequently adopted, because of its informa-
tion theoretic properties. In fact, it generalizes the
well known Kulback-Leibler divergence [19] to partial
assessments. Anyhow, it is known that this Bregman
divergence is generated by a logarithmic scoring rule
that has a peculiarity that in some cases it is better to
avoid: it evaluates only the events that occur, without
considering those that turn out to be false.

To overcome this characteristic and to encompass the
need of considering the conditional framework where
the assessment is given, recently in [6, 8] for partial
conditional assessments v = [v1, . . . , vn] ∈ (0, 1)n over
E = [E1|H1, . . . , En|Hn], the following random vari-
able has been proposed as scoring rule:

S(v) :=
n∑

i=1

|EiHi| ln vi +
n∑

i=1

|Ec
i Hi| ln(1− vi) (4)

with |·| the indicator function of unconditional events.

The motivation of such a score is that the assessor
“loses less” the higher the probabilities are of occur-

ring events, and at the same time, the lower the prob-
abilities of events are, which do not occur. The values
assessed on events that turn out to be undetermined
do not influence the score. Such a score S(v) is an
extension to partial and conditional probability as-
sessments of the “total-log proper scoring rule” for
probability distributions proposed by Lad in [20, pag.
355].

By considering the difference between the expected
penalties suffered by the two evaluations p and qα
as distance criterion, it is possible to define the “dis-
crepancy” ∆(p, α) between a partial conditional as-
sessment p over E and a distribution α ∈ A0 through
the expression

∑

i|α(Hi)>0

α(Hi)
(

qi ln
qi

pi
+ (1− qi) ln

(1− qi)
(1− pi)

)
(5)

taking the convention 0 ln(0) = 0. Note that in
∆(p, α) each term is weighted by α(Hi), which re-
flects the “relevance” of each context Hi with respect
to all the assessments.

The main idea is to take as coherent correction of p
the assessment qp ≡ qα̃ generated by the distribution
α̃ solution of the nonlinear optimization program

min
α∈A0

∆(p, α). (6)

The motivation for this choice is that (intuitively) the
assessor of p would expect to suffer the penalty S(p),
hence we select the coherent assessment qp that has
a (probabilistic) expected score as close as possible.

In [8] it is formally proved that ∆(p,α) is a non neg-
ative function on A0 and that ∆(p, α) = 0 if and
only if p = qα; moreover ∆(p, ·) admits a minimum
on A0. Finally if α, α0 ∈ A0 are distributions that
minimize ∆(p, ·), then for all i ∈ {1, . . . , n} such that
α(Hi) > 0 and α0(Hi) > 0 we have (qα)i = (qα0)i;
in particular if ∆(p, ·) attains its minimum value on
A1 then there is a unique coherent assessment qα

such that ∆(p, α) is minimum. On the contrary, if
the minimum is attained in A0 \ A1, i.e. there exists
some conditioning event forced to have null probabil-
ity, the optimization program (6) can be iterated by
restricting the assessment only on the different “zero
layers” (for details refer again to [8]). Moreover, the
discrepancy measure ∆(p, α) can be used to correct
incoherent assessments and to aggregate expert opin-
ions [6, 8]. ∆(p,α) can even be applied to correct
incoherent assessments and to aggregate conflicting
opinions based on imprecise conditional probabilities
[7] but this feature will not be used here since the sta-
tistical matching analysis will be based on a precise
initial assessment p. Imprecise probabilities can ap-
pear whenever a consistent sub-assessment is selected
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and it is coherently extended to the rest of the do-
main, as it is shown in the next sub-section.

3.1 Coherent Extension

Another possibility to adjust the initially incoherent
assessment (E ,p) could be to determine a coherent
sub-assessment (G,p|G) and coherently extend it to
the rest F = E \ G as prescribed by the generalized
Bayesian updating scheme (see e.g. [9, 10, 36] among
others). Since, in general, coherent extension pro-
duces intervals of plausible values, with this approach
the whole assessment turns out to be imprecise due to
the interval values ((F , [pF ,pF ])). Also in such a sit-
uation, inference can pe performed again through the
generalized Bayesian updating scheme but applied to
imprecise evaluations (see e.g. [1, 4] among others).
Whenever such inferences are too vague, i.e. when
the intervals are very wide (close to [0,1]), they can
be eventually reduced by a procedure proposed in [5]
that enucleates coherent cores, i.e. surely coherent
subintervals with highest degree of support. This is
motivated by the fact that, in general, not all the
subintervals of the extensions are coherent, whereas
this is guaranteed by the choice of such coherent cores
since they are total coherent (for this stronger consis-
tency notion refer e.g. to [16]).

The choice of the coherent sub-assessment (G,p|G)
should follow some criterion, since it could not be
uniquely determined. Anyhow, for the specific ap-
plication to statistical matching that is the scope of
the present paper, such a choice comes quite natu-
rally since in [35] it has been shown that it is possible
to detect the incoherent sub-assessment (F ,p|F ) with
minimal cardinality.

4 Integration of sources in a coherent
setting

We briefly describe how the problem of integration of
sources, named statistical matching, can be formal-
ized in the coherent conditional probability setting.
In particular here we refer to the case of two sources
as already described in [35], while the case of more
sources has been studied in [36].

Let us denote by (X1, Y1), ..., (XnA
, YnA

) and by
(XnA+1, ZnA+1), ..., (XnA+nB , ZnA+nB ) two random
samples (with a finite range) related to two sources A
and B. We suppose that the two samples both con-
cern the same population of interest and are drawn ac-
cording to the same sampling scheme. We can regard,
under the above conditions, (X1, Y1), ..., (XnA

, YnA
)

(analogously (XnA+1, ZnA+1), ..., (XnA+nB , ZnA+nB ))
exchangeable, as well as the sequence X1, ..., XnA

,

XnA+1, ..., XnA+nB
.

We can elicit from the two files the relevant probabil-
ity values: from file A the conditional probabilities

Yj|i = PY |(X=xi)(Y = yj), (7)

that the next unit has Y = yj on the hypothesis that
(X = xi) (for any xi taken by X), and analogously
from file B the conditional probability values

Zk|i = PZ|(X=xi)(Z = zk). (8)

Moreover, from data on both files we can evaluate

X i = PX(X = xi). (9)

Given Yj|i,Zk|i,X i, for any i, j, k, one needs to check
coherence of the whole assessment (E ,p), that is

E ={
(X = xi), (Y = yj)|(X = xi), (Z = zk)|(X = xi)

for any xi, yj , zk

}
,

p = {X i, Yj|i,Zk|i}i,j,k .
(10)

Now we recall the result proved in [36], that claims
that when the partitions EX , EY , EZ associated to the
variables are logically independent (i.e. for any A ∈
EX , B ∈ EY , C ∈ EZ , A ∧ B ∧ C ̸= ∅) coherence is
assured.

Theorem 2 Let X, Y, Z be three finite random vari-
ables and consider the following three coherent as-
sessments {PX(X = xi)}i, {PY |X=xi

(Y = yj)}j and
{PZ|X=xi

(Z = zk)}k.

Then the assessment

{PX(X = xi) , PY |X=xi
(Y = yj) : for any xi, yj}

(analogously {PX(X = xi), PZ|X=xi
(Z = zk) :

for any xi, zk}) is coherent.

Moreover, if the partitions EY , EZ are logically in-
dependent with respect to EX (i.e. (X = xi, Y =
yj , Z = zk) is possible for any value xi of X, yj of
Y , zk of Z s.t. the events (X = xi, Y = yj) and
(X = xi, Z = zk) are possible), then the whole assess-
ment (10) is coherent.

On the other hand, when there are some logical con-
straints among the variables Y and Z, the coherence
of the whole assessment (10) is not assured by coher-
ence of the single assessments (7-9) (see [35]). Notice
that the need of managing logical constraints arises
from practical applications [14].

5 Removing inconsistencies in
statistical matching

We have now all the elements to specialize the general
approaches for inconsistencies correction described in
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Section 3 for the specific setting of the statistical
matching as depicted in the previous Section 4.

The starting point is that the whole assessment (10)
is not coherent, then inconsistencies must be detected
in order to restore coherence. This kind of problem
has already been studied (e.g. see [21]) in combin-
ing assessments given by different experts: the ap-
proach to the identification and reconciliation of in-
coherence uses an external observer equipped with a
prior distribution and likelihood function. Actually,
this approach does not seem suitable in the context
of statistical matching because of the lack of infor-
mation on the variables not jointly observed, so that
the prior distribution cannot be updated and the like-
lihood function has a flat ridge (as already noted in
[30]). Hence we propose a different method: to restore
coherence we can easily find the minimal restriction
of the whole assessment which is not coherent (as pro-
posed in [36]) and adjust it by a specialization of the
techniques presented in Section 3. Let us see it into
details.

As claimed by Theorem 2, in statistical matching
incoherences are related to conditional events with
the same conditioning event (X = xi). Hence the
check of coherence of the whole assessments (10) can
be reduced to the check of coherence for the sub-
assessments

{
Yj|i, Zk|i : for fixed i and any j, k

}
. (11)

Once not coherent sub-assessments of type (11)
have been disclosed, they can be adjusted by find-
ing coherent values that minimize some of the
(pseudo)distances presented in Section 3.

Whereas classical distances - L1, L2 and KL - can be
directly applied to such minimal incoherent restric-
tion since their arguments are directly the conditional
probabilities, for the discrepancy ∆(p, α) a “reformu-
lation” is required. In fact, we require that its expres-
sion (5) specifically acts on values for any conditioning
events (X = xi). This is possible by considering the
following mixture of discrepancies ∆mix(p, {αi}i):

∑

i

X i


∑

j

(
qαi

j|i ln
qαi

j|i
Yj|i

+ (1− qαi

j|i) ln
(1− qαi

j|i)

(1− Yj|i)

)
+

+
∑

k

(
qαi

k|i ln
qαi

k|i
Zk|i

+ (1− qαi

k|i) ln
(1− qαi

k|i)

(1− Zk|i)

)]
(12)

where each distribution αi works just on the
sample space spanned by the conditional events
{(Y = yj)|(X = xi), (Z = zk)|(X = xi)}, it is con-
strained to fulfill the normalizing condition

αi(X = xi) = X i, (13)

and generates the conditional probabilities

qαi

j|i =
αi(Y = yj)
αi(X = xi)

qαi

k|i =
αi(Z = zk)
αi(X = xi)

. (14)

As already mentioned, coherence of the overall assess-
ment (E ,q), with

q = {X i, q
αi

j|i, q
αi

k|i}i,j,k

is guaranteed by Theorem 2.

Since the specialized discrepancy defined in equation
(12) is a mixture of discrepancies, each one working
on a specific scenario (X = xi), its use in an opti-
mization program like (6) allows to adjust only the
values inside sub-domains of E conditioned to scenar-
ios (X = xi) where some incoherence appear, with-
out changing the other values. This characteristic dif-
ferentiates the specialized discrepancy (12) from the
original discrepancy (5), as the following simple ex-
ample shows:

Example 2 Let {x1, x2}, {y1, y2, y3}, {z1, z2, z3} be
the sample space of three r.v. X, Y, Z with constraints

(Z = z1) ∧ ((Y = y1) ∨ (Y = y2)) = ∅

and
(Z = z2) ∧ (Y = y1) = ∅.

Consider the following conditional assessment p:

X1 = 1
3 X2 = 2

3

Y1|1 = 387
1111 Y2|1 = 102

1111 Y3|1 = 622
1111

Y1|2 = 2
3 Y2|2 = 0 Y3|2 = 1

3

Z1|1 = 179
1108 Z2|1 = 443

1108 Z3|1 = 486
1108

Z1|2 = 2
3 Z2|2 = 1

9 Z3|2 = 2
9

.

It is easy to check that p on events (X = xi) is co-
herent, as well as Yj|i = P (Y = yj |X = xi) (and
analogously Zk|i = P (Z = zk|X = xi)) for any
(X = xi). However, the whole assessment is not co-
herent, and incoherence is localized on events condi-
tioned to (X = x2).

By applying either ∆(p, α) or ∆mix(p, {αi}i) the
same correction on those values is induced (see Ta-
ble 1), whereas with the former also the unconditional
values for P (X = xi) are modified, even if they are
coherent.

Note that, with such specialized discrepancy, the sub-
domains, where incoherence must be removed, are im-
plicitly detected, without the need of a preliminary
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E P ∆ ∆mix

X = x1 0.3333 0.3726 -
X = x2 0.6667 0.6274 -
Y = y1|X = x1 0.3483 0.3483 0.3483
Y = y2|X = x1 0.0918 0.0918 0.0918
Y = y3|X = x1 0.5599 0.5599 0.5599
Z = z1|X = x1 0.1616 0.1616 0.1616
Z = z2|X = x1 0.3998 0.3998 0.3998
Z = z3|X = x1 0.4386 0.4386 0.4386
Y = y1|X = x2 0.6667 0.4156 0.4156
Y = y2|X = x2 0 0.0996 0.0996
Y = y3|X = x2 0.3333 0.4848 0.4848
Z = z1|X = x2 0.6667 0.4848 0.4848
Z = z2|X = x2 0.1111 0.0996 0.0996
Z = z3|X = x2 0.2222 0.4156 0.4156

Table 1: Correction comparison for Example 2. In
boldface changes associated to unconditional events,
while in italic changes associated to conditional ones

inspection of the assessment (E ,p). Moreover the ad-
justments are weighted by the relevance of the scenar-
ios expressed through the X i’s in (12).

From these data we can also get a comparison between
∆ and ∆mix: actually ∆ also changes the probability
distribution on (X = xi)’s in order to reduce the min-
imum value taken from ∆ even if Theorem 2 assures
the separate coherence of the probability assessments
(X i, Yj|i) and (X i,Zj|i), for any i = 1, 2 and j = 1, 2, 3.
Then, we can stress that for the statistical matching
problem ∆mix seems to be more appropriate than ∆.

Another criterion (further than the quoted ones based
on L1, L2,KL minimizations) for restoring coherence
could be based on the maximum likelihood criterion:
when the evaluations are obtained through the maxi-
mum likelihood criterion, we can maximize the “par-
tial likelihood function” on the set of events generat-
ing incoherence. Also in this situation we have an op-
timization problem with a non-linear objective func-
tion and a set of linear constraints.

Note that if we apply this criterion to data in Exam-
ple 2 the marginal distribution of X does not change
and the adjustment is localized on the assessment over
(X = x2), analogously to what happens with ∆mix.
We have not reported these values on Table 1 because
the aim of the example is just to stress the difference
between ∆ and ∆mix. Explicit results of the maxi-
mum likelihood criterion will appear in the next sec-
tion.

6 A practical example

In order to show our proposal we develop an exam-
ple with data taken from [14] and studied also in [36].
The data are a subset of 2313 employees (people at
least 15 years old) extracted from 2000 pilot survey of
the Italian Population and Household Census. Three
categorical variables have been analyzed: Age, Ed-
ucational Level and Professional Status. In file A,
containing 1148 units, the variables Age and Profes-
sional Status are observed, while file B, consisting of
1165 observations, the variables Age and Educational
Level are considered. The variables are grouped in
homogeneous response categories as follows: A1=15-
17 years old, A2=18-22 years old, A3=23-64 years
old, A4=more than 65 ; E1=None or compulsory
school, E2=Vocational school, E3=Secondary school,
E4=Degree; S1=Manager, S2=Clerk, S3=Worker.

Logical constraints between the variables Age and Ed-
ucational level (Age and Professional Status) are de-
noted by the symbol “–” (to be distinguished from the
zero frequencies) in Table 2 (Table 3): for example, in
Italy a 17 years old person cannot have a University
degree. Tables 2 and 3 show, respectively, the distri-
bution of Age and Professional Status in file A, and
in file B that related to Age and Educational Level.

Prof. Status

Age S1 S2 S3 Tot.

A1 – – 9 9
A2 – 5 17 22
A3 179 443 486 1108
A4 6 1 2 9

Tot. 185 449 514 1148

Table 2: Distribution of Age and Professional Status
in file A.

Educ. level

Age E1 E2 E3 E4 Tot.

A1 6 0 – – 6
A2 14 6 13 – 33
A3 387 102 464 158 1111
A4 10 0 3 2 15

Tot. 417 108 480 160 1165

Table 3: Distribution of Age and Educational level in
file B.

Additional logical constraints involving both the vari-
ables Professional Status and Educational level are
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the following ones:

S1 ∧ (E1 ∨ E2) = ∅ and S2 ∧E1 = ∅.

By considering the frequencies (that, whenever co-
herent, correspond also to the maximum likelihood
estimations) as evaluation of the relevant conditional
probabilities, we get the assessment reported in Ta-
ble 4. Such conditional probability assessment is not

A1 A2 A3 A4

P (·) 0.0065 0.0238 0.9594 0.0104
P (S1|·) −− −− 0.1616 0.6667
P (S2|·) −− 0.2273 0.3913 0.1111
P (S3|·) 1 0.7727 0.4293 0.2222
P (E1|·) 1 0.4242 0.3419 0.6667
P (E2|·) 0 0.1818 0.0918 0
P (E3|·) −− 0.3940 0.4176 0.2
P (E4|·) −− −− 0.1422 0.1333

Table 4: Conditional probability assessment elicited
from frequencies of Tab.2 and Tab.3.

coherent as shown in [36]. The incoherencies need to
be identified and removed. It comes out that P (·|A4)
is not coherent since from logical constraints between
Educational Level and Professional Status it follows
E1 ∧ S1 = ∅ and E1 ⊆ S3, respectively, while from
Table 4 result P (E1|A4) + P (S1|A4) + P (S3|A4) > 1
and P (E1|A4) > P (S1|A4).

Then, we could either identify, as proposed in [36],
the minimal set of conditional events involved in in-
coherencies that is F = {E1|A4, S1|A4, S3|A4}, or ad-
just, with respect to a suitable distance, the whole
distribution on Professional Status and Educational
Level conditioned to A4.

Different corrections are considered and the results
are shown in Table 5, where

• L1|F gives the solution proposed in [36] by min-
imizing L1 distance only among F , the minimal
incoherent subset of E ;

• L1|A4, L2|A4, KL|A4 gives the solutions obtained
by minimizing usual distances discussed in Sec-
tion 3 only among events conditioned to A4;

• ∆MIX gives the solution obtained by minimizing
the specific discrepancy (12);

• ML gives the maximum likelihood estimation;

• IPE\F gives the coherent lower-upper extension
induced by the given assessment on E \ F ;

• IPE\{·|A4} gives the coherent lower-upper exten-
sion induced by the given assessment on E \
{Si|A4, Ej |A4 : i = 1, 2, 3 ; j = 1, ..., 4};

• the last column gives the extensions of the re-
spective corrections on the inference target S3|E4

with the respective “core” rows showing the total
coherent sub-interval extension with maximum
support in line with [5].

Note that only the values conditioned to A4 are re-
ported, those involved in the incoherence (the other
18 values remaining the same as the given assessment
p).

Firstly, we compare the rows related to remove the
minimal set of incoherence, and it seems that L1|F
and IPE\F perform similarly. Even though we can
observe a drastic change on the probability values,
mainly induced by removing not all the set of condi-
tioning events with conditioning A4 but just a subset
(a minimal subset), they induce quite reasonable in-
ference bounds. In particular, the imprecise adjust-
ment IPE\F performs quite well. In fact it induces in-
ference bounds for S3|E4 similar to the precise correc-
tions with the advantage of having the possibility to
enucleate the “core” sub-interval. This sub-interval,
even though it remains quite vague, has the positive
aspect of bounding away from zero the lower proba-
bility, and this is seen very often as a positive aspect.

Note that L1|A4 and ML give similar results and in
particular they leave to 0 the probability of E2|A4

since the absence of observations in the original data.
And the impossibility to change null values is one of
the peculiarities of maximum likelihood criterion.

On the other hand, we observe that precise adjust-
ments on the whole assessment conditioned to A4

have all quite similar behaviors for the other distances
taken into consideration, and in particular they also
modify the assessment related to E2|A4, where there
is no observation.

The advantage of ∆mix correction is its automatic
localization of the scenarios (in this specific exam-
ple A4) where the adjustment can be performed and
their relative importance expressed by the uncondi-
tional probabilities X i. Note that we apply ∆mix,
instead of ∆, in order to avoid any change on the
probability distribution of X, that is coherent with
any conditional probability on Y |(X = x) (or equiv-
alently Z|(X = x)), for any x, as shown in Theorem
2. In fact, ∆ tighten to change also the distribution
of X (through the weights) in order to reduce the in-
consistencies, as shown in Example 2.

On the other hand, the wider imprecise correction
IPE\{·|A4}, being the one with less assumption re-
quirement, surely performs worst. Its vagueness on
the values conditioned on A4 is due to freedom in-
duced by the coherence characterization, and this re-
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S1|A4 S2|A4 S3|A4 E1|A4 E2|A4 E3|A4 E4|A4 S3|E4

p 0.6667 0.1111 0.2222 0.6667 0 0.2000 0.1333 ∅
L1|F 0.2222 - 0.6667 0.6667 - - - [0,0.6285]
L1|A4 0.5266 0 0.4734 0.4734 0 0.2836 0.2431 [0,0.6234]
L2|A4 0.5333 0.0389 0.4278 0.4278 0.0389 0.3 0.2333 [0,0.6238]
KL|A4 0.4856 0.1179 0.3965 0.3965 0.1179 0.2914 0.1942 [0,0.6257]
∆mix 0.4985 0.0939 0.4077 0.4077 0.0939 0.2943 0.2042 [0,0.6252]
ML 0.4286 0.0714 0.5000 0.5000 0 0.3000 0.2000 [0,0.6254]

IPE\F [0 , 0.2222] - [0.6667 0.8889] - - - - [0,0.6386]
core [0.0017,0.6286]

IPE\{·|A4} [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0 , 1] [0,0.6607]
core [0,0.6349]

Table 5: Several incoherence correction with associated inference results for the target S3|E4

flects also on the inference performances.

Note that we report, just as an example, only the
extension values for a conditional event, however we
could compute all the values of the (conditional)
events of interest, as for example on the partition gen-
erated by the three random variables.

7 Conclusion

Checking coherence and removing incoherences in the
data is a long debated problem in literature, we have
studied it by focusing on statistical matching applica-
tions. In fact, in this kind of application the incoher-
ence can arise when the variables are linked by logical
relations.

We have applied several incoherence adjustment pro-
cedures in this specific ambit. From this study some
differences among these adjustments come out. Due
to peculiarities of source integration and lack of infor-
mation on the variables not jointly observed, usual
divergences techniques can be specialized. In par-
ticular, a specific adjustment of a discrepancy, orig-
inally introduced for general conditional probability
assessment, shows the advantage of an automatic and
weighted localization of the sub-domains where inco-
herence must be removed.

We have analyzed also a very simple practical appli-
cation and we have shown that better results are ob-
tained not simply focusing on the minimal number
of incoherent values, but involving all the elements
conditioned to the same scenarios, where incoherence
arises. On the other hand, coherent imprecise adjust-
ment performs better focusing on the minimal number
of incoherent values. This entail a minimal number
of changes with respect the original assessment, but
has as counterpart obvious vaguer inference conclu-
sions. Vagueness that can however be reduced by the
aforementioned “maximally supported” sub-intervals

detection.
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Abstract

We introduce a robust regression method for impre-
cise data, and apply it to social survey data. Our
method combines nonparametric likelihood inference
with imprecise probability, so that only very weak as-
sumptions are needed and different kinds of uncer-
tainty can be taken into account. The proposed re-
gression method is based on interval dominance: in-
terval estimates of quantiles of the error distribution
are used to identify plausible descriptions of the rela-
tionship of interest. In the application to social sur-
vey data, the resulting set of plausible descriptions is
relatively large, reflecting the amount of uncertainty
inherent in the analyzed data set.

Keywords. Robust regression, imprecise data, non-
parametric statistics, likelihood inference, imprecise
probability distributions, survey data, informative
coarsening, complex uncertainty, interval dominance,
identification regions.

1 Introduction

Data are often available only with limited precision.
However, only few general methods for analyzing the
relationships between imprecisely observed variables
have been proposed so far. These approaches seem
to fall in two categories. One of them consists of
approaches suggesting to apply standard regression
methods to all possible precise data compatible with
the observations, and to consider the range of out-
comes as the imprecise result: see for example [8].
The approaches in the second category consist in rep-
resenting the imprecise observations by few precise
values (for example, intervals by center and width),
and in applying standard regression methods to those
values: see for instance [7].

In the present paper, we follow another line of ap-
proach and suggest a new regression method directly
applicable to the imprecise data. This method com-

bines likelihood inference with imprecise probability.
It allows to take into account different kinds of uncer-
tainty, that are also reflected in the imprecise results
of the regression. The suggested method imposes only
very weak assumptions and yields extremely robust
results. In particular, it is nonparametric, in the sense
that no assumptions about the error distribution are
necessary, in contrast, for instance, to the approach
of [20]. We describe the regression method in Sec-
tion 3, which is based on the general methodology for
inference with imprecise data introduced in Section 2.

In addition to the theoretical results, in Section 4 we
apply the method to analyze an interesting question
in the social sciences. We investigate the relationship
between age and income on the basis of survey data.
The source of data used in this paper is “Allgemeine
Bevölkerungsumfrage der Sozialwissenschaften (ALL-
BUS) — German General Social Survey” of 2008. The
data is provided by GESIS — Leibniz Institute for the
Social Sciences.

2 Imprecise Data

Let V1, . . . , Vn be n random objects taking values in
a set V, and let V ∗1 , . . . , V

∗
n be n random sets tak-

ing values in a set V∗ ⊆ 2V , such that the events
Vi ∈ V ∗i are measurable. We are actually interested
in the data Vi, but we can only observe the imprecise
data V ∗i . The connection between precise and impre-
cise data is established by the following assumptions
about the probability measures considered as models
of the situation.

For each ε ∈ [0, 1], let Pε be the set of all proba-
bility measures1 P such that the n random objects
(V1, V

∗
1 ), . . . , (Vn, V

∗
n ) are independent and identically

distributed and satisfy

P (Vi ∈ V ∗i ) ≥ 1− ε. (1)

1Probability measures and random objects are defined on
an underlying measurable space.
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We assume that the precise and imprecise data can
be modeled by a probability measure P included in a
particular set P ⊆ Pε, for some ε ∈ [0, 1]. Each P ∈ P
can be identified with a particular joint distribution
for Vi and V ∗i (that is, the precise and imprecise data,
respectively) satisfying condition (1). In particular,
P = Pε corresponds to the fully nonparametric as-
sumption that any joint distribution for Vi and V ∗i
satisfying condition (1) is a possible model of the situ-
ation (this is the assumption we consider in Sections 3
and 4). The usual choice for the value of ε is 0 (see for
example [6, 17]), which corresponds to an assumption
of correctness of the imprecise data: V ∗i = A implies
Vi ∈ A (a.s.). However, this assumption is often too
strong: some imprecise data can be incorrect, in the
sense that V ∗i = A, but Vi /∈ A. This is for example
the case, when the imprecise data represent the clas-
sification of the precise data into categories, and some
observations are misclassified. By choosing a positive
value for ε, we allow each imprecise observation to be
incorrect with probability at most ε.

The set V∗ describes which imprecise data V ∗i = A
are considered as possible. As extreme cases we have
the actually precise data (when A is a singleton) and
the missing data (when A = V). In general, the fully
nonparametric assumption P = Pε does not exclude
informative coarsening (see for example [23]): para-
metric models or uninformative coarsening can be im-
posed by a stronger assumption P ⊂ Pε. However, it
is important to note that the set Pε depends strongly
on the choice of V∗. For example, when ε = 0, the
choice of a set V∗ such that its elements build a parti-
tion of V implies the assumption that the coarsening
is deterministic and uninformative, because each pos-
sible precise data value is contained in exactly one
possible imprecise observation A ∈ V∗.

2.1 Complex Uncertainty

In general, we are uncertain about which of the prob-
ability measures in P is the best model of the reality
under consideration. Our uncertainty is composed of
two parts. On the one hand, we are uncertain about
the distribution of the imprecise data V ∗i : this uncer-
tainty decreases when we observe more and more (im-
precise) data. On the other hand, even if we (asymp-
totically) knew the distribution of the imprecise data
V ∗i , we would still be uncertain about the distribu-
tion of the (unobserved) precise data Vi: this uncer-
tainty is unavoidable. To formulate this mathemat-
ically, let PV and PV ∗ be the marginal distributions
of Vi and V ∗i , respectively, corresponding to the prob-
ability measure P ∈ P. There is uncertainty about
PV ∗ in the set2 PV ∗ := {P ′V ∗ : P ′ ∈ P}, but even if

2The symbol := denotes “is defined to be”.

PV ∗ were known, there would still be an unavoidable
uncertainty about PV in the set

[PV ∗ ] := {P ′V : P ′ ∈ P, P ′V ∗ = PV ∗}.

The sets [PV ∗ ] with PV ∗ ∈ PV ∗ are the identification
regions for PV in the terminology of [12]. Each of
them consists of all the distributions for the precise
data Vi compatible with a particular distribution for
the imprecise data V ∗i . Hence, each set [PV ∗ ] can be
interpreted as an imprecise probability distribution on
V. By observing the realizations of the imprecise data
V ∗i , we learn something about which of the imprecise
probability distributions [PV ∗ ] is the best model for
the (unobserved) precise data Vi.

Example 1 Let V = {0, 1} and V∗ = 2{0,1}, and as-
sume P = Pε for some ε ∈ [0, 1]. Then PV ∗ is the set
of all probability distributions on 2{0,1} such that the
probability of ∅ is at most ε. For each PV ∗ ∈ PV ∗ ,
the identification region [PV ∗ ] is the set of all proba-
bility distributions on {0, 1} such that the probability
of 1 lies in the interval

[
PV ∗{1}, PV ∗{1}

]
, with

PV ∗{1} = max (PV ∗ {{1},∅} − ε, 0)

PV ∗{1} = min (PV ∗ {{1}, {0, 1}}+ ε, 1) .

In particular, when ε = 0, the imprecise probability
distribution [PV ∗ ] corresponds to the belief function
on {0, 1} with basic probability assignment PV ∗ (see
for example [16]), in the sense that [PV ∗ ] is the set of
all probability distributions on {0, 1} dominating that
belief function.

2.2 Likelihood

The likelihood function is a central concept in sta-
tistical inference. For parametric probability mod-
els, it is usually expressed as a function of the pa-
rameters: here we consider the more general formu-
lation (as a function of the probability measures),
which is applicable also to nonparametric models (see
for example [14]). The observed (imprecise) data
V ∗1 = A1, . . . , V

∗
n = An induce the (normalized) like-

lihood function lik : P → [0, 1] defined by

lik(P ) =
P (V ∗1 = A1, . . . , V

∗
n = An)

supP ′∈P P ′(V ∗1 = A1, . . . , V ∗n = An)
=

=
∏n

i=1 PV ∗{Ai}
supP ′∈P

∏n
i=1 P

′
V ∗{Ai}

for all P ∈ P. The likelihood function describes the
relative ability of the probability measures P in pre-
dicting the observed (imprecise) data. Therefore, the
value lik(P ) depends only on the marginal distribu-
tion PV ∗ of the imprecise data V ∗i . The likelihood
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function can be interpreted as the second level of a
hierarchical model for imprecise probabilities, with P
as first level (see for example [4, 5]). In particular, for
any β ∈ (0, 1), the likelihood function can be used to
reduce P to the set

P>β := {P ∈ P : lik(P ) > β}

of all the probability measures that were sufficiently
good in predicting the observed (imprecise) data.

Let g be a multivalued mapping3 from P to a set G,
describing a particular characteristic (in which we are
interested) of the models considered. For example, g
can be the multivalued mapping from P to R assigning
to each probability measure P the p-quantile of the
distribution of h(Vi) under P , for some p ∈ (0, 1) and
some measurable function h : V → R. This is the
kind of mapping g we consider in Sections 3 and 4:
it is multivalued, because in general quantiles are not
uniquely defined4. For each β ∈ (0, 1), the set

G>β :=
⋃

P∈P>β

g(P )

is called likelihood-based confidence region with cutoff
point β for the values of the multivalued mapping g.
This confidence region consists of all values that the
characteristic described by g takes on the set P>β

of all the probability measures that were sufficiently
good in predicting the observed (imprecise) data.

The unique function likg : G → [0, 1] describing these
confidence regions, in the sense that

G>β = {γ ∈ G : likg(γ) > β}

for all β ∈ (0, 1), is called (normalized) profile likeli-
hood function induced by the multivalued mapping g.
It can be easily checked that5 for all γ ∈ G,

likg(γ) = sup
P∈P : γ∈g(P )

lik(P ).

Example 2 In the situation of Example 1, let ε = 0,
and consider the mapping6 g from P to [0, 1] assigning
to each probability measure P the probability PV {1}
that a precise data value Vi is 1 (before observing the
corresponding imprecise data value V ∗i ). The induced
profile likelihood function7 likg on [0, 1] is plotted in
Figure 1 for the cases in which the imprecise data

3Mathematically, g : P → 2G \ {∅}, but g is interpreted as
an “imprecise” mapping from P to G.

4A p-quantile of the distribution of h(Vi) is any value q ∈ R
such that P (h(Vi) < q) ≤ p ≤ P (h(Vi) ≤ q).

5In this paper, sup ∅ = 0.
6As a multivalued mapping, g is defined by g(P ) = {PV {1}}

for all P ∈ P.
7The details of the calculation of likg are not of primary

interest at this point.
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Figure 1: Profile likelihood functions from Examples
2 and 3.

{0}, {1}, and {0, 1} have been observed 11, 21, and 6
times, respectively (solid line), and 213, 651, and 98
times, respectively (dashed line).

In these two cases, the likelihood-based confidence re-
gions with cutoff point β = 0.15 for the probability
PV {1} are approximately the intervals [0.39, 0.84] and
[0.65, 0.80], respectively (the cutoff point β = 0.15
is represented by the dotted line in Figure 1). They
are (conservative) confidence intervals of approximate
level 95% (see for example [11]).

2.3 Likelihood for Imprecise Data Models

In the situation we consider, we are actually inter-
ested in the (unobserved) precise data Vi. In this case,
the characteristic of interest (described by g) depends
only on the marginal distribution PV of the precise
data Vi; that is, we can write g(P ) =: g′(PV ) for all
P ∈ P. For example, the p-quantile of the distribution
of h(Vi) depends only on the distribution of Vi. By
contrast, as noted at the beginning of Subsection 2.2,
the value lik(P ) depends only on the marginal dis-
tribution PV ∗ of the imprecise data V ∗i . By writing
lik(P ) = lik∗(PV ∗) for all P ∈ P, we define a function
lik∗ : PV ∗ → [0, 1], which can be interpreted as the
likelihood function on PV ∗ .

In order to obtain the profile likelihood function likg,
it can be useful to consider the multivalued mapping
g∗ from PV ∗ to G defined by

g∗(PV ∗) =
⋃

PV ∈[PV ∗ ]

g′(PV )

for all PV ∗ ∈ PV ∗ . The multivalued mapping g∗ as-
signs to each PV ∗ all the values that the characteristic
described by g′ takes on the set [PV ∗ ] of all distri-
butions for the precise data Vi compatible with the
distribution PV ∗ for the imprecise data V ∗i . That is,
g∗ can be interpreted as an imprecise version of g′,
assigning to each imprecise probability distribution
[PV ∗ ] the corresponding imprecise value of g′.

The multivalued mapping g∗ can be useful to obtain
the profile likelihood function likg because, as can be
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easily checked,

likg(γ) = sup
PV ∗∈PV ∗ : γ∈g∗(PV ∗ )

lik∗(PV ∗)

for all γ ∈ G. The right-hand side of this expression
can be interpreted as the value lik∗g∗(γ) of the profile
likelihood function lik∗g∗ induced by the multivalued
mapping g∗, when lik∗ is considered as the likelihood
function on PV ∗ .

The profile likelihood function lik∗g∗ is particularly
interesting, because lik∗ describes the uncertainty
about the distribution PV ∗ of the imprecise data V ∗i ,
which decreases when we observe more and more (im-
precise) data, while g∗ describes the unavoidable un-
certainty about the values of the multivalued mapping
g′. In the terminology of [12], the values of g∗ are the
identification regions for the values of the multivalued
mapping g.

Example 3 The imprecise version g∗ of the mapping
g of Example 2 is the multivalued mapping from PV ∗

to [0, 1] assigning to each PV ∗ the interval
[
PV ∗{1}, PV ∗{1}

]
= [PV ∗ {{1}} , PV ∗ {{1}, {0, 1}}] .

That is, g∗(PV ∗) is the interval probability that a pre-
cise data value Vi is 1 (before observing the corre-
sponding imprecise data value V ∗i ) according to the
imprecise probability distribution [PV ∗ ] (i.e., the belief
function on {0, 1} with basic probability assignment
PV ∗).

The profile likelihood function likg = lik∗g∗ on [0, 1]
is plotted in Figure 1 for the two cases considered in
Example 2. In the case with 38 data (solid line) there
is uncertainty also about the distribution PV ∗ of the
imprecise data V ∗i , while in the case with 962 data
(dashed line) almost only the unavoidable uncertainty
described by g∗ remains, in the sense that lik∗g∗ is al-
most equal to the indicator function of an identifica-
tion region for PV {1} (i.e., of a probability interval[
PV ∗{1}, PV ∗{1}

]
).

3 Regression

Now consider that the (unobservable) precise data are
pairs Vi = (Xi, Yi), where X1, . . . , Xn are n random
objects taking values in a set X , and Y1, . . . , Yn are
n random variables, with V = X × R. For some
V∗ ⊆ 2X×R and some ε ∈ [0, 1], we consider the fully
nonparametric assumption P = Pε. In the remainder
of the paper, we focus on this setting.

We want to describe the relation between Xi and Yi

by means of a function f ∈ F , where F is a particular
set of (measurable) functions f : X → R. In order to

assess the quality of the description by means of f ,
we define the (absolute) residuals

Rf,i := |Yi − f(Xi)| .

The n random variables Rf,1, . . . , Rf,n ∈ [0,+∞) are
independent and identically distributed: the more
their distribution is concentrated near 0, the better
is the description by means of f .

In order to compare the quality of the descriptions
by means of different functions f ∈ F , we need
to compare the concentration near 0 of the distri-
butions of the corresponding residuals Rf,i. Usual
choices of measures for this concentration are the sec-
ond and first moments E(R2

f,i) and E(Rf,i), respec-
tively. However, the moments of the distribution of
the residuals cannot be really estimated in the fully
nonparametric setting we consider, because moments
are too sensitive to small variations in the distribution
(see also Subsection 4.2). In fact, if ε > 0 or the set

Rf := {|y − f(x)| : (x, y) ∈ A, A ∈ V∗}

is unbounded, then the likelihood-based confidence re-
gion for any particular moment of the distribution
of the residuals is unbounded (even when only the
distributions with finite moments are considered), in-
dependently of the cutoff point and of the observed
(imprecise) data.

By contrast, the quantiles of the distribution of the
residuals can in general be estimated even in the fully
nonparametric setting we consider. Therefore, we
propose to use the p-quantile of the distribution of
the residuals Rf,i as a measure of the concentration
near 0 of this distribution, for some p ∈ (0, 1). The
technical details of the estimation of such quantiles
are given in Subsections 3.1 and 3.2.

The minimizations of the second and first moments
of the distribution of the residuals can be interpreted
as the theoretical counterparts of the methods of least
squares and least absolute deviations, respectively. In
the same sense, the minimization of the p-quantile of
the distribution of the residuals can be interpreted
as the theoretical counterpart of the method of least
quantile of squares (or absolute deviations), intro-
duced in [15] as a generalization of the method of
least median of squares (corresponding to the choice
p = 0.5). The method of least quantile of squares
leads to robust regression estimators, with breakdown
point min{p, 1−p} (that is, the highest possible break-
down point 50% is reached when p = 0.5). By con-
trast, the methods of least squares and least absolute
deviations lead to regression estimators with break-
down point 0, since they cannot even handle a single
outlier (including leverage points).
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In the location problem (that is, when F is the set
of all constant functions f : X → R), the values of
the constant functions f minimizing the second and
first moments of the distribution of the residuals Rf,i

are the mean and median of the distribution of Yi,
respectively (when these exist and are unique). The
value of the constant function f minimizing the p-
quantile of the distribution of the residuals Rf,i is the
p-center of the distribution of Yi (that is, the center
of the shortest interval containing Yi with probabil-
ity at least p), when this exists and is unique. The
p-center can be interpreted as a generalization of the
mode of a distribution, since under some regularity
conditions the mode corresponds to the limit of the
p-center when p tends to 0. The p-center of a symmet-
ric, strictly unimodal distribution corresponds to its
median and mean (when this exists), independently
of p. Therefore, the minimizations of the p-quantile,
first moment, and second moment of the distribution
of the residuals lead to the same (correct) regression
function, under the usual assumptions for the error
distribution: see for example [18].

3.1 Determination of Profile Likelihood
Functions for Quantiles of Residuals

We want to determine the likelihood-based confidence
regions for the quantiles of the distribution of the
residuals: to this purpose, we calculate the profile
likelihood function for such quantiles. Let p ∈ (0, 1),
and for each function f ∈ F , let Qf := Lf ∩ Uf , with

Lf =
⋃

r∈Rf

[r,+∞)

when p > ε and Lf = [0,+∞) otherwise, while

Uf =
⋃

r∈Rf

[0, r]

when p < 1−ε and Uf = [0,+∞) otherwise. It can be
easily checked that Qf is the set of all possible values
for the p-quantile of the distribution of the residuals
Rf,i, since P (Rf,i /∈ Rf ) ≤ ε. In particular, if ε <
p < 1− ε, then Qf is the smallest interval containing
Rf .

For each f ∈ F , let Qf be the multivalued mapping
from P to Qf assigning to each probability measure
P the p-quantile of the distribution of the residuals
Rf,i under P . As noted in Subsection 2.2, the map-
ping Qf is multivalued, because in general quantiles
are not uniquely defined. We want to determine the
profile likelihood function likQf

: Qf → [0, 1] induced
by the multivalued mapping Qf . It is important to
note that we would obtain the same results by consid-
ering only the distributions for which the p-quantile

is unique (that is, the vagueness in the definition of
quantiles has no influence on the resulting likelihood-
based confidence regions).

Assume that the (imprecise) data V ∗1 = A1, . . . , V
∗
n =

An are observed, where A1, . . . , An ∈ V∗\{∅}. In
order to obtain the profile likelihood function likQf

for
the p-quantile of the distribution of the residuals Rf,i,
we define for each function f ∈ F and each distance
q ∈ [0,+∞) the bands

Bf,q := {(x, y) ∈ V : |y − f(x)| ≤ q}
Bf,q := {(x, y) ∈ V : |y − f(x)| < q}

and the functions kf , kf on [0,+∞) such that8

kf (q) = #
{
i ∈ {1, . . . , n} : Ai ∩Bf,q ̸= ∅

}

kf (q) = #
{
i ∈ {1, . . . , n} : Ai ⊆ Bf,q

}

for all q ∈ [0,+∞). That is, kf (q) is the number
of imprecise data intersecting Bf,q, while kf (q) is
the number of imprecise data completely contained
in Bf,q. Therefore, in particular, kf (q) ≤ kf (q) for
all q ∈ [0,+∞).

Thanks to the results of Subsection 2.3 and the above
definitions, we can now express the profile likelihood
function likQf

for the p-quantile of the distribution of
the residuals Rf,i as follows (a sketch of the proof is
given in the Appendix):

likQf
(q) =





[
λ
(

kf (q)
n , p− ε

)]n
if kf (q) < (p− ε)n

[
λ
(

kf (q)

n , p+ ε
)]n

if kf (q) > (p+ ε)n

1 otherwise

for all q ∈ Qf , where λ is the function on [0, 1]× (0, 1)
defined by9

λ(s, t) =
(s
t

)−s
(

1− s
1− t

)s−1

for all s ∈ [0, 1] and all t ∈ (0, 1). Hence, likQf
is a

piecewise constant function, which can take at most
n+ 2 different values.

Example 4 Consider the (imprecise) data described
in Subsection 4.1 and depicted in Figure 4, and the
regression function f represented by the upper curve
(blue) in Figure 5. The corresponding profile likeli-
hood function likQf

for the 0.5-quantile of the distri-
bution of the residuals Rf,i is plotted in Figure 2 for
the cases with ε = 0 (solid line) and ε = 0.05 (dashed
line).

8The cardinality of a set A is denoted by #A.
9In this paper, 00 = 1.
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Figure 2: Profile likelihood functions from Examples
4 and 5.

3.2 Determination of Confidence Intervals
for Quantiles of Residuals

Thanks to the above expression for the profile like-
lihood function likQf

, we can now calculate the
likelihood-based confidence regions for the quantiles
of the distribution of the residuals Rf,i. Choose
β ∈ (0, 1) and assume that

(max{p, 1− p}+ ε)n ≤ β (2)

(that is, ε < p < 1 − ε, and n is sufficiently large).
Let K := {0, . . . , n}, and define

k := max
{
k ∈ K : k < (p− ε)n, λ( k

n , p− ε) ≤
n
√
β
}

k := min
{
k ∈ K : k > (p+ ε)n, λ( k

n , p+ ε) ≤ n
√
β
}

.

Then k < k, and for each f ∈ F , the interval

Cf :=
{
q ∈ [0,+∞) : k < kf (q), kf (q) < k

}

is the likelihood-based confidence region with cut-
off point β for the p-quantile of the distribution of
the residuals Rf,i. The interval Cf consists of all
q ∈ [0,+∞) such that the band Bf,q intersects at least
k + 1 imprecise data, and the band Bf,q contains at
most k − 1 imprecise data. When ε = 0, the interval
Cf is asymptotically a (conservative) confidence in-
terval of level Fχ2(−2 log β) for the p-quantile of the
distribution of the residuals Rf,i, where Fχ2 is the cu-
mulative distribution function of the chi-square distri-
bution with 1 degree of freedom (see for example [13]).
The exact level of the (conservative) confidence inter-
val Cf can be obtained directly from its definition, by
means of simple combinatorial arguments (also when
ε > 0).

It is important to note that the confidence intervals
Cf do not depend on the choice of the set V∗ of
possible imprecise data (as far as the observed ones,
A1, . . . , An, are contained in it). This can be sur-
prising, since the set P = Pε of probability measures
considered depends strongly on V∗, as noted at the
beginning of Section 2. However, the independence of

the confidence intervals Cf from the choice of the set
V∗ is not so surprising when one considers that the
intervals Cf are likelihood-based confidence regions,
and that likelihood inference is always conditional on
the data (that is, independent of considerations about
which other data could have been observed). This can
be considered as a sort of robustness against misspec-
ification of the set V∗ of possible imprecise data. The
practical advantage is that it is not necessary to think
about which other imprecise data could have been ob-
served, besides the ones that were actually observed
(that is, A1, . . . , An).

Example 5 In the situation of Example 4, the con-
fidence interval Cf with β = 0.15 is approximately
[1429, 1874] when ε = 0, and [1304, 1929] when ε =
0.05 (the cutoff point β = 0.15 is represented by the
dotted line in Figure 2).

3.3 Regression as a Decision Problem

The problem of minimizing the p-quantile of the dis-
tribution of the residuals Rf,i can be described as
a statistical decision problem: the set of probability
measures considered is P = Pε, the set of possible de-
cisions is F , and the loss function L : P ×F → [0,∞)
is defined by

L(P, f) = Qf (P )

for all P ∈ P and all f ∈ F . That is, the p-quantile
of the distribution of the residuals Rf,i is interpreted
as the loss we incur when we choose the function f .
In fact, the loss function L is multivalued, since in
general the p-quantile is not unique: L(P, f) could be
reduced to a single value by taking for example the
upper p-quantile of the distribution of the residuals
Rf,i.

The information provided by the observed (imprecise)
data is described by the likelihood function lik on P.
A very simple way of using this information consists
in reducing P to the set P>β for some cutoff point
β ∈ (0, 1). The resulting set P>β can be interpreted
as an imprecise probability measure, on which we can
base our choice of f . For each f ∈ F , the set of all
possible values of the loss L(P, f) when P varies in
P>β can be interpreted as the imprecise p-quantile
of the residuals Rf,i under the imprecise probability
measure P>β . It corresponds to the interval Cf , when
condition (2) is satisfied.

Assume that condition (2) is satisfied. In order to
choose a function f , we can minimize the supremum
of Cf . This approach is similar to the Γ-minimax de-
cision criterion with respect to the imprecise proba-
bility measure P>β , and is called LRM (likelihood-
based region minimax) criterion in [4]. When there
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is a unique f ∈ F minimizing sup Cf , it can be de-
noted by fLRM , and sup Cf can be denoted by qLRM .
In this case, fLRM is characterized geometrically by
the fact that BfLRM ,qLRM

is the thinnest band of the
form Bf,q containing at least k imprecise data, for
all f ∈ F and all q ∈ [0,+∞). Finding the function
fLRM is an interesting computational problem: see
for example [2, 15, 22].

An interesting description of the uncertainty about
the optimal choice of f ∈ F is obtained by considering
interval dominance for the imprecise p-quantiles of the
residualsRf,i under the imprecise probability measure
P>β . When fLRM exists, the undominated functions
f ∈ F are those such that Cf intersects CfLRM

. In
particular, when qLRM ∈ CfLRM

(that is, CfLRM
is

right-closed), the undominated functions f ∈ F are
characterized geometrically by the fact that Bf,qLRM

intersects at least k+1 imprecise data. In general, the
set of undominated functions f tends to get smaller
when we observe more and more (imprecise) data, but
it does not necessarily tend to reduce to a singleton,
because of the unavoidable uncertainty discussed in
Subsection 2.1.

3.4 Prediction

Consider the case in which (instead of n) we have
n + 1 pairs (Vi, V

∗
i ) of precise and imprecise data

Vi = (Xi, Yi) and V ∗i , respectively. We want to pre-
dict the realization of the precise data value Vn+1 on
the basis of the realization of the n imprecise data
V ∗1 , . . . , V

∗
n . Choose k ∈ {1, . . . , n}, and assume that

for each possible realization of the n+1 imprecise data
V ∗1 , . . . , V

∗
n+1, there is a distance q′ ∈ [0,+∞) such

that for some f ′ ∈ F (not necessarily unique), Bf ′,q′

is a thinnest band of the form Bf,q containing at least
k of the n+1 imprecise data, for all f ∈ F and all q ∈
[0,+∞). Because of symmetry, the probability that
V ∗n+1 is included in a band Bf,q′ containing at least
k of the n + 1 imprecise data (for some f ∈ F) is at
least k

n+1 . Hence, when Bf ′′,q′′ is a thinnest band of
the form Bf,q containing at least k of the n imprecise
data V ∗1 , . . . , V

∗
n (for all f ∈ F and all q ∈ [0,+∞)),

the probability that V ∗n+1 is included in the union B
of all bands Bf,q′′ containing at least k − 1 of the n
imprecise data V ∗1 , . . . , V

∗
n (for all f ∈ F) is at least

k
n+1 . That is, B is a (conservative) prediction region
of level k

n+1 − ε for the precise data value Vn+1.

In particular, when condition (2) is satisfied and
fLRM exists, the union B of all bands Bf,qLRM

containing at least k − 1 of the n imprecise data
V ∗1 , . . . , V

∗
n (for all f ∈ F) is a (conservative) predic-

tion region of level k
n+1 − ε for the precise data value

Vn+1. Prediction regions of this form can sometimes

be reduced to smaller regions thanks to the assump-
tion that V ∗n+1 takes values in V∗. When besides the
realization of the n imprecise data V ∗1 , . . . , V

∗
n , also

the (precise or imprecise) realization of Xn+1 has been
observed, the realization of Yn+1 can be predicted for
example by using the idea of conformal prediction (see
[21]), but this goes beyond the scope of the present
paper.

4 Example of Application

In this section, we apply the proposed regression
method to socioeconomic data from the ALLBUS
(German General Social Survey). Data collection in
surveys is subject to many different influences that
may cause various biases in the data set (see for ex-
ample [3]). Therefore, it is often reasonable to as-
sume that the actual value lies rather in some inter-
val around the observed value. Furthermore, data on
sensitive quantities is sometimes only available in cat-
egories that form a partition of the space of possible
values. A simple approach to analyze this kind of
data is to reduce the intervals to their central values
and to apply usual regression methods to the reduced,
precise data. In contrast to this, we suggest to ana-
lyze directly the interval-valued data by means of the
regression method proposed in Section 3.

We want to investigate the age-income profile, which
is a fundamental relationship in the social sciences
and a typical example in textbooks on social research
methods (see for example [1]).

Income is a key demographic variable for socioeco-
nomic research questions. But asking for income in
an interview is a sensitive question that some respon-
dents refuse to answer. Thus, survey data on income
often include missing values. One way to make the
question less sensitive is to present predefined income
categories according to which the income of the re-
spondent shall be classified. In the ALLBUS, income
data is collected with a two-step design with the open
question for income as first step and the presentation
of a category scheme as second step. As a result, the
data set contains at the same time precise values for
some individuals and interval-valued observations for
others. Yet, even if the respondents are willing to
give their exact income, limited remembrance usually
prevents them from doing so. Instead, they will give
rounded and heaped values (see [9]), where heaping
refers to irregular rounding behavior (see for example
[10]). Therefore, it is more reliable to regard also the
precise income values as interval-valued observations.

Data on the age of respondents is more easily ob-
tained, but it is always measured with limited pre-
cision, e.g. in years. In this case, it might be useful to
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consider intervals [age, age+1) instead. Furthermore,
age data might be available as age classes only.

4.1 ALLBUS Data and Regression Model

We analyze the ALLBUS data set of 2008 contain-
ing 3 247 interviews. The considered variables are
personal income (on average per month) and age.
Here, we consider the worst case, where both vari-
ables are available in categories only (v389 and v155
of the data set with 22 possible income categories and
six age classes; see [19]), although the proposed re-
gression method could be applied to the data set with
some precise and some imprecise observations, too.
Thus, for each individual i ∈ {1, . . . , n} we consider
observations V ∗i = X∗

i × Y ∗i , where X∗
i = [xi, xi) is

the corresponding age class and Y ∗i = [y
i
, yi) is the

category into which the income of respondent i falls.
In the given data set, there are 620 missing income
values and 11 missing age values. Missing values are
replaced by intervals that cover the entire observation
space of each variable. In this case, X∗

i = [18, 100) or
Y ∗i = [0,+∞), respectively. A two-dimensional his-
togram of the data set is given in Figure 4.

The relationship between age and income is usually
modeled by a quadratic function in age (see for ex-
ample [1]). Thus, the set of regression functions we
consider here is

F = {fa,b1,b2 : a, b1, b2 ∈ R},

where each function fa,b1,b2 is defined by

fa,b1,b2(x) = a+ b1 x+ b2 x
2

for all x ∈ X := [18, 100). We choose to minimize the
0.5-quantile of the distribution of the residuals (i.e.,
p = 0.5), and we take the cutoff point β = 0.15. Fur-
thermore, we want to compare the results obtained
by the proposed method with those from an ordi-
nary least squares (OLS) regression based on the in-
terval centers. Since the latter implies the assumption
P (Vi ∈ V ∗i ) = 1, we also set ε = 0 here.

We conduct the regression analysis as follows: First,
the likelihood-based confidence regions Cfa,b1,b2

are
computed for reasonable parameter values (a, b1, b2).
Then, we identify the parameter combination among
these that minimizes the upper bound of Cfa,b1,b2

. The
function corresponding to this parameter combination
is the function fLRM which is optimal according to
the LRM criterion (see Subsection 3.3). Finally, the
upper bound qLRM of CfLRM

is used to determine the
set of undominated functions.

Figure 3: Two-dimensional projections of the set of
undominated parameter values.

4.2 Results

We considered a grid of combinations of parameter
values where a ∈ [−10 000, 12 000], b1 ∈ [−200, 250],
and b2 ∈ [−10, 10]. Corresponding to the set of un-
dominated functions, we find the set of undominated
parameter combinations displayed in Figure 3. This
set is clearly not convex. Moreover, in the case consid-
ered here, the parameters are not independent from
each other, in the sense that many different combina-
tions of parameter values (a, b1, b2) may lead to very
similar functions fa,b1,b2 over X . Thus, there are ac-
tually infinitely many undominated parameter combi-
nations, but the associated curves are similar to those
we find within the considered grid.

The parameter combination implying the smallest up-
per endpoint of the confidence interval for the 0.5-
quantile of the residuals is (850, 0, 0) with Cf850,0,0 =
[525, 650]. The function fLRM is thus a constant line:
this is due to the rectangular shape and the locations
of the observations in our data set. Hence, the value
850 can be interpreted as an estimate of the p-center
(with p = 0.5) of the income distribution (see the be-
ginning of Section 3). A further interpretation of the
function fLRM is given by the band BfLRM ,qLRM

lim-
ited by the functions fLRM−qLRM and fLRM +qLRM :
Among all bands constructed around all considered
functions, this band is the thinnest one that contains
at least k = 1 679 imprecise observations (see Subsec-
tion 3.3).

The function fLRM and the band BfLRM ,qLRM
are

presented in Figure 5, besides the undominated func-
tions. It can be seen that within the set of undom-
inated functions there is a large variety of shapes of
the age-income profile, including straight lines, con-
vex parabolic curves as well as concave ones. From a
social scientist’s point of view this result may be un-
satisfying because it doesn’t support only one form of
the relationship between age and income. However,
given the imprecision of the data, it is reasonable to
consider all shapes consistent with the data as possi-
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Figure 4: Two-dimensional histogram of the data set.

ble age-income profiles. If the observed intervals were
overlapping or if they constituted a finer partition of
the space of possible observations, the set of undom-
inated functions would be smaller. Hence, the set of
undominated functions can be interpreted as the set
of plausible descriptions of the age-income profile that
reflects at the same time the uncertainty inherent in
the imprecise data.

The usual method to analyze this kind of interval data
is to conduct a quadratic OLS regression based on
the interval centers ignoring the imprecision of the
data. In this case, one has to give an upper limit for
the highest income class [7 500, +∞) in order to com-
pute the interval centers. Of course, the choice of this
upper limit has an impact on the estimates of the
OLS regression. The effect of two different choices
of the upper income limit is illustrated in Figure 5.
The OLS curves displayed there are based on interval
centers with upper income limits 15 000 and 10 000,
respectively. In contrast to the OLS approach, the
regression method proposed in this paper is not sen-
sitive to the extremes, since the regression functions
are evaluated on the basis of confidence regions for
the 0.5-quantile of the residuals’ distribution.

The proposed regression method permits to identify
plausible descriptions of the relationship between the
socioeconomic characteristics age and income. Given
the imprecise data, many different shapes of the age-
income profile are plausible. Further computations in-
dicated that our findings hold for transformed income
data on the logarithmic scale, too. The results are not
very informative, but reliable. To obtain more infor-
mative, but less reliable results, it suffices to increase

Figure 5: Undominated functions (dotted curves,
gray), interval data-based fLRM (solid line, violet)
and band BfLRM ,qLRM

(dashed lines, violet) versus
OLS regressions on interval centers with upper income
limit 15 000 (upper curve, blue) and upper income
limit 10 000 (lower curve, green).

the cutoff point β (that is, to decrease the confidence
level of the intervals Cfa,b1,b2

). One idea to obtain
more informative results without sacrificing reliabil-
ity could be to use many different category schemes
during the income data collection and thereby obtain
a data set with overlapping categories.

5 Conclusion

In this paper, we introduced a robust approach to
regression with imprecise data, in which the error dis-
tribution is not constrained to a particular parametric
family. The method was presented within a very gen-
eral framework and it can be adapted to a wide range
of practical settings, since it can be applied to all kinds
of imprecise data covering e.g. interval data, precise
data, and missing data. In our method, the imprecise
data are interpreted as the result of a coarsening pro-
cess which can be informative, and even wrong with
a certain probability.

In future work, the statistical properties of the pro-
posed regression method shall be studied in more de-
tail. In particular, we plan to investigate the impact of
stronger assumptions about the error distribution and
the coarsening process. Moreover, the performance
of the regression method shall be compared to those
of alternative approaches to regression with imprecise
data, also with regard to computational aspects.

ISIPTA ’11: Regression with Imprecise Data: A Robust Approach 137



Acknowledgements

The authors wish to thank Thomas Augustin and the
anonymous referees for their helpful comments.

Appendix

The expression for the profile likelihood function likQf

given in Subsection 3.1 can be proved as follows. In Sub-
section 2.3, we have seen that likQf = lik∗Q∗

f
, where lik∗

and Q∗f are defined on the set PV ∗ of all possible distri-
butions PV ∗ for the imprecise data V ∗i . The function lik∗

assigns to each PV ∗ the corresponding likelihood value:
in particular, it has a unique maximum in the empirical
distribution (of the imprecise data) P̂V ∗ . The multival-
ued mapping Q∗f assigns to each PV ∗ all p-quantiles of the
residuals Rf,i for all distributions of the precise data Vi

compatible with PV ∗ . Consider in particular Q∗f (P̂V ∗): if
ε = 0, then q ∈ Qf is a p-quantile of the residuals Rf,i for
some distribution of the precise data Vi compatible with
P̂V ∗ if and only if kf (q) ≤ p n ≤ kf (q). The case with
ε > 0 corresponds to the case with ε = 0 when Q∗f (P̂V ∗)
is enlarged to all p′-quantiles of the residuals Rf,i such
that p− ε ≤ p′ ≤ p + ε. This proves the “otherwise” part
of the expression for likQf given in Subsection 3.1, since
lik∗(P̂V ∗) = 1.

Now assume that q ∈ Qf satisfies kf (q) < (p − ε) n. Let
P ′V ∗ ∈ PV ∗ be the empirical distribution obtained when
only the n−kf (q) imprecise data not intersecting Bf,q are
considered, and let P ′′V ∗ ∈ PV ∗ be the empirical distribu-
tion obtained when only the kf (q) imprecise data inter-
secting Bf,q are considered. The latter is not well-defined
when kf (q) = 0: in this case, let P ′′V ∗ ∈ PV ∗ be the Dirac
distribution assigning probability 1 to a set A ∈ V∗ inter-
secting Bf,q (such a set A exists, since q ∈ Qf ). Then
q ∈ Q∗f (P ′′′V ∗) with P ′′′V ∗ = (p − ε) P ′′V ∗ + (1 − p + ε) P ′V ∗ ,
and it can be easily checked that

lik∗Q∗
f
(q) = lik∗(P ′′′V ∗) =

[
λ

(
kf (q)

n
, p− ε

)]n

.

This proves the first case of the expression for likQf given
in Subsection 3.1, and the second one can be proved anal-
ogously.

References

[1] Allison, P. D. (1998). Multiple Regression. Pine Forge
Press.

[2] Bernholt, T. (2005). Computing the least median
of squares estimator in time O(nd). In Computa-
tional Science and Its Applications — ICCSA 2005.
Springer, 697–706.

[3] Biemer, P. P., and Lyberg, L. E. (2003). Introduction
to Survey Quality. Wiley.

[4] Cattaneo, M. (2007). Statistical Decisions Based Di-
rectly on the Likelihood Function. PhD thesis, ETH
Zurich. doi:10.3929/ethz-a-005463829.

[5] Cattaneo, M. (2008). Fuzzy probabilities based on
the likelihood function. In Soft Methods for Handling
Variability and Imprecision. Springer, 43–50.

[6] de Cooman, G., and Zaffalon, M. (2004). Updating
beliefs with incomplete observations. Artif. Intell.
159, 75–125.

[7] Domingues, M. A. O., de Souza, R. M. C. R., and
Cysneiros, F. J. A. (2010). A robust method for linear
regression of symbolic interval data. Pattern Recog-
nit. Lett. 31, 1991–1996.

[8] Ferson, S., Kreinovich, V., Hajagos, J., Oberkampf,
W., and Ginzburg, L. (2007). Experimental Uncer-
tainty Estimation and Statistics for Data Having
Interval Uncertainty. Technical Report SAND2007-
0939. Sandia National Laboratories.

[9] Hanisch, J. U. (2005). Rounded responses to income
questions. Allg. Stat. Arch. 89, 39–48.

[10] Heitjan, D. F., and Rubin, D. B. (1991). Ignorability
and coarse data. Ann. Stat. 19, 2244–2253.

[11] Hudson, D. J. (1971). Interval estimation from the
likelihood function. J. R. Stat. Soc. B 33, 256–262.

[12] Manski, C. F. (2003). Partial Identification of Prob-
ability Distributions. Springer.

[13] Owen, A. B. (2001). Empirical Likelihood. Chapman
& Hall/CRC.

[14] Pawitan, Y. (2001). In All Likelihood. Oxford Uni-
versity Press.

[15] Rousseeuw, P. J., and Leroy, A. M. (1987). Robust
Regression and Outlier Detection. Wiley.

[16] Shafer, G. (1976). A Mathematical Theory of Evi-
dence. Princeton University Press.

[17] Strassen, V. (1964). Meßfehler und Information. Z.
Wahrscheinlichkeitstheorie 2, 273–305.

[18] Tasche, D. (2003). Unbiasedness in least quantile
regression. In Developments in Robust Statistics.
Physica-Verlag, 377–386.

[19] Terwey, M., and Baltzer, S. (2009). ALLBUS Daten-
handbuch 2008. GESIS.

[20] Utkin, L., Zatenko, S., and Coolen, F. (2009). Com-
bining imprecise Bayesian and maximum likelihood
estimation for reliability growth models. In ISIPTA
’09. SIPTA, 421–430.

[21] Vovk, V., Gammerman, A., and Shafer, G. (2005).
Algorithmic Learning in a Random World. Springer.

[22] Watson, G. A. (1998). On computing the least quan-
tile of squares estimate. SIAM J. Sci. Comput. 19,
1125–1138.

[23] Zaffalon, M., and Miranda, E. (2009). Conservative
inference rule for uncertain reasoning under incom-
pleteness. J. Artif. Intell. Res. (JAIR) 34, 757–821.

138 Marco E. G. V. Cattaneo & Andrea Wiencierz



7th International Symposium on Imprecise Probability: Theories and Applications, Innsbruck, Austria, 2011

Building Imprecise Classification Trees With Entropy Ranges

Richard J. Crossman
University of Warwick

r.j.crossman@warwick.ac.uk

Joaquin Abellan
University of Granada
jabellan@decsai.ugr.es

Thomas Augustin
University of Munich

augustin@stat.uni-muenchen.de

Frank P.A. Coolen
Durham University

frank.coolen@dur.ac.uk

Abstract

One method for building classification trees is to
choose split variables by maximising expected en-
tropy. This can be extended through the application
of imprecise probability by replacing instances of ex-
pected entropy with the maximum possible expected
entropy over credal sets of probability distributions.

Such methods may not take full advantage of the op-
portunities offered by imprecise probability theory. In
this paper, we change focus from maximum possible
expected entropy to the full range of expected entropy.
We then choose one or more potential split variables
using an interval comparison method.

This method is presented with specific reference to the
case of ordinal data, and we present algorithms that
maximise and minimise entropy within the credal sets
of probability distributions which are generated by the
NPI method for ordinal data.

Keywords. Imprecise probability, classification
trees, nonparametric predictive inference

1 Introduction

The process of classification can be summarised as
follows. In a data set D each element is described by
n attribute variables (or features) X1, . . . , Xn, and
a single class variable (or variable in study) C. The
variable Xi takes some value ai from the set Ai, and
the variable C takes some value, or category, from C =
{c1, . . . , cK}. The aim is to take a given vector a =
(a1, . . . , an) and determine the associated category.

One such method is the classification tree. This is a
hierarchical graph in which each parent node repre-
sents an attribute variable (called the split variable of
the node), the edges represent the values of that vari-
able, and the leaves represent categories. A data vec-
tor a is categorised by starting at the root node and
following the appropriate edges until a leaf is reached.

The category given at that leaf is the prediction for
the associated category of the data point.

Such a method requires finding an order for consider-
ing the attribute variables. We base our method upon
the one given in [2], summarised as follows:

1. Using information measure IM , calculate IM(R)
and IM(R|Xi) (the information measure follow-
ing splitting on Xi) for each unassigned attribute
variable Xi, where R is the data relevant to the
current node (i.e. the subset of D which matches
the values given to the attribute variables already
assigned);

2. If IM(R|Xi∗) := maxi IM(R|Xi) ≤ IM(R), go
to step 3. Otherwise, split data by the value of
Xi∗ . If the data relevant to the current node
is R, then the relevant data for each child node
will be {v ∈ R|vi∗ = j} where the edge between
this node and the child node is labelled j ∈ Ai∗ .
Return to step 1 for each of these child nodes;

3. This is a leaf node, labelled with the most com-
mon class in R. If more than one class is equally
common, choose the class most common at the
leaf’s parent (this approach is due to [4]).

Step 1 will be adapted to make use of imprecise proba-
bility, but consider first the information measure when
imprecision is not applied. Both IM(R) and each
IM(R|Xi) are functions of an associated probability
distribution. These distributions are estimated us-
ing relative frequencies. For the current data set R,
consider each unassigned attribute variable Xi as fol-
lows. Define nR := |R| and denote by nR

j the number
of data points in R with class cj . Define

pR
j :=

nR
j

nR
, pâi

j :=
nâi

j

nâi
(1.1)

where âi := {v ∈ R|Xi = ai}. We also define

I(R, Xi) :=
∑

ai∈Ai

p(Xi = ai)H(pâi) (1.2)
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where p(Xi = ai) is also estimated using relative fre-
quencies, and where H(·) is Shannon’s entropy

H(p) = −
n∑

i=1

pi ln(pi) (1.3)

for probability distribution p. H(p) is maximum
when p is uniform, and minimum when pi = 1 for
some i.

Define an information measure as follows:

IM(R, Xi) := H(pR)− I(R, Xi). (1.4)

Only the I(R, Xi) value determines the next split vari-
able at each node. Further, maximising the infor-
mation measure is equivalent to minimising I(R, Xi),
which in turn requires minimising entropy.

Instead of using the relative frequencies for each Xi

to generate a distribution for the categories, we can
generate a credal set of probabilites, referred to as
a structure. This is done in [2] by using the impre-
cise Dirichlet model (IDM) [12], giving the following
intervals for pâi

j

[
nâi

j

nâi + s
,
nâi

j + s

nâi + s

]
(1.5)

for some value of s, commonly chosen to be 1 or 2.

Alternatives to the IDM exist. In [6] the IDM is
replaced with the NPI method for categorical data
(requiring a modification to the algorithm, which is
contained in that reference). In this paper, the NPI
method for ordinal data [7] replaces the IDM. This
method takes account of the ordering amongst the
categories, resulting (in general) in smaller credal sets
than would otherwise be generated. In this set-up cat-
egories c1 and cK (ci, i = 2, . . . , K−1) are referred to
as boundary (internal) categories. The corresponding
component in a probability distribution for a category
is referred to as a boundary (internal) component.

A summary of the ordinal NPI method follows. For
X1, . . . , Xn, Xn+1 real-valued absolutely continuous
and exchangeable random quantities, assume that
the first n ordered observed values are denoted by
x1 < x2 < . . . < xn, and let x0 = −∞ and xn+1 = ∞.
We use Hill’s assumption A(n) [8] that for a future ob-
servation Xn+1 and for all j = 1, . . . , n + 1

P (xn+1 ∈ Ij = (xj−1, xj)) =
1

n + 1
. (1.6)

A(n) assumes nothing else, and can be used to define
a lower (upper) probability vector L (U) for the cate-
gory of Xn+1 by a latent variable representation. As-
sume n observations, with nj in category cj . Let Yn+1

denote the random quantity representing the cate-
gory a future observation will belong to. We assume
that category cj is represented by interval Icj , where
∪j=1,...,kIcj = R and Icj ∩ Ici = ∅ for all i 6= j. The
ordering is such that Icj has neighbouring intervals
Icj−1 to the left and Icj+1 to the right on the real line,
with only one such neighbour when j ∈ {1, k}. As-
sume further that nj values of x1 < x2 < . . . < xn are
in interval Icj . We therefore assume that the event
Xn+1 ∈ Icj is equivalent to the event Yn+1 = cj . See
[7] for more detail.

The lower probability of a category ci is therefore
equal to the number of intervals Ij entirely contained
within Ici, and the upper probability of that cate-
gory is equal to the number of intervals Ij with a
non-empty intersection with Ici. Hence, the ordinal
NPI model replaces (1.5) with:

[
max(

nâi

j − 1
nâi + 1

, 0),
nâi

j + 1
nâi + 1

]
(1.7)

when 1 < j < K, and otherwise
[

nâi

j

nâi + 1
,
nâi

j + 1
nâi + 1

]
. (1.8)

Therefore all intervals Ij lying entirely within an in-
terval Ici are assigned to category ci, and intervals
overlapping both Ici and Ici+1 can be assigned en-
tirely to either ci or ci+1, or split between them.

We can thus talk about the probability mass “on ei-
ther side” of categories. From this point on the avail-
able mass to the left (right) of internal category cj

is defined as the probabilty mass that has not been
assigned to cj or cj−1 (cj+1) whilst calculating the
lower probabilities Lj and Lj−1 (Lj+1). This mass is
therefore described as being available to p̂j and p̂j−1

(p̂j+1). Any distribution p̂ within the ordinal NPI
structure has the property p̂j ≥ Lj ; p̂j − Lj is de-
scribed as the mass assigned to p̂j .

When using either IDM or ordinal NPI, we take
the category distribution from each credal set that
maximises entropy (note that the distributions of at-
tribute variables are still generated using relative fre-
quencies). This will generate a maximum expected
value of each I(R, Xi) and of H(pR), and so deter-
mine our next split variable. However, for K > 2 the
algorithm given in [2] for maximising entropy does not
work within the structure of ordinal NPI (see Section
4), necessitating the algorithm described in this pa-
per.

Once all possible values of (1.4) are non-positive, we
do not split further, and decide on the class value to
assign by choosing the most common class in R, just
as is done in the case without imprecise probability.
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However, this application of the IDM or ordinal NPI
excludes one of the most fundamental justifications
for using imprecise probability: the possibility of cir-
cumstances in which we are unable to choose between
two options. We therefore describe an alternative
method in this paper, which rather than compar-
ing maximum entropies compares the ranges of en-
tropies, and chooses between those ranges only when
our method for comparing intervals allows it.

Section 2 defines and explores entropy intervals, which
are then used to describe our method, given in Section
3. Section 4 and 5 describe the algorithms by which
entropy over the ordinal NPI structure is maximised
and minimised, respectively. Section 6 contains con-
clusions and ideas for future work.

2 Entropy Intervals

Considering entropy intervals requires the following
two definitions.

Definition 2.1 For a closed structure M, a vector is
defined as a potential of M, denoted v∗, if v∗ ∈ M
and

H(v∗) = max
w∈M

H(w). (2.1)

A vector is defined as the guarantee of M, denoted
v∗, if v∗ ∈ M and

H(v∗) = min
w∈M

H(w). (2.2)

If 1
k (1, . . . , 1) ∈M, then v∗ = 1

k (1, . . . , 1). Any prob-
ability vector in M with a component equal to 1 is a
guarantee of M.

The names of these properties are justified as follows:
for a given Xi the entropy of the potential and guaran-
tee generate respectively the maximum and minimum
value of I(R, Xi). Thus we can guarantee a minimum
value for this function, but also talk of the potential
maximum. This is also true for H(pR).

In a convex structure, the potential is unique (see the
algorithm in [2]). This is not necessarily true of the
guarantee; when M = [0, 1] × [0, 1], both (1, 0) and
(0, 1) are guarantees.

Because entropy is a continuous function, and the or-
dinal NPI structure is connected, we can define an
entropy interval as follows.

Definition 2.2 The entropy interval of a connected
structure M is defined as

{H(v) : v ∈M} = [H(v∗), H(v∗)]

where v∗ and v∗ are the guarantee and the potential
of M respectively.

Example 4.1 Consider K = 8 classes, and six ob-
servations (1,0,0,2,0,3,0,0). From [7] we have that the
structure is contained within the following set:

1
7
([1, 2], [0, 1], [0, 1], [1, 3], [0, 1], [2, 4], [0, 1], [0, 1]).

(2.3)
The maximum entropy algorithm adapted for ordinal
data (see Section 4) gives the following vectors at each
stage

1.
1

7
(1, 0, 0, 1, 0, 2, 0, 0), 2.

1

7
(1, 0, 0, 1, 1, 2, 0, 0)

3.
1

14
(2, 1, 1, 2, 2, 4, 0, 0), 4.

1

14
(2, 1, 1, 2, 2, 4, 1, 1)

and the minimum entropy algorithm (see Section 5) gives

1.
1

7
(1, 0, 0, 1, 0, 2, 0, 0), 2.

1

7
(1, 0, 0, 1, 0, 4, 0, 0)

3.
1

7
(2, 0, 0, 1, 0, 4, 0, 0)

The resulting entropy interval is [0.9557, 1.9459]. For
comparison, note that the full entropy range for an 8
element probability distribution is [0, 2.079], and that
had we used the algorithm given in [2] without taking
into account the structure of the model, we would have
incorrectly generated a potential with entropy 1.9668.
This concludes the example.

Instead of a single value I(R,Xi), consider an in-
terval [I(R,Xi), I(R,Xi)] := Ii where the bounds of the
interval are calculated using guarantees and potentials
in the obvious way. Further, replace H(pR) with the
interval IR, generated by the guarantee and potential of
the current data set R.

These intervals provide an alternative method for choos-
ing the split variables. Define a set of intervals I =
{Ia1 , . . . , Ian}, where each ai corresponds to a potential
split variable Xai . Remove from I any interval that is
dominated by another interval in the set. There are vari-
ous methods by which one can determine dominance, but
in this paper we use the simplest: interval dominance.
Under this method, interval Ii = [ci, di] dominates inter-
val Ij = [cj , dj ], denoted Ii >d Ij , iff ci ≥ dj . The use
of alternative methods for comparing intervals [11] can be
explored, this is left as a topic for future research.

Once all dominated intervals have been removed, we say
we cannot choose between each of variables corresponding
to the remaining elements of I as the next choice for the
split variable.

3 Imprecise classification trees

Just as imprecise probabilities are expressed as sets rather
than single values, an imprecise classification tree is ex-
pressed as a forest.

Consider node P at the end of a path, length l, from
the root node. There are n − l choices for the next split
variable, denoted XP1 , XP2 , . . . , XPn−l . If no interval IPj
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dominates IR, then there is no split (as no split variable
can be considered superior to no split at all). Otherwise,
create a set S as follows

S := {XPj |∃ no i 6= j s.t. IPi >d IPj}. (3.1)

Therefore S is the set of all potential split variables for
which a superior choice of split variable cannot be found.
Let m := |S|. We create m − 1 identical copies of the
current tree. This produces m trees, each of which uses
a different split variable, chosen from S to continue the
current path.

If it is determined that no split variable is preferable to
not splitting, the node becomes a leaf. The method in
[2] uses the relative frequency of the current data set to
choose the most likely category (if two or more categories
are equally likely, the most likely category at the parent
node is chosen). One alternative would be to use the NPI
method for ordinal data to construct a structure for the
category probabilities.

A method by which the structures of the trees can be com-
bined is now required. All trees should not be given equal
weight, or some choices for split variables may dominate
others. For example, consider three Boolean attribute
variables X1, X2, X3. Variables X1 and X2 are chosen
for the initial split, so Xi is chosen as the root node for
Tree i, with i = 1, 2. In Tree 1, whatever the value of X1,
we split on X2 next. In Tree 2, when X2 = 0, we split
on X1 next, but when X2 = 1, we cannot choose between
splitting next on X1 or X3. Therefore Tree 2 splits upon
X1, and a new tree is generated, Tree 3, which splits upon
X3. No further splits are made (see Figure 1).

Giving each of these three trees equal weight would imply
that the initial choice of X2 is twice as desirable as the
choice of X1. There is no justification for this.

There are various ways to tackle this issue. We could
weight each tree according to the nature of its relevant
entropy interval: how wide it is, and how far it lies from
the interval for the full data set which it is dominating.
For now, however, each tree is given weight one, which
decreases each time there is a split after the root node. In
the situation shown in Figure 1, Tree 1 would be given a
weight of 1, and Trees 2 and 3 a weight of 1

2
each, ensur-

ing each choice of root node is given equal weight. This
method is equivalent to creating duplicate trees. For ex-
ample, in the situation shown in Figure 1, rather than
weight each tree, Tree 1 could be duplicated.

There are many potential methods by which such a forest
can be used to classify a data point. Denote by X the
set of all categorisations given by the forest. The most
conservative approach would be to simply return X , mak-
ing the imprecise tree a credal classifier (see e.g. [13]).
Alternatively, for each ci we can sum the weights of the
trees which returned ci, denoted Σi and choose c∗ where
Σ∗ = maxi Σi, selecting randomly amongst all categories
for which Σi = Σ∗ if the maximum is non-unique. A third
option is to return each category ci for which Σi ≥ C, for
some constant C. Setting C = 0 (C = Σ∗) reduces to the

first (second) method. These approaches will be compared
in a later paper.

Figure 1: Forest generated by this method

Example 5.1 A small table of data, shown in Table 2, is
used to draw an imprecise classification tree. Note that
this example is included to illustrate our method, not to
consider its efficacy. Indeed, the binary categories in this
data set are categorical, not ordinal. Since K = 2, we
can use the maximum entropy algorithm given in [2] (see
Section 5 for the minimum entropy algorithm). We use
the first forty data points as a training set, and the final
ten as a test set. The binary nature of the category set
makes it easy to calculate entropies:

H(v) = −nR
1

a
ln(

nR
1

a
)− nR

2

a
ln(

nR
2

a
) (3.2)

where nR
i is the number of instances of category i and

a := nR
1 + nR

2 .

The method generates three trees, displayed in Figures 3
to 5. Tree 1 has weight 1, the others have weight 1

2
. Each

leaf is labelled with the category assigned to it. Note that
it appears in some cases that the set of possible values
of the attribute variables changes from tree to tree. This
is because, depending on previous attribute variables, the
set of data R under consideration may not contain any
instances of one or more values of the variable chosen as
the split variable.

It is simple to compare this method with the one given in
[2], as that method generates only one tree, which is in fact
Tree 2. Tree 2 is correct 8 times out of 10. The imprecise
tree is correct every time, though it returns both categories
on two occasions; this is true irrespective of the choice of
C. There is a one-to-one correspondence between the data
points incorrectly classified by Tree 2, and the data points
for which the imprecise tree gives both categories.

4 Maximum entropy algorithm

In this section the algorithm in [2] is adapted for the ordi-
nal NPI method. We will provide an example later in the
section demonstrating why that algorithm cannot be ap-
plied to the ordinal NPI case directly, but in short, it fails
because it requires that the structure be convex, which is
not the case here.

Our algorithm is too complex to be described in full, in-
stead an overview is presented, including the relevant lem-
mas and proofs. This complexity is required despite the
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fact that the structure and the function to be maximised
are both simple in form, because the constraints upon the
maximisation problem are complicated by the conditions
imposed by the ordinal NPI approach. For example, whilst
we have that Li ≤ pi ≤ Ui and Li+1 ≤ pi+1 ≤ Ui+1,
we also have that Li + Li+1 + 1

n+1
≤ pi + pi+1 ≤

Ui + Ui+1 − 1
n+1

. Moreoever, the sum of three adjacent
elements will have its own constraints, and so on.

Maximum Entropy Algorithm

This algorithm is broadly similar to one presented
in [6], which utilises NPI for the categorical case. Our
consideration of the probability mass being available “on
either side” of a component is based on the approach in
that reference.

The algorithm requires two K-vectors vL := (0, 1, . . . , 1)
and vR := (1, . . . , 1, 0). The j-th component of vL (vR)
represents the amount of mass available to p̂j to the left
(right). These vectors are updated after each mass assign-
ment.

The algorithm can be broken down into two processes.
The first process assigns the mass between two compo-
nents in situations in which only those two components
need be considered. For example, for j ∈ {1, . . . , K − 2},
let

|p̂j − p̂j−1| ≥ 2

n + 1
, (4.1)

and assume without loss of generality (WLOG) that p̂j >
p̂j−1. The convex nature of the entropy function means
entropy is maximised by adding mass to the smallest com-
ponents of p̂ possible. Even if all mass to the left of cj−1

is assigned to p̂j−1, then that component will be no larger
than p̂j − 1

n+1
. This means we must assign all mass be-

tween cj and cj−1 to p̂j−1. An exception is the case where
nj−1 = nj−2 = 0. In this case we cannot be sure that as-
signing all mass to p̂j−1 is justified. We do however know
that no mass to the right of cj can be assigned to p̂j . An
extension of this argument can be applied to the boundary
components and their neighbours.

Further, if there exists any adjacent components for which
|p̂j − p̂j−1| = 1

n+1
, vR

j−1 and vL
j are non-zero, there may

be another assignment to be made. If we assume WLOG
that p̂j−1 < p̂j , then if vL

j−1 = 0, we must assign the mass
between cj and cj−1 to p̂j−1. Again, in situations with
consecutive categories with zero observations, we may at
this stage be only able to decide that some components
cannot be assigned available mass, without being able to
decide which components should be assigned that mass.
Lastly, if p̂j = p̂j−1 = 0 and vR

j = vL
j−1 = 0, the mass is

shared equally between the components.

The second process can consider three or more compo-
nents simultaneously, using the concept of strings.

Definition 4.1 The categories ca, ca+1, . . . , cb form a
string if vR

j +vL
j > 0 for all a ≤ j ≤ b and further vR

a−1 = 0
when ca 6= c1 and vL

b+1 = 0 when cb 6= cK .

We define S := {ca, ca+1, . . . , cb}, and refer to the vector
(p̂a, p̂a+1, . . . , p̂b) as the string vector. The length of a

string equals the number of classes in the string.

The algorithm finds a string within the vector p̂ (which
might be the entire vector), assigns mass to either reduce
the length of the string or split it in two, and then finds
another string, until none remain. By definition there can-
not be more than [K

2
] strings, each of maximum length K,

so the number of iterations required to assign all available
mass must be less than K(K+1)

2
.

The algorithm makes use of the following result.

Lemma 4.1 Let {c1, . . . , cK} contain the set of strings
ζ := {Si, i = 1, . . . , r}. String Si has length li and con-
tains categories cai to cbi ; ai+1 > bi. Categories with their
mass assignments already determined will belong to no Si.
The vector maximising entropy in the structure is uniquely
determined by the vector maximising entropy over ζ. Let
wi represent the observations (nai , . . . , nbi). Consider wi

as a complete observation vector, and generate vi as the
corresponding vector maximising entropy. Entropy over
ζ is maximised by the vector d(t1v

1, t2v
2, . . . , trv

r) for
ti = li+1

K+1
and normalising constant d.

Proof.

H(p̂) = −
K∑

j=1

p̂j ln(p̂j) = −
∑

j:cj∈ζ

p̂j ln(p̂j) + C

where C = −∑
j:cj /∈ζ p̂j ln(p̂j) is constant. There-

fore maximising H(p̂) is equivalent to maximising
−∑

j:cj∈ζ p̂j ln(p̂j). Moreover, when considering the max-

imum algorithm for S̃i,

H(p̂)

m
+

ln(m)

m
= −

li∑

k=1

(
p̂k

m
(ln(p̂k)− ln(m)))

= −
li∑

k=1

(
p̂k

m
(ln(

p̂k

m
)))

= H(
p̂

m
) (4.2)

where m > 0 is constant. The final expression in (4.2) is
a slight abuse of notation, since entropy is generally only
considered in terms of probability distributions, but there
is no mathematical problem with considering it as a func-
tion over all li-vectors with non-negative elements. We
define by V i

a the set of all li-vectors with non-negative ele-
ments which sum to a (hence V K

1 is the set of all possible
probability distributions over the categories), and define
by HSi the contribution to the overall entropy supplied by
the string Si. This means that 4.2 leads to

H(v∗) = max
v∈V i

1

H(v) = ti( max
v∈V i

t
−1
i

H(v))− ln(ti)

= ti(H(
v∗

ti
))− ln(ti) (4.3)

so the vector which maximises entropy over S̃i is a positive
multiple of the vector which maximises the contribution
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of string Si to the whole vector. Hence

max H(p) = max(−
∑

j:cj∈ζ

pj ln(pj)) + C

=

r∑

i

(ti( max
v∈V i

t
−1
i

HSi(v))− ln(ti)) + C2

=

r∑

i

ti( max
v∈V i

t
−1
i

HSi(v)) + C

=
r∑

i

ti(HSi(v
i)) + C2 (4.4)

where the inclusion of the ti is justified by the need to
rescale each vector vi, and C2 is constant. This completes
the proof. 2

From Lemma 4.1 each string can be considered inde-
pendently, as though its corresponding observation vec-
tor was the only one under consideration, with cai and
cbi as boundary categories. Let x1 := minj∈S p̂j and
x2 := maxj∈S p̂j . In each case, a mass assignment is made
and the vectors vL and vR are updated accordingly.

There are nine different types of string, all of which the al-
gorithm deals with differently. A full description of these
methods will be presented in a later paper; the meth-
ods described below are by no means exhaustive and are
merely intended as a demonstration of the ideas involved.

We aim to ensure the components of a string are as close
to being equal as is possible. If x2 > x1 + 1

n+1
, equality

is impossible. However, in this case we can denote by y1

and y2 > y1 the smallest integers for which p̂y1 ∈ {x1, x2},
y2 = I[p̂y1=x2]x1+I[p̂y1=x1]x2, and for which p̂j /∈ {x1, x2}
for all y1 < j < y2 (where IA is the indicator function).
We have that min(p̂y1 , p̂y2) = x1 and max(p̂y1 , p̂y2) = x2.
Moreover, for any min(y1, y2) < j < max(y1, y2), x1 <
p̂j < x2.

Assume WLOG that py1 = x1, and that x1 > 0 (if x1 = 0
we require a different approach, not described here). The
mass between cy1 and cy1−1 must be available, and even if
this mass is assigned entirely to p̂y1 , min{p̂y1 , . . . , p̂y2} =
p̂y1 holds. Each component between p̂y1 and p̂y2 therefore
requires at least 1

n+1
mass to reach the value of p̂y2 , as does

p̂y1 itself, so all available mass will be assigned before p̂y2

is eligible to receive any of it. The mass between cy2−1

and cy2 is therefore assigned to p̂y2−1.

In the case where x2 = x1 + 1
n+1

, we denote by y1 the
number of components equal to x1, and by y2 the number
equal to x2. Therefore, in this situation, we would want
to use a total mass y1

n+1
to increase all minima from x1 to

x2. We would then share the remaining y2
n+1

mass equally
between all components.

This mass assignment is not always allowed in our NPI
structure, as shown by the example below.

Consider the situation defined by the observation vec-
tor (2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2), with associated lower prob-
ability vector 1

25
(2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2). Entropy would

be maximised by increasing each element equal to 1
25

by
( 1
25

)( 14
11

) = 14
275

, and each increasing element equal to 2
25

by ( 1
25

)( 3
11

) = 3
275

. Note that this is also the assignment
given by the algorithm in [2]. Figure 1 shows this assign-
ment is not possible.

Figure 2: Inability to apply Abellan/Moral algorithm

Figure 1 shows the available mass between the pairs of
categories c1 and c2, and c2 and c3. Each of these pieces
of available mass are of size 1

25
, and each of the smaller

rectangles has mass 1
275

. It is clear from the diagram that
assigning enough probability mass to p̂1 and p̂2 to make
them both equal to 25

275
forces the value of p̂3 to become

at least 27
275

.

Therefore the available probability mass cannot be spread
across p̂ so as to produce a uniform distribution. The
available mass that must be assigned to categories c1,
c2 and c3 is too great. We therefore require not only a
method for assigning mass that is compatible with our
model, but a proof demonstrating that the resulting dis-
tribution does indeed give the maximum entropy possible.

This approach is summarised as follows. If x2 = x1 + 1
n+1

,

we try to assign the uniform distribution 1
n
(1, . . . , 1), cate-

gory by category, from left to right, where n is a function of
the number of categories within the string with associated
components equal to x1 (when x1 = x2, this assignment
is automatically successful). This assignment will fail if
either all available mass to some category ci is assigned
without p̂i reaching 1

n
, or p̂i reaches 1

n
and yet mass re-

mains available which must be assigned to category ci.

Once either event occurs (if neither does, then the uniform
distribution can in fact be reached), we start again from
p̂ci and attempt the same mass assignment. This may
occur several times. As a result, we will have divided
the components in the string vector into two or more sets.
Each set has either too much or too little available mass for
the desired assignment. Moreover, there must exist sets
{ca1 , . . . , cb1} and {cb1+1, . . . , cb2} for which one has too
much mass, and the other too little. In such a situation,
the algorithm can create two new strings, one ending with
cb1 and another beginning with cb1+1. The justification
for this follows from Lemma 4.2.

Lemma 4.2 Let 0 < l1 < n and l2 = n − l1. Let M be
a closed credal set of n-vectors for which u ∈ M ⇔ u =
(v,w), where v is a l1-vector and w is a l2-vector with
the following properties:

∑l1
i=1 vi > k1 and

∑l2
j=1 wj <

k2, and k1
l1

> k2
l2

. Then if ( k1
l1

(1, . . . , 1), k2
l2

(1, . . . , 1)) lies
within M, it is the distribution which maximises entropy.

Proof. From Lemma 4.1 entropy orderings are invariant
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- O-NPI IDM IGR IG W-L

O-NPI - (6,14) (11,9) (11,9) -4
- (0,4) (1,4) (2,4) -9

IDM (14,6) - (14,6) (11,9) 18
(4,0) - (3,2) (1,1) 5

IGR (9,11) (6,14) - (10,10) -10
(4,1) (2,3) - (0,0) 2

IG (9,11) (9,11) (10,10) - -4
(4,2) (1,1) (0,0) - 2

Table 1: Comparison of methods

over multiplication by a constant, so we can assume k1 +
k2 = 1. Also by Lemma 4.1, following the assignment of
mass α to v and mass 1−α to w, the entropy is maximised
by setting vi = α

l1
, ∀i and wj = 1−α

l2
, ∀j. Clearly, α ≥ k1

and 1−α ≤ k2. The proof, then, reduces to demonstrating
that, indeed, entropy is maximised by setting α = k1.

Construct a structure for which L = (vL,wL) and U =
(vU ,wU ), where (vL)i = k1

l1
and (vU )i = 1 ∀i, and

(wL)j = 0 and (wU )j = k2
l2

∀j. By the algorithm in
[2], the elements corresponding to w must all reach their
upper bound before the elements of v are considered at
all. Therefore, giving more mass to v than the minimum
requirement violates the algorithm, and so the given as-
signment must, indeed, maximise entropy. 2

Lemma 4.2 proves that when {ca1 , . . . , cb1} has too much
(too little) mass and {ca2 , . . . , cb2} has too little (too
much) mass for the uniform distribution to be assigned,
entropy cannot be increased by taking mass from the set
of categories with less mass, so long as both sets can sep-
arately be assigned mass in such a way as to make all
components equal. However, if such an assignment is not
possible, we can simply split the set up again, and once
again apply Lemma 4.2, and so on. This justifies splitting
the string as described.

We now compare our method with the IDM imprecise
method, along with the Info Gain [9] and Info Gain Ratio
methods [9] over 21 data sets in which the categories can
plausibly be argued to be ordinal. All these methods were
run using the computer package known as WEKA. The
results are given in Table 1. The first pair of numbers
in each cell represent the number of wins and losses for
the row classifier with respect to the column classifier, in
terms of percentage of correct classification. For example,
the pair (12,6) in the second row tells us that the IDM
classifier outperformed the O-NPI classifier 12 times, and
was outperformed 6 times. The second pair of numbers
also represent wins and losses, this time using a paired
t-test at the 5% level. The final row of the table gives the
total number of wins minus the total number of losses for
both tests.

These results do not show any obvious improvement in
replacing the IDM structure with that of ordinal NPI.
Indeed, it seems to be performing worse than the IDM
method, and roughly equivalently to the IGR and IG

methods.1

We now describe the algorithm for minimising entropy.

5 Minimum entropy algorithm

Minimising entropy is difficult in general. However, in the
specific case of ordinal NPI, it is quite simple. We begin
with three lemmas.

Lemma 5.1 When minimising entropy, all available mass
between observed categories is assigned entirely to one of
the associated components.

Proof. Let H2(v1, v2) = −v1 ln(v1)−v2 ln(v2) be the con-
tribution of two components to the entropy. The entropy
function is concave, so if b ≤ c we have

H2(a + c, a) ≤ H2(a + c− b, a + b). (5.1)

Therefore for any values a and c, H2(·, ·) is minimised
when either b = 0 or b = c. Let the adjacent observed
categories have components p̂i = a and p̂j = a+ c, and let
the mass between them be denoted by m > 0. Then from
(5.1) we have two inequalities

H2(a + c + m, a) ≤ H2(a + c + m− b, a + b)

H2(a + c, a + m) ≤ H2(a + c− b, a + b + m),

meaning the minimum entropy occurs when the entirety
of m is assigned either p̂i or p̂j . 2

Lemma 5.2 When minimising entropy, no unobserved
category is assigned mass.

Proof. Setting a = 0 in (5.1) shows any assignment of
mass to a zero component leads to an increase in entropy
compared to assigning that mass to a non-zero compo-
nent. Therefore this should never be done if an alterna-
tive is available, which is always the case for unobserved
categories in the ordinal NPI case. 2

Therefore the minimum entropy algorithm can operate
simply by assigning all unassigned mass between observed
categories ci and cj entirely to p̂i or to p̂j .

Lemma 5.3 When minimising entropy, for any two com-
ponents p̂i or p̂j corresponding to adjacent observed inter-
nal categories, the mass between ci and cj is assigned to
p̂i if p̂i > p̂j .

Proof. Consider any pair of adjacent observed internal
categories cj , cj+1 for which p̂j 6= p̂j+1. Assume WLOG
that p̂j < p̂j+1, and set p̂j =: r2 and p̂j+1 =: r3 =
r2 + 1

n+1
+ α for some α ∈ N. Since both categories are

internal, we can also consider the components p̂j−1 =: r1

and p̂j+2 =: r4. Between these four categories is available
mass 3

n+1
, and from Lemma 5.1 we have that three (not

necessarily distinct) components must receive 1
n+1

mass.

1Note that the WEKA code for the exact O-NPI algorithm
is still in development.
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There are eight ways that this mass assignment can be
carried out. These can be divided into four pairs. In
each pair one assignment gives the mass between p̂j and
p̂j+1 to p̂j , and in the other it gives it to p̂j+1; the other
two mass assignments are identical. The eight mass
assignments are given in the table below, along with the
resulting size of each component. Each pair is presented
together, and the first case in the pair is always the one
in which the smaller component is assigned the mass.

- r1 r2 r3 r4

1 r1 r2 + 2
n+1

r2 + 1
n+1

+ α r4 + 1
n+1

2 r1 r2 + 1
n+1

r2 + 2
n+1

+ α r4 + 1
n+1

3 r1 r2 + 2
n+1

r2 + 2
n+1

+ α r4

4 r1 r2 + 1
n+1

r2 + 3
n+1

+ α r4

5 r1 + 1
n+1

r2 + 1
n+1

r2 + 1
n+1

+ α r4 + 1
n+1

6 r1 + 1
n+1

r2 r2 + 2
n+1

+ α r4 + 1
n+1

7 r1 + 1
n+1

r2 + 1
n+1

r2 + 2
n+1

+ α r4

8 r1 + 1
n+1

r2 r2 + 3
n+1

+ α r4

We now prove that for all four pairs, the second assign-
ment has lower entropy than the first. Therefore, irre-
spective of how the mass between p̂j−1 and p̂j and be-
tween p̂j+1 and p̂j+2 is assigned, we must assign the mass
between p̂j and p̂j+1 to the larger component.

This is immediately clear for the second, third and fourth
pairs by the concave nature of the entropy function; en-
tropy is minimised by setting two values as far apart as
possible. For the first pair, the two cases are equivalent
when α = 0, and we still lose nothing by assigning the
mass to the larger component. If α ≥ 1, we can define
α− 1

n+1
=: α1 ≥ 0 and re-write the pair

- r1 r2 r3 r4

1 r1 21 + 2
n+1

r2 + 2
n+1

+ α1 r4 + 1
n+1

2 r1 21 + 1
n+1

r2 + 3
n+1

+ α1 r4 + 1
n+1

and once again from the fact that the entropy function is
concave we see that minimising entropy requires assigning
the mass to the larger component.

We have then that for all mass assignments between the
category pairs cj−2, cj−1 and cj , cj+1, entropy is min-
imised by adding the available mass to the larger com-
ponent. Therefore every individual slice of available mass
between cj and c+1 can be considered separately, so long as
both neighbouring categories are internal, and p̂j 6= p̂j+1.

2

Boundary categories are handled in a similar way. If a
boundary category is unobserved, no mass will be assigned
to it. Otherwise, we can consider, say, p̂1 as being equiv-
alent to an internal category for which the mass on the
left has already been assigned elsewhere. This allows us
to make use of Lemma 5.3.

Lastly we deal with situations in which there are consec-
utive equal components. Suppose there are n consecu-
tive components all of size m. If n = 2, we can assign
the mass to either component. If n = 3, we assign all
mass to the central component, as H(m + a, m, m + a) >

H(m,m + 2a, m). This leaves the third component un-
changed, and so we can use this more generally to reduce
the number of consecutive components from n to n − 2.
This means we can continually re-apply this assignment
until either all mass has been assigned, or we are left with
just two equal components with available mass between
them. We then simply assign that mass to either side.

Note that our algorithm runs from left to right, assign-
ing mass to the larger component each time, and once
finished, returns and deals with each sequence of equal
components. Running the algorithm from right to left
might result in a different vector being returned. In other
words, the vector we find results in a global minimum for
entropy, but it does not follow that no other vector could
not also produce a global miniminum for entropy. As an
obvious example, consider K = 3 and observation vector
(1,0,1). Clearly L = 1

3
(1, 0, 1) and U = 1

3
(2, 1, 2). Our

minimisation algorithm returns the vector 1
3
(2, 0, 1), but

clearly the vector 1
3
(1, 0, 2) will have an identical entropy

value.

6 Conclusions and Further Work

At each stage of tree construction the method presented
here allows for the possibility that we cannot choose be-
tween potential split variables. This has been considered
previously regarding choice of root node [4], but we are
aware of no method in which this idea is applied to the
construction of the whole tree, or one which compares
entropy ranges. Clearly, it remains to test this method
against others - at the time of writing the WEKA code for
our method has not yet been written - but by expanding
focus beyond the root nodes and by utilising comparisons
between intervals, this method combines classification and
imprecise probability in an attractive way, by recognising
situations in which it is unreasonable to consider one split
variable choice as clearly superior to another.

Figure 3: Example 5.1: Tree 1

Further work is required on considering how best to collate
the set of categories given by the imprecise decision tree
for each data point. It would also be of value to consider
more thoroughly the implications of minimising entropy,
particularly with regard to unobserved categories. One of
the criticisms regarding attempts to maximise entropy is
that it invariably gives as much mass as possible to cat-
egories that were unobserved. This is difficult to justify
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A1 A2 A3 A4 A5 C
1 1 3 0 0 2 1
2 1 3 0 1 1 1
3 1 2 0 1 0 1
4 1 2 0 1 0 1
5 1 3 0 1 0 1
6 1 3 0 1 3 2
7 1 0 1 0 1 1
8 1 0 1 0 1 2
9 1 1 0 1 0 1
10 1 1 0 1 1 1
11 5 0 0 0 1 2
12 5 0 0 0 1 2
13 5 0 1 0 0 1
14 5 0 0 0 0 1
15 2 3 0 1 1 2
16 2 4 1 0 1 1
17 1 1 1 1 1 2
18 2 4 0 1 1 1
19 2 0 1 0 0 1
20 2 2 0 1 2 1
21 2 0 0 0 1 2
22 3 1 0 1 0 1
23 3 3 1 1 1 1
24 3 1 0 1 0 1
25 1 0 1 1 4 1
26 2 1 0 0 3 1
27 3 1 0 0 1 1
28 3 0 0 0 2 1
29 3 0 1 1 1 2
30 3 1 0 1 0 1
31 4 2 0 0 0 1
32 4 1 1 1 0 1
33 4 0 1 0 1 2
34 3 1 0 1 1 1
35 4 0 0 0 1 2
36 4 0 0 0 0 1
37 4 0 1 0 1 1
38 4 0 0 0 1 2
39 5 0 0 0 0 1
40 4 0 0 1 1 2
41 3 0 0 1 1 1
42 3 0 1 0 0 1
43 3 1 1 0 1 1
44 5 0 0 0 1 2
45 4 0 0 1 0 1
46 5 0 0 0 1 2
47 5 0 0 0 0 1
48 5 0 0 0 0 1
49 2 1 0 1 2 1
50 4 1 0 1 0 1

Table 2: Data set for imprecise tree

Figure 4: Example 5.1: Tree 2

Figure 5: Example 5.1: Tree 3

theoretically. Moreover, the amount of mass given to each
unobserved category depends on how the unobserved cat-
egories are described, and how many there are, which may
cause problems. In contrast, minimising entropy guaran-
tees that no unobserved category will be given any mass,
side-stepping the issue of how to label and quantify unob-
served categories.

Finally, we should also consider using alternative informa-
tion measures (one such alternative is the Gini index [10])
to generate imprecise decision trees.
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Abstract

In this paper we pose the problem of approximating
an arbitrary belief function (b.f.) with a consonant
one, in a geometric framework in which belief func-
tions are represented by the vectors of their basic
probabilities, or “mass space”. Given such a vector
~mb, the consonant b.f. which minimizes an appro-
priate distance function from ~mb can be sought. We
consider here the classical L1, L2 and Lp norms. As
consonant belief functions live in a collection of sim-
plices in the mass space, partial approximations on
each individual simplex have to be computed in order
to find the overall approximation. Interpretations of
the obtained approximations in terms of basic prob-
abilities are proposed, and the results compared with
those of previous approaches, in particular outer con-
sonant approximation.

Keywords. Consonant belief functions, (outer) con-
sonant approximation, mass space, Lp norms.

1 Introduction

The theory of evidence (ToE) [22] is a popular ap-
proach to uncertainty description. Probabilities are
there replaced by belief functions (b.f.s), which as-
sign values between 0 and 1 to subsets of the sam-
ple space Θ instead of single elements. Possibil-
ity theory [10], on its side, is based on possibility
measures, i.e., functions Pos : 2Θ → [0, 1] on Θ
such that Pos(

⋃
iAi) = supi Pos(Ai) for any family

{Ai|Ai ∈ 2Θ, i ∈ I} where I is an arbitrary set index.
Given a possibility measure Pos, the dual necessity
measure is defined as Nec(A) = 1− Pos(Ac).
Necessity measures have as counterparts in the the-
ory of evidence consonant b.f.s, i.e., belief functions
whose focal elements are nested [22]. The problem of
approximating a belief function with a necessity mea-
sure is then equivalent to approximating a belief func-
tion with a consonant b.f. [1, 11, 15, 16]. As possibil-
ities are completely determined by their values on the

singletons Pos(x), x ∈ Θ, they are less computation-
ally expensive than b.f.s, making the approximation
process interesting for many applications. Several au-
thors, such as Yager [25] and Romer [21] amongst
others, have studied the connection between fuzzy
numbers and Dempster-Shafer theory. Klir et al have
published an excellent discussion [20] on the relations
among fuzzy and belief measures and possibility the-
ory. Heilpern [13] has also presented the theoreti-
cal background of fuzzy numbers connected with the
possibility and Dempster-Shafer theories, describing
some types of representation of fuzzy numbers and
studying the notions of distance and order between
fuzzy numbers based on these representations. Caro
and Nadjar [2], instead, have suggested a generaliza-
tion of the Dempster-Shafer theory to a fuzzy valued
measure. The links between transferable belief model
and possibility theory have been briefly investigated
by Ph. Smets in [24].
Dubois and Prade [11], more specifically, have ex-
tensively worked on consonant approximations of be-
lief functions. As belief functions are computation-
ally expensive to work on (at least in a naive way),
mapping them to necessity or possibility measures,
which only depends on their values on singletons, can
greatly reduce the complexity of making inferences
or decisions under uncertainty. Dubois and Prade’s
work has been later considered in [15, 16]. In partic-
ular, the notion of “outer consonant approximation”
has received considerable attention in the past. In-
deed, belief functions admit the following order rela-
tion: b ≤ b′ ⇔ b(A) ≤ b′(A) ∀A ⊆ Θ, called “weak
inclusion”. It is then possible to introduce the no-
tion of “outer consonant approximations” [11] of a
belief function b, i.e., those co.b.f.s such that ∀A ⊆ Θ
co(A) ≤ b(A). Dubois and Prade’s work has been
later extended by Baroni [1] to capacities. In [7] the
author has indeed provided a comprehensive descrip-
tion of the geometry of the set of outer consonant
approximations.

In recent times the opportunity of seeking probabil-
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ity or consonant approximations/transformations of
belief functions by minimizing appropriate distance
functions has been explored. The author has himself
introduced the notion of orthogonal projection π[b] of
a belief function onto the probability simplex [3], and
studied consistent approximations of belief functions
induced by classical Lp norms [8] in the space of belief
functions [4]. In [6] he has shown that norm minimiza-
tion can also be used to define families of geometric
conditional b.f.s. Jousselme et al [17] have recently
conducted a nice survey of the similarity measures be-
tween belief functions introduced so far. Other sim-
ilarity measures between belief functions have been
proposed by Shi et al [23], Jiang et al [14], and others
[9, 14, 19]. Many of these measures could be in prin-
ciple employed to define conditional belief functions,
or approximate b.f.s by necessity measures.
Paper outline. In this paper we derive the expres-
sions of all the consonant approximations of belief
functions induced by minimizing Lp distances in the
mass space (with respect to the counting measure on
2Θ). After providing the necessary background on
consonant b.f.s and the approximation problem (Sec-
tion 2), we compute the approximations induced by
L1 (3.1), L2 (3.2) and L∞ (3.3) norms, respectively.
Their interpretation in terms of mass re-assignment
and their relation with outer consonant approxima-
tions are discussed in Section 4, and illustrated in the
significant ternary case.

2 Consonant approximation

Consonant belief functions. We briefly recall here
a few basis definitions. A basic probability assign-
ment (b.p.a.) over a finite set (frame of discern-
ment [22]) Θ is a function mb : 2Θ → [0, 1] on its
power set 2Θ = {A ⊆ Θ} such that mb(∅) = 0
and

∑
A⊆Θmb(A) = 1. Subsets of Θ associated

with non-zero values of mb are called focal elements.
The belief function b : 2Θ → [0, 1] associated with
a basic probability assignment mb on Θ is defined
as: b(A) =

∑
B⊆Amb(B). The plausibility function

(pl.f.) plb : 2Θ → [0, 1], A 7→ plb(A), where plb(A) .=
1−b(Ac) = 1−∑B⊆Ac mb(B) =

∑
B∩A 6=∅mb(B), ex-

presses the amount of evidence not against A. A prob-
ability measure is simply a special belief function as-
signing non-zero masses to singletons only (Bayesian
b.f.): mb(A) = 0 |A| > 1. A belief function is said to
be consonant if its focal elements are nested.

Mass vector representations. Given a frame Θ,
each belief function b : 2Θ → [0, 1] is completely spec-
ified by its N − 2 belief values {b(A), ∅ ( A ( Θ},
N

.= 2n (n .= |Θ|), (as b(∅) = 0, b(Θ) = 1 for all
b.f.s) and can therefore be represented as a point of

RN−2 [4]. In the same way, each belief function is
uniquely associated with the related set of mass val-
ues {m(A), ∅ ( A ⊆ Θ} (Θ this time included). It can
therefore be seen also as a point of RN−1, the vector
~mb of its N − 1 mass components:

~mb =
∑

∅(B⊆Θ

mb(B)~mB , (1)

where ~mB is the vector of mass values associated with
the (“categorical”) mass function ~mB assigning all the
mass to a single event B: ~mB(B) = 1, ~mB(A) =
0 ∀A 6= B. Note that in RN−1 ~mΘ = [0, ..., 0, 1]′

and cannot be neglected. However, since the mass
of Θ is determined by all the other masses in virtue
of the normalization constraint, we can also choose
to represent mass vectors as vectors of RN−2 of the
form ~mb =

∑
∅(B(Θmb(B)~mB , in which this time

the component Θ is neglected. We will consider both
representations in the following. The collection M of
points which are valid basic probability assignments
is a simplex 1, which we call mass space. M is the
convex closure2 M = Cl(~mA, ∅ ( A ⊆ Θ).

The consonant complex. In this framework the ge-
ometry of consonant belief functions can be described
in terms of simplicial complexes [12], i.e., collections
Σ of simplices of arbitrary dimensions such that: 1.
if a simplex belongs to Σ, then all its faces of any
dimension belong to Σ; 2. the intersection of any
two simplices is a face of both. Now, the region CO
of consonant belief functions in the belief space is a
simplicial complex [7]. Namely, CO is the union of a
collection of (maximal) simplices, each of them asso-
ciated with a maximal chain C = {A1 ⊂ · · · ⊂ An},
|Ai| = i of subsets of Θ. When the mass of some
element of the maximal chain is zero, the simplicial
coordinate of the associated b.f. is also zero. Analo-
gously, the region of consonant belief functions in the
mass space M will be the simplicial complex:

COM =
⋃

C=A1⊂···⊂An
Cl(~mA1 , · · · , ~mAn).

Binary example. In the case of a frame of dis-
cernment containing only two elements, Θ2 = {x, y},
each b.f. b : 2Θ2 → [0, 1] is completely deter-
mined by its mass values mb(x), mb(y), as mb(Θ) =

1An n-dimensional simplex is the convex closure
Cl(x1, ..., xn+1) of n+1 affinely independent points x1, ..., xn+1

of the Euclidean space Rn. An affine combination of k points
v1, ..., vk ∈ Rm is a sum α1v1 + · · ·+αkvk such that

∑
i αi = 1.

The affine subspace generated by the points v1, ..., vk ∈ Rm

is the set {v ∈ Rm : v = α1v1 + · · · + αkvk,
∑

i αi = 1}. If
v1, ..., vk generate an affine space of dimension k they are said
to be affinely independent.

2Here Cl denotes convex closure: Cl(~m1, ..., ~mk) = {~m ∈
M : ~m = α1 ~m1 + · · ·+ αk ~mk,

∑
i αi = 1, αi ≥ 0 ∀i}.
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1 − mb(x) − mb(y) and mb(∅) = 0. We can there-
fore collect them in a vector of RN−2 = R2 (since
N = 22 = 4): ~mb = [mb(x),mb(y)]′ ∈ R2. In this ex-
ample we adopt therefore the N − 2-dimensional ver-
sion of the mass space. Since mb(x) ≥ 0, mb(y) ≥ 0,

Figure 1: The belief spaceM2 for a binary frame is a
triangle in R2 whose vertices are the mass vectors as-
sociated with the categorical belief functions focused
on {x}, {y} and Θ: ~mx, ~my, ~mΘ. Consonant b.f.s live
in the union of the two segments COx = Cl(~mΘ, ~mx)
and COy = Cl(~mΘ, ~my). The unique L1 = L2 con-
sonant approximation and the set of L∞ consonant
approximations (dashed) on COx are also shown.
and mb(x)+mb(y) ≤ 1 we can easily infer that the set
M2 of all the possible basic probability assignments
on Θ2 can be depicted as the triangle in the Carte-
sian plane of Figure 1, whose vertices are the points
~mΘ = [0, 0]′, ~mx = [1, 0]′, ~my = [0, 1]′, which corre-
spond respectively to the vacuous belief function bΘ
(mbΘ(Θ) = 1), the Bayesian b.f. bx with mbx(x) = 1,
and the Bayesian b.f. by with mby (y) = 1. The re-
gion P2 of all Bayesian b.f.s on Θ2 is the diagonal line
segment Cl(~mx, ~my).

Consonant approximations in the binary case.
On Θ2 = {x, y} consonant belief functions can have as
chain of focal elements either {{x},Θ2} or {{y},Θ2}.
Therefore the region CO2 of all the co.b.f.s on Θ2 is
the union of two segments (see Figure 1): CO2 =
COx ∪ COy = Cl(~mΘ, ~mx) ∪ Cl(~mΘ, ~my).
Figure 1 illustrates the Lp consonant approximations
of a given ~mb as well. We can notice that the L1 and
L2 (partial) approximations coincide, and are located
in the barycenter of the set of L∞ approximations,
which form instead a whole interval. Such L1/L2 ap-
proximations leave the mass of {x} unchanged, and

re-assign the mass of {y} (which is not in the chain
{{x}, {x, y}}) to Θ. Such features are retained in the
general case (Section 4).

The consonant approximation problem. Given
a belief function b with basic probability assignment
mb, we call (metric) consonant approximation of a
belief function b induced by a distance function d in
M the b.f.(s) cod[mb] which minimize(s) the distance
d(~mb, CO) between the mass vector ~mb representing
mb and the consonant simplicial complex

cod[mb] = arg min
~mco∈CO

d(~mb, ~mco), (2)

under the condition that such minima exist.

Why use Lp norms. A close relation exists between
consonant belief functions and Lp norms, in particular
the L∞ one. Consonant b.f.s are the counterparts of
necessity measures in the theory of evidence, so that
their plausibility functions are possibility measures.
Possibility measures Pos, in turn, are inherently re-
lated to L∞ as Pos(A) = maxx∈A Pos(x). It makes
therefore sense to conjecture that a consonant trans-
formation obtained by picking as distance function in
the problem (2) one of the classical norms

‖~mb − ~mb′‖L1 =
∑

A⊆Θ

|mb(A)−mb′(A)|,

‖~mb − ~mb′‖L2 =
√∑

A⊆Θ(mb(A)−mb′(A))2,

‖~mb − ~mb′‖L∞ = max
A⊆Θ

{
|mb(A)−mb′(A)|

}

(3)
would be meaningful. In the probabilistic case, in the
belief space B (p[b] = arg minp∈P dist(b, p)), the use of
Lp norms leads indeed to quite interesting results. On
one side, the L2 approximation induces the so-called
“orthogonal projection” of b onto P [3]. On the other,
the set of L1/L∞ probabilistic approximations of b (in
the belief space) coincides with the set of probabilities
dominating b: {p : p(A) ≥ b(A)} (at least in the
binary case).

Other norms. The Lp family of norms is important
and useful also in classical probability theory. Clearly,
however, a number of other norms can be introduced
in the framework of belief functions and used to de-
fine consonant (or Bayesian) approximations. For in-
stance, generalizations to belief functions of the classi-
cal Kullback-Leibler divergence of two probability dis-
tributions P,Q (DKL(P |Q) =

∫∞
−∞ p(x) log(p(x)

q(x) )dx)
or other measures based on information theory such
as fidelity and entropy-based norms [18] can be stud-
ied. Many other similarity measures have indeed been
proposed [9, 14, 19, 23]. The application of similarity
measures more specific to belief functions or inspired
by classical probability to the approximation problem

ISIPTA ’11: Lp Consonant Approximation of Belief Functions in the Mass Space 151



Figure 2: To minimize the distance of a point from
a simplicial complex, we need to find all the partial
solutions (4) on all the maximal simplices of the com-
plex (empty circles), to later compare these partial
solutions to select a global optimum (black circle).

is an enormous task, of which this paper can be seen
as just a first step.

Distance of a point from a simplicial complex.
As the consonant complex CO is a collection of sim-
plices, solving the consonant approximation problem
involves finding a number of partial solutions

coCLp [mb] = arg min
~co∈COC

‖~mb − ~co‖Lp (4)

(see Figure 2), one for each maximal chain C of sub-
sets of Θ. Then, the distance of ~mb from all such
partial solutions has to be assessed in order to se-
lect a global optimal approximation. Figure 1 shows
the obtained (partial) Lp consonant approximations
onto COx in the binary case. In such a toy example,
coL1 [mb] = coL2 [mb] coincide and are unique, lying on
the barycenter of the set coL∞ [mb] of L∞ approxima-
tions, which instead form a whole interval. Some of
these features are retained in the general case, others
are not. Note also that, in the binary case, consonant
and consistent [8] approximations coincide, and there
is no difference between belief and mass space [6] rep-
resentation. In the rest of the paper we will explicitly
compute the L1, L2, and L∞ consonant approxima-
tions in the mass space and discuss the results.

3 Consonant approximation in M

If we choose the N − 1-dimensional version of the
mass space (see Equation (1)), the mass vector as-
sociated with an arbitrary consonant b.f. co with
maximal chain of focal elements C reads as ~mco =∑
A∈Cmco(A)~mA, so that the difference vector is

~mb− ~mco =
∑

A∈C
(mb(A)−mco(A))~mA+

∑

A6∈C
mb(A)~mA.

(5)

If we instead pick the N − 2-dimensional version of
the mass space, the mass vector associated with the
same, arbitrary consonant b.f. co with maximal chain
C reads as ~mco =

∑
A∈C,A6=Θmco(A)~mA, and the dif-

ference vector is
∑

A∈C,A 6=Θ

(mb(A)−mco(A))~mA +
∑

A 6∈C
mb(A)~mA. (6)

3.1 L1 approximation

3.1.1 RN−1 representation

Consider first the RN−1 representation of mass vec-
tors. Given the difference vector (5) its L1 norm
is ‖~mb − ~mco‖L1 =

∑
A∈C |mb(A) − mco(A)| +∑

A 6∈Cmb(A) =
∑
A∈C |β(A)| + ∑A6∈Cmb(A), where

β(A) .= mb(A)−mco(A) and
∑

A∈C
β(A) =

∑

A∈C
(mb(A)−mco(A)) =

∑

A∈C
mb(A)− 1

(7)
so that β(Θ) =

∑

A∈C
mb(A)− 1−

∑

A∈C,A 6=Θ

β(A).

The above norm reads therefore as, as a function of
the variables {β(A), A ∈ C, A 6= Θ},

‖~mb − ~mco‖L1 =
∣∣∣
∑

A∈C
mb(A)− 1−

∑

A∈C,A 6=Θ

β(A)
∣∣∣

+
∑

A∈C,A 6=Θ

|β(A)|+
∑

A 6∈C
mb(A).

(8)
Partial approximation. This function has the form

∑

i

|xi|+
∣∣∣−
∑

i

xi − k
∣∣∣, k ≥ 0 (9)

which has an entire simplex of minima, namely: xi ≤
0 ∀i, ∑i xi ≥ −k (see [6] for a similar optimization
problem in the geometric conditioning context). The
minima of the L1 norm (8) are therefore given by the
following system of constraints:




β(A) ≤ 0 ∀A ∈ C, A 6= Θ,∑

A∈C,A6=Θ

β(A) ≥
∑

A∈C
mb(A)− 1.

(10)
The solution in terms of the mass of the consonant
approximation reads as:




mco(A) ≥ mb(A) ∀A ∈ C, A 6= Θ,∑

A∈C,A6=Θ

(mb(A)−mco(A)) ≥
∑

A∈C
mb(A)− 1

(11)
where the last constraint reduces to

∑

A∈C,A6=Θ

(mb(A)−mco(A)) =

=
∑

A∈C,A6=Θ

mb(A)−
(

1−mco(Θ)
)
≥
∑

A∈C
mb(A)− 1,
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i.e., mco(Θ) ≥ mb(Θ). Therefore the solution is
mco(A) ≥ mb(A) ∀A ∈ C.
Vertices and barycenter of the partial approx-
imation. The vertices of the set of approximations
which are the solutions of (10) are given by the vectors
{~βA, A ∈ C} such that

~βA(B) =
{ −∑A 6∈Cmb(A) B = A,

0 B 6= A

when A 6= Θ, while ~βΘ = ~0. In terms of masses the
vertices of the set of partial L1 approximations are
the vectors {~mL1

A , A ∈ C} such that

~mL1
A (B) =

{
mb(B) +

∑
A6∈Cmb(A) B = A,

mb(B) B 6= A
(12)

whose barycenter is coL1,N−1[mb](B) = mb(B) +∑
A6∈Cmb(A)

n .

Global approximation. To find the global L1 ap-
proximation on the consonant complex, we need to
find out which component is associated with the min-
imal L1 distance. The partial approximations (11)
onto COC have L1 distance from ~mb given by:

∑

A6∈C
mb(A) = 1−

∑

A∈C
mb(A). (13)

Therefore, the component of the consonant complex
at minimal distance is that one associated with the
chain that has maximal mass in the original b.f.

3.1.2 RN−2 representation

In the RN−2 representation of mass vectors, the L1

norm of the difference vector (6) is

‖~mb−~mco‖L1 =
∑

A∈C,A6=Θ

|mb(A)−mco(A)|+
∑

A6∈C
mb(A)

which is obviously minimized by

mco(A) = mb(A) ∀A ∈ C, A 6= Θ. (14)

Again, to find the global L1 approximation on the
consonant complex in RN−2, we need to find the clos-
est simplicial component. As the partial approxima-
tion (14) onto COC has L1 distance from ~mb given as
before by (13), we have the following.

Theorem 1. Given a belief function b : 2Θ → [0, 1]
with b.p.a. mb, the global L1 consonant approxima-
tions of b in the mass space M of dimension RN−1 is
the set of partial approximations

coC
∗
L1,M,N−1[mb] =

{
mco(A) ≥ mb(A) ∀A ∈ C

}

= Cl(~mL1
A , A ∈ C),

with vertices given by Equation (12), associated with
the maximal chain of focal elements which maximizes
the total original mass of the chain

C∗ = arg max
C

∑

A∈C
mb(A).

Its global L1 consonant approximations in the mass
space M of dimension RN−2 is the (unique) partial
approximation coC

∗
L1,M,N−2[mb] such that





mco(A) = mb(A) ∀A ∈ C, A 6= Θ,
mco(Θ) = mb(Θ) + 1−

∑

A∈C
mb(A)

associated with the same chain of focal elements.

Not only the two approximations are consistent in the
sense that they have the same chain of focal elements,
but the set of L1 consonant approximations in RN−1

is convex and forms a polytope, one of whose vertices
is indeed the L1 approximation in RN−2.

3.2 L2 approximation

In order to find the L2 consonant approximation(s) it
is convenient to recall that the minimal L2 distance
between a point and a vector space is attained by
the point of the vector space such that the difference
vector is orthogonal to all the generators ~gi of the
vector space:

arg min
~q∈V
‖~p− ~q‖L2 = q̂ ∈ V : 〈~p− q̂, ~gi〉 = 0 ∀i

whenever ~p ∈ Rm, V = span(~gi, i). Hence, in-
stead of minimizing the L2 norm of the difference
vector ‖~mb − ~mco‖L2 we can just impose a condition
of orthogonality between the difference vector itself
~mb − ~mco and each component COC of the consonant
complex. In the two cases RN−1 and RN−2 we will
therefore have two different difference vectors and two
different orthogonality conditions. In the both cases
we need to write:

〈~mb − ~mco, ~mA − ~mΘ〉 = 0 ∀A ∈ C, A 6= Θ. (15)

3.2.1 RN−1 representation

In the N − 1 dimensional mass space, however, the
vector ~mA − ~mΘ is such that ~mA − ~mΘ(B) = 1 if
B = A, ~mA − ~mΘ(B) = −1 if B = Θ, 0 otherwise.
Hence, the orthogonality condition becomes

β(A)− β(Θ) = 0 ∀A ∈ C, A 6= Θ.

Partial approximation. By Equation (7) β(Θ) =∑
A∈Cmb(A)− 1−∑A∈C,A 6=Θ β(A) and the orthogo-

nality condition becomes
{

2β(A) + 1−
∑

B∈C
mb(B) +

∑

B∈C,B 6=A,Θ
β(B) = 0
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for all focal elements A in the maximal chain C, A 6=
Θ. By substitution it can be proven that the solution
is β(A) =

∑
B∈Cmb(B)−1

n . The mass of the partial L2

consonant approximation is therefore, ∀A ∈ C:

mco(A) = mb(A) +
1−∑B∈Cmb(B)

n
. (16)

Global approximation. To find the global approxi-
mation, we need to compute the L2 distance of b from
the closest such partial solution. We have:

‖~mb − ~mco‖2L2
=
∑

A⊆Θ

(mb(A)−mco(A))2

=
(
∑
B 6∈Cmb(B))2

n
+
∑

A6∈C
(mb(A))2,

which is minimized by the component COC that min-
imizes

∑
A 6∈C(mb(A))2.

3.2.2 RN−2 representation

In the RN−2 representation, as ~mΘ = ~0, the orthogo-
nality condition reads as:

〈~mb − ~mco, ~mA〉 = β(A) = 0 ∀A ∈ C, A 6= Θ

so that the L2 partial approximation is given by




mco(A) = mb(A) A ∈ C, A 6= Θ
mco(Θ) = mb(Θ) +

∑

B 6∈C
mb(B).

(17)
The optimal distance is, in this case, ‖~mb− ~mco‖2L2

=∑
A⊆Θ(mb(A) − mco(A))2 =

∑
A6∈C(mb(A))2 +

(
∑
A6∈Cmb(A))2, which is once again minimized by

the maximal chain C∗ = arg minC
∑
A 6∈C(mb(A))2.

Theorem 2. Given a belief function b : 2Θ → [0, 1]
with b.p.a. mb, the global L2 consonant approxima-
tions of b in the mass space M of dimension RN−1 is
the set of partial approximations coC

∗
L2,M,N−1[mb] =

=
{
mco(A) = mb(A) +

1−∑B∈C∗ mb(B)
n

}

associated with the maximal chain of focal elements
which minimizes the sum of square masses outside the
chain: C∗ = arg minC

∑
A 6∈C(mb(A))2.

Its global L2 consonant approximations in the mass
space M of dimension RN−2 is the (unique) partial
approximation coC

∗
L1,M,N−2[mb] =

=
{

mco(A) = mb(A) ∀A ∈ C, A 6= Θ,

mco(Θ) = mb(Θ) + 1−
∑

A∈C
mb(A)

}

associated with the same chain of focal elements, and
coincides with the global L1 consonant approximation
in the mass space M of dimension RN−2.

Indeed, in virtue of (17) and (14) all partial L1 and L2

consonant approximations coincide in the mass space
of dimension N − 2.

3.3 L∞ approximation

3.3.1 RN−1 representation

In the N − 1 representation, the L∞ norm of the dif-
ference vector is

‖~mb − ~mco‖L∞ = max
{

max
A∈C
|β(A)|,max

B 6∈C
mb(B)

}
,

β(Θ) =
∑
B∈Cmb(B)− 1−∑B∈C,B 6=Θ β(B), so that

|β(Θ)| =
∣∣∣
∑

B 6∈C
mb(B) +

∑

B∈C,B 6=Θ

β(B)
∣∣∣

and the norm to minimize becomes

‖~mb − ~mco‖L∞ = max
{

max
A∈C,A 6=Θ

|β(A)|,
∣∣∣
∑

B 6∈C
mb(B) +

∑

B∈C,B 6=Θ

β(B)
∣∣∣,max
B 6∈C

mb(B)
}
.

(18)
This is a function of the form

max
{
|x1|, |x2|, |x1 + x2 + k1|, k2

}
(19)

with 0 ≤ k2 ≤ k1 ≤ 1. If |C| = 2, for instance,
x1 = β(A1), x2 = β(A2), k1 =

∑
B 6∈Cmb(B) and

k2 = maxB 6∈Cmb(B). Such a function has two pos-
sible behaviors in terms of its minimal region in the
plane x1, x2.

Case 1. If k1 ≤ 3k2 its contour function has the
form rendered in Figure 3. The set of minimal points
is given by xi ≥ −k2, x1 + x2 ≤ k2 − k1. In the more

Figure 3: Contour function (level sets) and minimal
points (white triangle) of a function of the form (19),
when k1 ≤ 3k2. In the example k2 = 0.4 and k1 = 0.5.
general case of an arbitrary number m−1 of variables
x1, ..., xm−1 such that xi ≥ −k2,

∑
i xi ≤ k2− k1, the

set of minimal points is a simplex with m vertices:
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each vertex vi is such that vi(j) = −k2 ∀j 6= i; vi(i) =
−k1 + (m− 1)k2 (obviously vm = [−k2, · · · ,−k2]).
For the norm (18), in the first case

max
B 6∈C

mb(B) ≥ 1
n

∑

B 6∈C
mb(B) (20)

the set of partial L∞ approximations is given by




β(A) ≥ −max
B 6∈C

mb(B) A ∈ C, A 6= Θ
∑

B∈C,B 6=Θ

β(B) ≤ max
B 6∈C

mb(B)−
∑

B 6∈C
mb(B)

This is a simplex Cl(~mL∞
Ā

, Ā ∈ C) with vertices




βĀ(A) = −max
B 6∈C

mb(B) A ∈ C, A 6= Ā

βĀ(Ā) = −
∑

B 6∈C
mb(B) + (n− 1) max

B 6∈C
mb(B)

or, in terms of their basic probability assignments,




~mL∞
Ā

(A) = mb(A) + max
B 6∈C

mb(B) A ∈ C, A 6= Ā

~mL∞
Ā

(Ā) = mb(Ā) +
∑

B 6∈C
mb(B)+

−(n− 1) maxB 6∈Cmb(B).
(21)

Note that such quantity is not guaranteed to be posi-
tive, as, for instance, when there exists a single subset
B s.t. mb(B) 6= 0 outside C, ~mL∞

Ā
(Ā) is negative un-

less n ≤ 2. The barycenter of this simplex can be
computed as follows:

mL∞(A) =

∑

Ā∈C
~mL∞
Ā

(A)

n
= mb(A) +

∑
B 6∈Cmb(B)

n
,

i.e., the L2 partial approximation. The corresponding
minimal L∞ norm of the difference vector is, accord-
ing to (18), equal to maxB 6∈Cmb(B).

Case 2. In the second case k1 > 3k2, or for us

max
B 6∈C

mb(B) <
1
n

∑

B 6∈C
mb(B), (22)

the contour function of (19) is as in Figure 4. There is
a single minimal point, located in [−1/3k1,−1/3k1].
For an arbitrary number m − 1 of variables the min-
imal point is located in [(−1/m)k1, · · · , (−1/m)k1]′,

i.e., for system (18), β(A) = − 1
n

∑

B 6∈C
mb(B) for all

A ∈ C, A 6= Θ or, in terms of b.p.a.s,

mcoL∞ [mb](A) = mb(A) +
1
n

∑

B 6∈C
mb(B) ∀A ∈ C.

The mass of Θ is obtained by normalization.
The corresponding minimal L∞ norm of the difference
vector is 1

n

∑
B 6∈Cmb(B).

Figure 4: Contour function (level sets) and minimal
point (white cross) of a function of the form (19),
when k1 ≥ 3k2. In the example k2 = 0.1 and k1 = 0.5.

3.3.2 RN−2 representation

In RN−2 the L∞ norm of the difference vector is

‖~mb − ~mco‖L∞ = max
∅(A(Θ

|mb(A)−mco(A)|

= max
{

max
A∈C,A 6=Θ

|β(A)|,max
B 6∈C

mb(B)
} (23)

which is minimized by

|β(A)| ≤ max
B 6∈C

mb(B) ∀A ∈ C, A 6= Θ (24)

i.e., in the original mass coordinates,

mb(A)−max
B 6∈C

mb(B) ≤ mco(A) ≤
≤ mb(A) + maxB 6∈Cmb(B) ∀A ∈ C, A 6= Θ.

(25)
According to (23) the corresponding minimal L∞
norm is equal to maxB 6∈Cmb(B).
Clearly, the vertices of the set (24) are all the vectors
of β variables such that β(A) = +/−maxB 6∈Cmb(B)
for all A ∈ C, A 6= Θ. Its barycenter is clearly given
by β(A) = 0 for all A ∈ C, A 6= Θ, i.e.:

mco(B) =
{
mb(B) B ∈ C, B 6= Θ
mb(B) +

∑
B 6∈Cmb(B) B = Θ.

(26)
Summarizing:

Theorem 3. Given a belief function b : 2Θ → [0, 1]
with b.p.a. mb, the partial L∞ consonant approxima-
tions of b in the mass space M of dimension RN−1

can form either a simplex

coC
∗
L∞,M,N−1[mb] = Cl(~mL∞

Ā
, Ā ∈ C)

with vertices (21) when maxB 6∈Cmb(B) ≥
1
n

∑
B 6∈Cmb(B), or a reduce to a single belief

function when the opposite is true, the barycenter of
the above simplex, located on the partial L2 approxi-
mation (16). In both cases, the global L∞ consonant
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approximation is associated with the maximal chain
of focal elements:

C∗ = arg min
C

max
B 6∈C

mb(B). (27)

The partial L∞ consonant approximations of b in
the mass space M of dimension RN−2 form the set
coC

∗
L∞,M,N−2[mb] given by Equation (25). Its barycen-

ter reassigns all the mass outside the chain to Θ, leav-
ing the masses of the other elements untouched. The
related global approximations of b are associated with
the same optimal chain (27).

4 Semantics

Let us interpret the results we obtained in terms of
basic probability assignments of the various consonant
approximations, and compare those results with the
outer consonant approximations [11] whose geometry
has been described in [7].

Summary of approximations inM. We can sum-
marize all the results obtained here in the following
tables. In the RN−1 mass representation the partial
Lp approximations are:

coCL1,N−1[mb] = Cl(~mL1
A , A ∈ C)

: mco(A) ≥ mb(A) ∀A ∈ C;
coC
L1,N−1

[mb] = coCL2,N−1[b]

: mco(A) = mb(A) +
∑
B 6∈Cmb(B)

n .
(28)

Concerning the L∞ approximation, if (20) holds

coCL∞,N−1[mb] = Cl(~mL∞
Ā

, Ā ∈ C);
coC
L∞,N−1

[mb] = coCL2,N−1[mb],

while if (22) holds: coCL∞,N−1[mb] = coCL2,N−1[mb].
We can observe the following facts:

1. the set of L1 partial approximation is the set of
inner consonant approximations of b according to the
order relation: b ≥ b′ iff mb(A) ≥ mb′(A);
2. this set is a simplex, whose vertices are obtained
by re-assigning all the mass outside the desired chain
to a single focal element of the chain itself (see (12));
3. its barycenter coincides with the L2 partial ap-
proximation;
4. such approximation redistributes the mass of focal
elements outside the chain on an equal basis to all the
elements of the chain;
5. when the partial L∞ approximation is unique, it
coincides with the L2 approximation and the barycen-
ter of the L1 approximations;
6. when it is not unique, it is a simplex whose ver-
tices assign to each element of the chain but one the
maximal mass outside the chain, with barycenter still
in the L2 approximation.

In particular, points 2. and 4. (and 5.) remind us of
the behavior of geometric conditional belief functions
in the mass space [6]. There,
Proposition 1. Given a belief function b : 2Θ →
[0, 1] and an arbitrary non-empty focal element ∅ (
A ⊆ Θ, the unique L2 conditional belief functions
bL2,M(.|A) with respect to A in M is the b.f. whose
b.p.a. redistributes the mass 1 − b(A) to each focal
element B ⊆ A in an equal way.
The set of L1 conditional belief functions bL1,M(.|A)
with respect to A in M is a simplex whose vertices
re-assign the mass 1 − b(A) of focal elements not in
the conditioning event A to a specific subset of A.

It is tempting to speculate that this is a consistent
behavior of L1 and L2 minimization in the RN−1 rep-
resentation of the mass space.
In the RN−2 mass representation the corresponding
partial Lp approximations are:

coCL∞,N−2[b] : |mco(A)−mb(A)| ≤ max
B 6∈C

mb(B)

∀A ∈ C, A 6= Θ;
coC
L∞,N−2

[b] = coCL1,N−2[b] = coCL2,N−2[b]

:





mco(A) = mb(A), A ∈ C, 6= Θ
mco(Θ) = mb(Θ) +

∑

B 6∈C
mb(B).

(29)
We can notice a number of facts here too:

1. the L∞ (partial) approximation is not unique, and
it falls entirely inside the simplex of admissible con-
sonant b.f. only if each focal element in the desired
chain has mass greater then all focal elements outside
the chain: mb(A) ≤ maxB 6∈Cmb(B);
2. it forms a polytope in the mass space M, whose
size is determined by the largest mass outside the de-
sired maximal chain;
3. the L1 and L2 partial approximations are uniquely
determined, and coincide with the barycenter of the
set of L∞ partial approximations;
4. their semantic is straightforward: all the mass
outside the chain is re-assigned to Θ, increasing the
overall uncertainty of the belief state.

Clearly, approximations in the mass space do not take
into account the contributions of focal elements out-
side the chain to the plausibility of elements of the
chain. A similar phenomenon has been observed in
the case of geometric conditioning [6].

Relation with outer consonant approxima-
tions. Let us recall the main results on the geometry
of outer consonant approximations [7].
Proposition 2. For each simplicial component COC
of the consonant space associated with any maximal
chain of focal elements C = {A1 ⊂ · · · ⊂ An, |Ai| = i}
the set of outer consonant approximation of any b.f.
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b is the convex closure OC [b] = Cl(o ~B [b],∀ ~B) of the
co.b.f.s with basic probabilities

mo~B [b](Bi) =
∑

A⊆Θ: ~B(A)=Ai

mb(A), (30)

each associated with an “assignment function” ~B :
2Θ → C, A 7→ ~B(A) ⊇ A which maps each event A to
one of the elements of the chain containing it.

The points (30) are not guaranteed to be proper ver-
tices of the polytope OC [b], as some of them can
be obtained as a convex combination of the others.
The outer approximation produced by the permuta-
tion ρ of singletons which generates the desired chain
Ai = {xρ(1), · · · , xρ(i)}, i = 1, ..., n, i.e.

mcoρ(Ai) =
∑

B⊆Ai,B 6⊂Ai−1

mb(B), (31)

is an actual vertex of OC [b], and corresponds to the
maximal outer consonant approximation with maxi-
mal chain C.
Indeed, by Equation (11), the partial L1 approxima-
tions in RN−1 are such that mco(A) ≥ mb(A) for all
A ∈ C: they are the opposite of outer consonant ap-
proximations, using the natural order relation between
basic probabilities (rather than belief values).
It can be seen in Figure 1 that, in the binary case,
such maximal outer approximation coincides with the
(partial) L1 = L2 = L∞ approximation in the N − 2
representation. It looks unclear what the relationship
should be in the general case.

Comparison on a ternary example. It can there-
fore be useful to compare the different approximations
in the toy case of a ternary frame, Θ = {x, y, z},
to look for insights. Let us assume that we want
the consonant approximation to have maximal chain
C = {{x}, {x, y},Θ}.
Figure 5 illustrates the different partial consonant ap-
proximations in the simplex of consonant belief func-
tions with focal element {{x}, {x, y},Θ}, for a belief
function with masses

mb(x) = 0.2,mb(y) = 0.3,mb(x, z) = 0.5 (32)

We notice that the different simplices of Lp consonant
approximations are distinct, with the L1,N−1 one
(red simplex) falling entire in the consonant simplex
Cl(~mx, ~mx,y, ~mΘ), while most of L∞,N−2 (green
quadrangle) does not. It is interesting to note,
though, they are not unrelated to each other: indeed,
the L1/L2/L∞ consonant approximation in RN−2

(green little square) is a vertex of the simplex of L1

approximation in N − 1.
Even though the case for the unique

L1,N−2/L2,N−2/L∞,N−2 and L1,N−1 approxima-
tions seems compelling, it will be worth exploring in
the near future the behavior of the intersection of the
set of approximations not entirely admissible with
the consonant complex.

According to the formulae at page 8 of [5], the set
of outer consonant approximations of (32) with chain
{{x}, {x, y},Θ} is the convex closure of the points:

~mB1,B2 = [mb(x),mb(y), 1−mb(x)−mb(y)]′,
~mB3,B4 = [mb(x), 0, 1−mb(x)]′,
~mB5,B6 = [0,mb(x) +mb(y), 1−mb(x)−mb(y)]′,
~mB7,B8 = [0,mb(x), 1−mb(x)]′,
~mB9,B10 = [0,mb(y), 1−mb(y)]′,
~mB11,B12 = [0, 0, 1]′,

(33)
These points are plotted as light blue squares in Fig-
ure 5. We can notice many interesting things.

1. the set OC [b] of outer consonant approximations
with chain C is a subset of (the admissible part of)
the set of L∞,N−2 partial approximations; actually,
the barycenter of the latter is a vertex of OC [b];
2. on the contrary, outer approximations and L1,N−1

approximations are mutually exclusive, as it can be
inferred by Equation (11);
3. the maximal outer approximation coρ lies on the
border between the two, where mco(x, y) = mb(x, y).

Several other intriguing facts can be noticed there:
they surely deserve further analysis.

5 Conclusions

In this paper we computed all the consonant approxi-
mations of a belief function induced by minimizing its
Lp distances to the consonant complex, in the mass
space of basic probability vectors. Interpretations for
such approximations are rather natural in terms of
mass redistribution. We compared them with each
other and related them with classical outer consonant
approximations, with the help of an example.
The nature of Lp-induced consonant approximations
in the belief space remains an open problem, as is a
comprehensive analysis of consonant and consistent
approximations induced by distance minimization.
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Abstract

Non-conflicting and conflicting parts of belief func-
tions are introduced in this study. The unique decom-
position of a belief function defined on a two-element
frame of discernment to non-conflicting and indecisive
conflicting belief function is presented. Several basic
statements about algebra of belief functions on a gen-
eral finite frame of discernment are introduced and
unique non-conflicting part of a BF on an n-element
frame of discernment is presented here.

Keywords. belief function, Dempster-Shafer theory,
Dempster’s semigroup, conflict between belief func-
tions, uncertainty, non-conflicting part of belief func-
tion, conflicting part of belief function.

1 Introduction

Belief functions are one of the widely used formalisms
for uncertainty representation and processing that
enables representation of incomplete and uncertain
knowledge, belief updating, and combination of evi-
dence. They were originally introduced as a principal
notion of the Dempster-Shafer Theory or the Mathe-
matical Theory of Evidence [17].

When combining belief functions (BFs) by the con-
junctive rules of combination, conflicts often appear,
which are assigned to ∅ by un-normalized conjunctive
rule ∩© or normalized by Dempster’s rule of combina-
tion ⊕. Combination of conflicting BFs and interpre-
tation of conflicts is often questionable in real appli-
cations, thus a series of alternative combination rules
was suggested and a series of papers on conflicting
belief functions was published, e.g. [2, 5, 16, 19].

In [9], new ideas concerning interpretation, definition,
and measurement of conflicts of BFs were introduced.
We presented three new approaches to interpretation
and computation of conflicts: combinational conflict,
plausibility conflict, and comparative conflict. Differ-
ences were made between conflicts between BFs and

internal conflicts of single BF; a conflict between BFs
was distinguished from the difference between BFs.

When analyzing mathematical properties of the three
approaches to conflicts of BFs in [10], there appears
a possibility of expression of a BF Bel as Dempster’s
sum of non-conflicting BF Bel0 with the same plau-
sibility decisional support as the original BF Bel has
and of indecisive BF BelS which does not prefer any
of the elements of frame of discernment. The pre-
sented contribution analyses existence and uniqueness
of such BFs Bel0 and BelS .

The study starts with belief functions and algebraic
preliminaries in Section 2. The situation on 2-element
frame (Section 3) is followed by a study of a/the case
of general finite frames of discernment (Section 4).
Some comments on alternative rules of belief combi-
nation are presented in Section 5.

2 Preliminaries

2.1 General Primer on Belief Functions

We assume classic definitions of basic notions from
theory of belief functions (BFs) [17] on finite frames
of discernment Ωn = {ω1, ω2, ..., ωn}, see also [4–9];
for illustration or simplicity, we often use 2- or 3-
element frames Ω2 and Ω3. A basic belief assignment
(bba) is a mapping m : P(Ω) −→ [0, 1] such that∑

A⊆Ωm(A) = 1; the values of the bba are called
basic belief masses (bbm). m(∅) = 0 is usually as-
sumed, then we speak about normalized bba. A belief
function (BF) is a mapping Bel : P(Ω) −→ [0, 1],
Bel(A) =

∑
∅6=X⊆Am(X). A plausibility function

Pl(A) =
∑
∅6=A∩X m(X). There is a unique corre-

spondence among m and corresponding Bel and Pl
thus we often speak about m as about belief function.

A focal element is a subset X of the frame of discern-
ment, such that m(X) > 0. If all the focal elements
are singletons (i.e. one-element subsets of Ω), then
we speak about a Bayesian belief function (BBF), it
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is a probability distribution on Ω in fact. If all the
focal elements are either singletons or whole Ω (i.e.
|X| = 1 or |X| = |Ω|), then we speak about a quasi-
Bayesian belief function (qBBF), it is something like
’un-normalized probability distribution’. If all focal
elements are nested, we speak about consonant belief
function.

Dempster’s (conjunctive) rule of combi-
nation ⊕ is given as (m1 ⊕ m2)(A) =∑

X∩Y =AKm1(X)m2(Y ) for A 6= ∅, where K = 1
1−κ ,

κ =
∑

X∩Y =∅m1(X)m2(Y ), and (m1 ⊕m2)(∅) = 0,
see [17]; putting K = 1 and (m1 ⊕ m2)(∅) = κ
we obtain the un-normalized conjunctive rule of
combination ∩©, see e. g. [18]. The disjunc-
tive rule of combination is given by the formula
(m1 ∪©m2)(A) =

∑
X∪Y =Am1(X)m2(Y ), see [12].

Yager’s rule of combination Y©, see [21], is
given as (m1 Y©m2)(∅) = 0, (m1 Y©m2)(A) =∑

X,Y⊆Θ, X∩Y =Am1(X)m2(Y ) for ∅ 6= A ⊂
Θ, and (m1 Y©m2)(Θ) = m1(Θ)m2(Θ) +∑

X,Y⊆Θ, X∩Y =∅m1(X)m2(Y );

Dubois-Prade’s rule of combination DP© is given as
(m1DP©m2)(A) =

∑
X,Y⊆Θ, X∩Y =Am1(X)m2(Y ) +∑

X,Y⊆Θ, X∩Y =∅,X∪Y =Am1(X)m2(Y ) for ∅ 6= A ⊆
Θ, and (m1DP©m2)(∅) = 0, see [11].

We say that BF Bel is non-conflicting when conjunc-
tive combination of Bel with itself does not produce
any conflicting belief masses (when (Bel∩©Bel)(∅) =
0, i.e., Bel∩©Bel = Bel⊕Bel), i.e. whenever Pl(ωi) =
1 for some ω ∈ Ωn. Otherwise, BF is conflicting, i.e.,
it contains some internal conflict [9].

Let us recall Un the uniform Bayesian belief function1

[9], i.e., the uniform probability distribution on Ωn,
and normalized plausibility of singletons2 of Bel: the
BBF (probability distribution) Pl P (Bel) such, that
(Pl P (Bel))(ωi) = Pl({ωi})∑

ω∈Ω Pl({ω}) [3, 7].

Let us define an indecisive (indifferent) BF as a BF,
which does not prefer any ωi ∈ Ωn, i.e., BF which
gives no decisional support for any ωi, i.e., BF such
that h(Bel) = Bel⊕Un = Un, i.e., Pl({ωi}) = const.,
i.e., (Pl P (Bel))({ωi}) = 1

n .

2.2 Belief Functions on 2-Element Frame of
Discernment; Dempster’s Semigroup

Let us suppose, that the reader is slightly familiar
with basic algebraic notions like a semigroup (an alge-

1Un which is idempotent w.r.t. Dempster’s rule ⊕, and
moreover neutral on the set of all BBFs, is denoted as nD0′

in [7], 0′ comes from studies by Hájek & Valdés.
2Plausibility of singletons is called contour function by

Shafer in [17], thus Pl P (Bel) is a normalization of contour
function in fact.

braic structure with an associative binary operation),
a group (a structure with an associative binary oper-
ation, with a unary operation of inverse, and with a
neutral element), a neutral element n (n ∗ x = x), an
absorbing element a (a ∗ x = a), a homomorphism f
(f(x ∗ y) = f(x) ∗ f(y)), etc. (Otherwise, see e.g.,
[4, 6, 14, 15].)

We assume Ω2 = {ω1, ω2}, in this subsec-
tion. There are only three possible focal elements
{ω1}, {ω2}, {ω1, ω2} and any normalized basic belief
assignment (bba) m is defined by a pair (a, b) =
(m({ω1}),m({ω2})) as m({ω1, ω2}) = 1−a−b; this is
called Dempster’s pair or simply d-pair in [4, 6, 14, 15]
(it is a pair of reals such that 0 ≤ a, b ≤ 1, a+ b ≤ 1).

Extremal d-pairs are the pairs corresponding to BFs
for which either m({ω1}) = 1 or m({ω2}) = 1, i.e.,
(1, 0) and (0, 1). The set of all non-extremal d-pairs
is denoted as D0; the set of all non-extremal Bayesian
d-pairs (i.e. d-pairs corresponding to Bayesian BFs,
where a + b = 1) is denoted as G; the set of d-pairs
such that a = b is denoted as S (set of indecisive3 d-
pairs), the set where b = 0 as S1, and analogically, the
set where a = 0 as S2 (simple support BFs). Vacuous
BF is denoted as 0 = (0, 0) and there is a special BF
(d-pair) 0′ = ( 1

2 ,
1
2 ), see Figure 1.

The (conjunctive) Dempster’s semigroup D0 =
(D0,⊕, 0, 0′) is the set D0 endowed with the binary
operation ⊕ (i.e. with the Dempster’s rule) and two
distinguished elements 0 and 0′. Dempster’s rule can
be expressed by the formula (a, b) ⊕ (c, d) = (1 −
(1−a)(1−c)
1−(ad+bc) , 1− (1−b)(1−d)

1−(ad+bc) ) for d-pairs [14]. In D0 it is
defined further: −(a, b) = (b, a), h(a, b) = (a, b)⊕0′ =
( 1−b
2−a−b ,

1−a
2−a−b ), h1(a, b) = 1−b

2−a−b , f(a, b) = (a, b) ⊕
(b, a) = (a+b−a2−b2−ab

1−a2−b2 , a+b−a2−b2−ab
1−a2−b2 ); (a, b) ≤ (c, d)

iff [h1(a, b) < h1(c, d) or h1(a, b) = h1(c, d) and a ≤
c] 4.

The principal properties of D0 are summarized by the
following theorem:

Theorem 1 (i) The Dempster’s semigroup D0 with
the relation ≤ is an ordered commutative (Abelian)
semigroup with the neutral element 0; 0′ is the only
non-zero idempotent of D0.
(ii) G = (G,⊕,−, 0′,≤) is an ordered Abelian group,
isomorphic to the group of reals with the usual order-
ing. Let us denote its negative and positive cones as
G≤0′ and G≥0′ .
(iii) The sets S, S1, S2 with the operation ⊕ and
the ordering ≤ form ordered commutative semigroups
with neutral element 0; they are all isomorphic to the

3BFs (a, a) from S are called indifferent BFs by Haenni [13].
4Note, that h(a, b) is an abbreviation for h((a, b)), similarly

for h1(a, b) and f(a, b).
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Figure 1: Dempster’s semigroup D0. Homomorphism
h is in this representation a projection to group G
along the straight lines running through the point
(1, 1). All the Dempster’s pairs lying on the same
ellipse are mapped by homomorphism f to the same
d-pair in semigroup S.

positive cone of the group of reals.
(iv) h is ordered homomorphism: (D0,⊕,−, 0, 0′,≤
) −→ (G,⊕,−, 0′,≤); h(Bel) = Bel ⊕ 0′ =
Pl P (Bel), i.e., the normalized plausibility proba-
bilistic transformation.
(v) f is homomorphism: (D0,⊕,−, 0, 0′) −→
(S,⊕,−, 0); (but, not an ordered one).

For proofs see [14, 15, 20]. Let us denote h−1(a) =
{x |h(x) = a} and similarly f−1(a) = {x | f(x) = a}.
Using the theorem, see (iv) and (v), we can express
⊕ as:

(a⊕ b) = h−1(h(a)⊕ h(b)) ∩ f−1(f(a)⊕ f(b)).

Let us denote D≥0
0 = {(a, b) ∈ D0 | (a, b) ≥ 0} and

analogically D≤0′
0 = {(a, b)≤0′}.

2.3 BFs on n-Element Frames of
Discernment

Analogically to the case of Ω2, we can represent
a BF on any n-element frame of discernment
Ωn by an enumeration of its m values (bbms),
i.e., by a (2n− 2)-tuple (a1, a2, ..., a2n−2), or
as a (2n− 1)-tuple (a1, a2, ..., a2n−2; a2n−1) when
we want to explicitly mention also the redun-
dant value m(Ω) = a2n−1 = 1 − ∑2n−2

i=1 ai.
For BFs on Ω3 we use (a1, a2, ...., a6; a7) =
(m({ω1}),m({ω2}),m({ω3}),m({ω1, ω2}),m({ω1, ω3}),
m({ω2, ω3});m({Ω3})).
Unfortunately, no algebraic analysis of BFs on Ωn for
n > 2 has been presented till now.

3 Non-conflicting and Conflicting
Parts of Belief Functions on
2-Element Frames of Discernment

For BFs on Ω2 the following holds true:

Proposition 1 BF Bel on Ω2 is non-conflicting iff
Bel ∈ S1 ∪ S2.

Proof. Obviously the simple support elements of
S1, S2 are non-conflicting. Pl({ωi}) = m({ωi}) +
m({ω1, ω2}) = 1 − m({ωj}), where i 6= j. Thus
Pl({ωi}) = 1 iff m({ωj}) = 0 iff Bel ∈ S1 ∪ S2. ¤
We will use the important property of Dempster’s
sum, which is respecting the homomorphisms h and
f , i.e., respecting the h-lines and f -ellipses, when two
BFs are combined on two-element frame of discern-
ment [4, 14, 15]. Using this property we obtain the
following statement.

Proposition 2 Any belief function (a, b) ∈ Ω2 is the
result of Dempster’s combination of BF (a0, b0) ∈
S1 ∪ S2 and a BF (s, s) ∈ S, such that (a0, b0) has
the same plausibility decision support (same normal-
ized plausibility) for the elements of Ω2 as (a, b) does.
(Trivially, (s, s) = (0, 0) ⊕ (s, s) for (s, s) ∈ S, and
(a0, b0) = (a0, b0)⊕ (0, 0) for elements of S1 and S2).

(a0, b0) ∈ S1 ∪ S2 has no internal conflict, and (s, s)
does not prefer any of the elements of Ω2. Let us
call (a0, b0) a non-conflicting part of (a, b). There is
(a0, b0) = (a−b

1−b , 0) for a ≥ b and (a0, b0) = (0, b−a
1−a )

for a ≤ b.

Proof. (a0, b0) is the intersection of h-line containing
(a, b) with S1 ∪ S2. Semigroup S is a part of h-line
containing 0 and 0′, thus the result of combination of
any element (s, s) ∈ S with (a0, b0), i.e, (s, s)⊕(a0, b0)
lies on the same h-line as both (a0, b0) and (a, b).
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Pl P (a, b) = Pl P (a0, b0), thus 1−b
2−a−b = 1−b0

2−a0−b0

and 1−a
2−a−b = 1−a0

2−a0−b0
. For a ≥ b there is b0 = 0

and 1−b
2−a−b = 1

2−a0
, thus 2−a−b

1−b = 2−a0
1 , and a0 =

2 − 2−a−b
1−b = a−b

1−b . And similarly for a ≤ b there is
a0 = 0 and 1−a

2−a−b = 1
2−b0

, thus b0 = b−a
1−a . ¤

y

z= (0,1)

(1,0) =0 = (0,0)

( , )s s
( , )a b

( )b,a

0' = (     ,     )1 2
1 2

( , )f a  b0 0

f s s x x( , ) = ( , )

f a,b( )

( , )a  b0 0

( )ab ,0 0

h b,a( )

h a,b( )

Figure 2: Conflicting and non-conflicting parts of BF
on 2-element frame of discernment.

Let us look for (s, s) from the proposition now. It
holds true that (a, b) = (a0, b0) ⊕ (s, s), thus it also
holds true f(a, b) = f(a0, b0)⊕ f(s, s). Let us denote
f(a0, b0) = (u, u), f(a, b) = (v, v), f(s, s) = (x, x) for
a moment, thus we have (u, u)⊕ (x, x) = (v, v), where
v = 1 − (1−u)(1−x)

1−2ux = u+x−3ux
1−2ux , hence u + x − 3ux =

v − 2vux and x = v−u
1−3u+2uv . We can express this as

Lemma 1 (i).

The existence of (x, x), thus also a possibility of its
computation from (v, v) and (u, u) follows the fact,
that S is isomorphic to the positive cone of group of
reals, or a property subtraction in S as a substructure
of algebraic structure dempsteroid [14, 15].

We already can compute value f(s, s), the rest is
computation of (s, s) as S-preimage of f(s, s) =
(s, s) ⊕ (s, s) = (x, x). Similarly as before we have
x = 1 − (1−s)(1−s)

1−2ss = 2s−3s2

1−2s2 now, thus 2s − 3s2 =
x − 2s2x and 0 = (3 − 2x)s2 − 2s + x = 0, hence

s1,2 = 2±
√

4−4(3−2x)x

2(3−2x) = 1±
√

(1−x)(1−2x)

3−2x .

We know that 0 ≤ s ≤ x ≤ 1
2 , thus 0 ≤√

(1− x)(1− 2x) ≤ 1, 0 ≤ 1±
√

(1− x)(1− 2x), 2 ≤
3 − 3x. Thus 0 ≤ 1±

√
(1−x)(1−2x)

3−2x always holds true.

It should further hold true that 1±
√

(1−x)(1−2x)

3−2x ≤
1
2 , thus 2 ± 2

√
(1− x)(1− 2x) ≤ 3 − 2x and

±2
√

(1− x)(1− 2x) ≤ 1 − 2x. It always hods true
that −

√
(1− x)(1− 2x) ≤ 0 ≤ 1− 2x for 0 ≤ x ≤ 1

2 .
On the other hand, from 2

√
(1− x)(1− 2x) ≤ 1−2x,

4(1− x)(1− 2x) ≤ (1 − 2x)(1 − 2x), 4(1− x) ≤
(1− 2x), 3 ≤ (2x) and 3

2 ≤ x; this is in contradiction

with x ≤ 1
2 , hence it must be s = 1−

√
(1−x)(1−2x)

3−2x .

We can formulate this as Lemma 1(ii). Finally, we
obtain a summarization in Theorem 2.

Lemma 1 (i) For any BFs (u, u), (v, v) on S, such
that u ≤ v, we can compute their Dempster’s ’dif-
ference’ (x, x) such that (u, u) ⊕ (x, x) = (v, v), as
(x, x) = ( v−u

1−3u+2uv ,
v−u

1−3u+2uv ).

(ii) For any BF (w,w) on S, we can compute its
Dempster’s ’half ’ (s, s) such that (s, s) ⊕ (s, s) =
(w,w), as (s, s) = ( 1−

√
1−3w+2w2

3−2w , 1−
√

1−3w+2w2

3−2w ) =

( 1−
√

(1−w)(1−2w)

3−2w ,
1−
√

(1−w)(1−2w)

3−2w ).

(iii) There is no Dempster’s ’difference’ on D0 in gen-
eral.

Proof. Parts (i) and (ii) were already proved by de-
riving of formulas for computing of (x, x) and (s, s).
Nevertheless, we can alternatively verify the formulas
is it follows.

(a, b)⊕ (c, d) = (1− (1−a)(1−c)
1−(ad+bc)

, 1− (1−b)(1−d)
1−(ad+bc)

) in general,

for a = b and c = d we obtain a special case of the formula:

(a, a)⊕ (c, c) = (1− (1−a)(1−c)
1−(2ac)

, 1− (1−a)(1−c)
1−(2ac)

).

(u, u)⊕ ( v−u
1−3u+2uv

, v−u
1−3u+2uv

) = (1− (1−u)(1− v−u
1−3u+2uv

)

1−(2u v−u
1−3u+2uv

)
,

1−
(1−u)(v−2u+2uv−v)

1−3u+2uv
)

1−3u+2uv−2u(v−u)
1−3u+2uv

)
) = (−3uv+v+2u2v)

1−3u+2u2 , v(1−3u+2u2)

1−3u+2u2 ) =

(v, v).

(s, s)⊕(s, s) = (1− (1−s)2

1−(2s2)
, 2s−3s2

1−(2s2)
) = (

2
1−
√

(1−w)(1−2w)
3−2w

1−(2s2)
+

−3(
1−
√

(1−w)(1−2w)
3−2w

)2

1−(2(
1−
√

(1−w)(1−2w)
3−2w

)2)
,

2
1−√
3−2w

−3
1−2√ +(1−w)(1−2w)

(3−2w)2

1−(2
1−2√ +(1−w)(1−2w)

(3−2w)2
)

) =

(
5w+4w

√ −6w2)

5−6w+4
√ ,

w(5+4
√ −6w)

5−6w+4
√ ) = (w, w).

(iii) There is a lot of counter-examples, e.g., BFs Bel1
and Bel2 on the same f -ellipse: when combining any BF

different from 0 = (0, 0) with any of them, the result is on

a narrower ellipse closer to G. ¤

Theorem 2 Any BF (a, b) on 2-element frame of
discernment Ω2 is Dempster’s sum of its unique non-
conflicting part (a0, b0) ∈ S1 ∪ S2 and of its unique
conflicting part (s, s) ∈ S, which does not prefer
any element of Ω2, i.e. (a, b) = (a0, b0) ⊕ (s, s). It
holds true that s = b(1−a)

1−2a+b−ab+a2 = b(1−b)
1−a+ab−b2 and

(a, b) = (a−b
1−b , 0) ⊕ (s, s) for a ≥ b; and similarly

that s = a(1−b)
1+a−2b−ab+b2 = a(1−a)

1−b+ab−a2 and (a, b) =
(0, b−a

1−a )⊕ (s, s) for a ≤ b.

162 Milan Daniel



Proof. The existential part of the statement simply
follows proposition 2 and both parts of Lemma 1.
Uniqueness follows proposition 1, uniqueness of the
h-line containing (a, b) and of its intersection with
S1 ∪ S2, and uniqueness of f -ellipse containing (a, b)
and of its intersection with S. The rest is direct
computation or verification. A verification for a ≥ b
follows:
(a0, b0) ⊕ (s, s) = ( a−b

1−b
, 0) ⊕

( b(1−b)

1−a+ab−b2
, b(1−b)

1−a+ab−b2
) = (1−

(1− a−b
1−b

)(1− b(1−b)
1−a+ab−b2

)

1− a−b
1−b

· b(1−b)
1−a+ab−b2

, 1−

(1− b(1−b)
1−a+ab−b2

)

(1−b)(1−a+ab−b2)
(1−b)(1−a+ab−b2)

− (a−b)b(1−b)
(1−b)(1−a+ab−b2)

) = (a(1−b)
(1−b)

, b(1−a)
(1−a)

) =

(a, b).

For a ≤ b we have:
(a0, b0)⊕ (s, s) = (0, b−a

1−a
)⊕ ( a(1−a)

1−b+ab−a2 , a(1−a)

1−b+ab−a2 ) = ...,

a and b and components of the couple are mutually

substituted w.r.t. the case a ≥ b, thus the result is (a, b)

again. For equality of both formulas for s see [10]. ¤
An alternative proof is a derivation of formulas which
is based on a similar idea as the derivation of formu-
las in Lemma 1. As we know the existence of (s, s)
and that a0 = a−b

1−b for a ≥ b, we know that (a, b) =

(a0, 0)⊕(s, s) = (1− (1−a0)(1−s)
1−(a0s+0) , 1−

(1−0)(1−s)
1−a0s ). Thus

a = 1 − (1−a0)(1−s)
1−(a0s+0) = s+a−b−2as+bs

1−b−as+bs . Hence a − ab −
a2s+abs = s+a−b−2as+bs and s = b(1−a)

1−2a+b−ab+a2 .

Similarly we have b = 1 − (1−0)(1−s)
1−a0s = s−as

1−b−as+bs .

Hence s = b(1−b)
1−a+ab−b2 . Analogically, we can compute

both versions of s for the case where a ≤ b, see [10].
¤

We can summarize formulas from the theorem as
(a, b) = (a0, b0)⊕ (s, s) = (max(a−b

1−b , 0),max( b−a
1−a , 0))

⊕ ( min(a,b)(1−min(a,b))
1+ab−max(a,b)−min2(a,b) ,

min(a,b)(1−min(a,b))
1+ab−max(a,b)−min2(a,b) ).

And analogically for the second expression of s [10].

Proof. Just a verification for a ≥ b, and that for a ≤ b.
¤

4 Non-conflicting Part of BFs on
General Finite Frames of
Discernment

Let us turn our attention to a question of non-
conflicting and conflicting parts of BFs defined on
an n-element frame of discernment Ωn = {ω1, ..., ωn}.
We start with a characterization of the set of non-
conflicting BFs.

Proposition 3 The set of non-conflicting BFs is just
the set of all BFs such, that all focal elements of a BF
have non-empty intersection.

Consonant BFs are a special case of non-conflicting
BFs.

Proof. Pl({ωi}) = 1 for some ωi ∈ Ω iff ωi ∈ X for
all X such that m(X) > 0 iff ωi ∈

⋃
m(X)>0X iff⋃

m(X)>0X 6= ∅.
The least focal element of a consonant BF is inter-
section of its focal elements; there are many non-
conflicting BFs which are not consonant on Ωn, n > 2,
e.g., (0, 0, 0, 0.7, 0.3, 0; 0) on Ω3, i.e., m({ω1, ω2}) =
0.7,m({ω1, ω3}) = 0.3. ¤
We would like to verify that Theorem 2 holds true
also for BFs defined on general finite frames, i.e., to
verify the following hypothesis:

Hypothesis 1 We can represent any BF Bel on n-
element frame of discernment Ωn = {ω1, ..., ωn} as
Dempster’s sum Bel = Bel0⊕BelS of non-conflicting
BF Bel0 and of indecisive conflicting BF BelS which
has no decisional support, i.e. which does not prefer
any element of Ωn to the others, see Figure 3.

Figure 3: Schema of Hypothesis 1.

Similarly to two-element frames, we have simple triv-
ial examples BelN = BelN ⊕ 0 for all non-conflicting
BFs BelN and BelI = 0⊕BelI for all indecisive BFs
BelI , where 0 = (0, 0, ...., 0; 1).

We would like to follow the idea from the case of two-
element frames, see Figure 4. Unfortunately, there
was not presented any algebraic description of BFs
defined on n-element frames till now. We have noth-
ing like Dempster’s semigroup for n-element frames,
we have no n-versions of −Bel and of homomorphisms
f and h, neither group properties of a set of indecisive
BFs.

An issue of homomorphism h is quite promising:
h(Bel) = Bel ⊕ Un = Pl P (Bel). From results on
probabilistic transformations presented in [7] it can be
concluded that, Pl P (Bel) = Bel⊕Un, for proof see
[8]. From [3] we know that Pl P commutes with ⊕,
i.e. Pl P (Bel1⊕Bel2) = Pl P (Bel1)⊕Pl P (Bel2),

ISIPTA ’11: Non-conflicting and Conflicting Parts of Belief Functions 163



thus we have homomorphism h for BFs on an n-
element frame of discernment. To generalize all ho-
momorphic properties of h we have also to verify a
general versions of h(0) = 0′ and h(0′) = 0′. It really
holds true that h(0, 0, ..., 0) = 0 ⊕ Un = (0, 0, ..., 0) ⊕
( 1

n ,
1
n , ...,

1
n , 0, 0, ..., 0) = ( 1

n ,
1
n , ...,

1
n , 0, 0, ..., 0) = Un.

And similarly h(Un) = Un ⊕ Un = Un. Hence the
following theorem is proved. As there is no ordering
of either BFs or elements of a frame of discernment,
we cannot speak of ordered homomorphism as in two-
element case.

Theorem 3 The mapping h(Bel) = Bel ⊕ Un =
Pl P (Bel) is an homomorphism of an algebra of BFs
on an n-element frame of discernment with the binary
operation of Dempster’s sum ⊕ and two nulary oper-
ations (constants) 0 and Un.

Thus, we can apply h with its homomorphic prop-
erties also in a general case. We have Bel and
h(Bel) = Pl P (Bel) which is BBF, i.e., BF which
has upto n positive m-values (bbms). h(Bel) =
(h1(Bel), h2(Bel), ..., hn(Bel), 0, 0, ...; 0); when inter-
preting h(Bel) as a probability distribution on Ω, we
have h(Bel)(ωi) = hi(Bel). We can use the following
procedure to compute a related unique consonant BF
Bel0 to any h(Bel).

- Bel  +  Bel

- Bel  + Bels s

Bel

- Bel   +  Belo o

Belo

Bel- Bel

- Belo

Un

s

Figure 4: Schema of a decomposition of BF Bel.

Let there are k different values hi(Bel) for i = 1, ..., n,
thus 1 ≤ k ≤ n. According to this, we have splitting
of the frame Ω into k disjoint subsets Ω = Ω1 ∪ Ω2 ∪
...∪Ωk, such the the elements of the same subset have
the same value h(Bel)(ω). Let Ω1 = {ω11, ..., ω1j1}
be a set of elements of the frame with the high-
est m-value (bbm) (h(Bel)(ω11) = h(Bel)(ω12) =
... = h(Bel)(ω1j1), where 1 ≤ j1 ≤ n − k + 1), and
Ω2 = {ω21, ..., ω2j2} be a set of elements with the 2nd
highest bbm (h(Bel)(ω21); 1 ≤ j2 ≤ n − j1 − k + 2),

then we define mw(Ω1) = h(Bel)(ω11)− h(Bel)(ω21),
further we define mw(Ω1 ∪ Ω2) = h(Bel)(ω21) −
h(Bel)(ω31), where h(Bel)(ω31) is the 3rd largest
m-value of h(Bel). We continue similarly defin-
ing mw(

⋃m
i=1 Ωi) = h(Bel)(ωm1) − h(Bel)(ω(m+1)1),

where Ωi = {ωi1, ..., ωiji} is the set of elements with
the i-th highest m-value of h(Bel), until mw(Ω) =
h(Bel)(ωk1) is defined, where Ωk = {ωk1, ..., ωkjk

} is
the set of elements with the least (possibly zero), m-
value h(Bel)(ωk1), jk = n−∑k−1

i=1 ji. mw(
⋃m

i=1 Ωi) >
0 for all m < k because less value is always decreased,
mw(Ωk) ≥ 0,

∑k
m=1mw(

⋃m
i=1 Ωi) = h(Bel)(ω11.

Then m0 is a normalization of working bba mw, thus
focal elements of m0 are nested and Pl(ω) = 1 for
ω ∈ Ω1, hence Bel0 is normalized consonant, i.e.,
non-conflicting BF. For detail and verification that,
Bel0 ⊕ Un = h(Bel) and that m0 = (a−b

1−b , 0) is a spe-
cial case of general m0, see [10].

Finally, we can simplify the construction of Bel0 in
the following way: there is one normalization in com-
putation of Bel ⊕ Un = Pl P (Bel) and the follow-
ing normalization in the transformation of mw to m0.
Normalization commutes with the construction of mw

from Pl P (Bel), thus when computing Bel0, we can
use Pl(Bel) instead of h(Bel) = Pl P (Bel) and ap-
ply only one normalization in the end, where nor-
malization factor is the multiple of the original ones.
Thus we obtain m′

w({ω11, ..., ω1j1}) = Pl(Bel)(ω11)−
Pl(Bel)(ω21), etc. This computational simplification
is important also from the theoretical point of view,
because it removes Dempster’s rule ⊕ hidden in h
from the construction of Bel0. Hence any Bel0 has
defined its non-conflicting part independently of any
belief combination rule.

Lemma 2 For any BF Bel defined on Ωn there exists
unique consonant BF Bel0 such that,

h(Bel0 ⊕BelS) = h(Bel) (1)

for any BF BelS such that BelS ⊕ Un = Un.

Proof. The existence follows the construction of Bel0
when replacing (1) with Bel0⊕Bels⊕Un = Bel⊕Un.
For uniqueness we will also follow the construction of
Bel0: h(Bel) is unique, thus also set of its m-values
hi(Bel) is unique, k of them are different, hi(Bel) are
real values from [0, 1], thus their order is also unique,
hence splitting of Ω into k disjoint subsets is unique as
well, i.e. set of focal elements of mw and m0 is unique.
Computation of differences is also unique thus we have
unique mw values and also their normalization m0

values, hence m0 is unique consonant bba such that
h(m0) = h(Bel).
Futher it holds true that, h(Bel0⊕BelS) = h(Bel0)⊕
h(BelS) = h(Bel)⊕h(BelS) = h(Bel)⊕Un = h(Bel).
¤
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Let us notice, that the stronger statement for a gen-
eral non-conflicting BFs does not hold true on Ωn.
There could be several different non-conflicting BFs
Beli such that h(Beli⊕BelS) = h(Bel) for any inde-
cisive BF BS . See, the following example.

Example 1 To BF Bel = (0.25, 0.175, 0.075, 0.35,
0.15, 0) with h(Bel) = (0.25, 0.175, 0.075, 0.35, 0.15,
0) ⊕ ( 1

3 ,
1
3 ,

1
3 , 0, 0, 0) = (0.50, 0.35, 0.15, 0, 0, 0) there

are following non-conflicting BFs: Bel0 = (0.3, 0, 0,
0.4, 0, 0; 0.3), Bel1 = (0, 0, 0, 0.7, 0.3, 0; 0), Bel2 =
(0.2, 0, 0, 0.5, 0.1, 0; 0.2); Pli({ω1}) = 1, thus Belis
are all non-conflicting, we can simply verify that
h(Beli) = h(Bel), thus (Beli ⊕ BelS)⊕ U3 = Beli ⊕
(BelS ⊕ U3) = Beli ⊕ U3 = h(Bel).

Let us turn our attention to f(Bel) and −Bel now.
f(a, b) = −(a, b) = (b, a) on Ω2, thus we will try to
generalize −Bel to BFs on Ωn now. We have nothing
like S defined for BFs on Ωn, thus we suppose h(Bel⊕
−Bel) = Un for −Bel. On Ω2 it holds true that
−m({ω1}) = m({ω2}) = m(Ω2 \ {ω1}), −m({ω2}) =
m(Ω2\{ω2}), and −m(Ω2) = m(Ω2)5. Unfortunately,
the simple idea to define −m as −m(X) = m(Ωn \X)
does not work in general, not even for general conso-
nant BFs, e.g., for Bel = (0.5, 0, 0, 0.2, 0, 0; 0.3) and
∼Bel = (0, 0, 0.2, 0, 0, 0.5; 0.3) we have Bel⊕ ∼Bel =
( 15
61 ,

10
61 ,

6
61 ,

6
61 ,

0
61 ,

15
61 ; 9

61 ), ( 15
61 ,

10
61 ,

6
61 ,

6
61 ,

0
61 ,

15
61 ; 9

61 ) ⊕
( 1
3 ,

1
3 ,

1
3 , 0, 0, 0; 0) = ( 30

70 ,
40
70 ,

30
70 , 0, 0, 0; 0) = ( 3

7 ,
4
7 ,

3
7 ,

0, 0, 0; 0) 6= U3. Thus h(Bel⊕ ∼ Bel) 6= Un, hence
∼ Bel 6= −Bel. The idea of complements (Ω \ X)
works only in some special cases, e.g., for (0.7, 0, 0,
0, 0, 0) ⊕ (0, 0, 0, 0, 0, 0.7) = (21/51, 0, 0, 0, 0, 21

51 ) .=
(0.41, 0, 0, 0, 0, 0.41), h(0.41, 0, 0, 0, 0, 0.41) = U3 on
Ω3 and for other simple support BFs in general.

To simplify the investigated situation, we will start
with qBBFs on 3-element frame of discernment Ω3

(i.e., with BFs such that m(X) = 0 for |X| = 2). The
set of qBBFs on Ω3 can be represented by a three di-
mensional triangle which simply generalizes the trian-
gle of Dempster’s pairs, see Figure 5. Unfortunately,
the only consonant, i.e. non-conflicting, BFs are sin-
gleton simple support functions as (a, 0, 0, 0, 0, 0; 1−a),
thus only a small part of the triangle is mapped to
non-conflicting BFs within the triangle (Bel0 is out-
side of the triangle for a majority of qBBFs). Thus,
this is not a good domain to search for −Bel0.

Let us look at BBFs now, i.e. BFs as
(a, b, c, 0, 0, 0; 0) = (a, b, 1 − a − b, 0, 0, 0; 0). Let
−(a, b, 1−a−b, 0, 0, 0) = (x, y, 1−x−y, 0, 0, 0), thus

5Note that −m(X) is an abbreviation for (−m)(X), thus
both m(X) and −m(X) may be positive in general. Specially
−m(Ω2) is an abbreviation for (−m)(Ω2), thus −m(Ω2) =
m(Ω2), where both sides of the equation are positive in general.

Figure 5: Quasi Bayesian BFs on 3-element frame Ω3.

−(a, b, 1−a−b, 0, 0, 0) ⊕ (x, y, 1−x−y, 0, 0, 0) = U3

should hold true.

Thus ax = by = (1 − a − b)(1 − x − y), y =
a
bx, (1 − x − y) = a

1−a−bx, hence 1 − x − a
bx =

a
1−a−bx. Solving the previous equation we obtain

x = b(1−a−b)
a+b−a2−b2−ab and further y = a(1−a−b)

a+b−a2−b2−ab .
Using c = 1 − a − b, we obtain x = bc

ab+ac+bc ,
y = ac

ab+ac+bc and 1 − x − y = z = 1 − bc+ac
ab+ac+bc =

ab
ab+ac+bc . E.g. (a, b, c, 0, 0, 0) = (0.5, 0.3, 0.2), x =

0.3·0.2
0.5·0.3+0.5·0.2+0.3·0.2 , y = 5·2

5·3+5·2+3·2 z = 3·2
5·3+5·2+3·2 ,

thus −(0.5, 0.3, 0.2, 0, 0, 0) = ( 6
31 ,

10
31 ,

15
31 , 0, 0, 0).

Thus we have −Bel for any BBF (a, b, 1−a−b, 0, 0, 0)
on Ω3 such that 0 < a, b < 1, a+ b < 1.

Analogically to the case of Ω3, we can gen-
eralize the −Bel to BBFs on Ωn, to BFs
(a1, a2, ..., an, 0, 0, ..., 0; 0) such that 0 < ai < 1,
for i = 1, ..., n and an = 1 − ∑n−1

i=1 ai.
Let us denote −(a1, a2, ..., an, 0, 0, ..., 0; 0) =
(x1, x2, ..., xn, 0, 0, ...., 0; 0) (where xn = 1−∑n−1

i=1 xi),
thus we obtain x1 = 1/(1 +

∑n
i=2

a1
ai

), xi = a1
ai
x1, or

similarly to x1: xi = 1/(1 +
∑

i 6=j
ai

aj
).

An alternative expression for xi is xi =
∏

i 6=j aj∑n
k=1

∏
j 6=k aj

,
for detail see [10].

Lemma 3 For any BBF (a1, a2, ..., an, 0, 0, ..., 0; 0)
such that, ai > 0 for i = 1, ..., n, there ex-
ists uniquely defined −(a1, a2, ..., an, 0, 0, ..., 0; 0) =
(x1, x2, ..., xn, 0, 0, ..., 0; 0) = (1/(1 +

∑n
i=2

a1
ai

),
a1
a2
x1,

a1
a3
x1, ...,

a1
an
x1, 0, 0, ..., 0; 0) such that,

(a1, a2, ..., an, 0, 0, ..., 0)⊕−(a1, a2, ..., an, 0, 0, ..., 0) = Un.
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Figure 6: General BF on 3-element frame Ω3.

We have already observed, that −Bel for a simple
support function (SSF) is another SSF with a com-
plementary focal element such that, −m(Ωn \ X) =
m(X); similarly we can define −Bel also for sim-
ple support BBFs (i.e. categorical BBFs), see e.g.,
−(1, 0, 0, 0, 0, 0) = (0, 0, 0, 0, 0, 1), but we have to no-
tice that (1, 0, 0, 0, 0, 0)⊕ (0, 0, 0, 0, 0, 1) is not defined
(similarly to (1, 0) ⊕ (0, 1) on Ω2). A definition of
−Bel for BBFs like (a, 1 − a, 0, 0, ..., 0) remains still
open for more-element frames Ωn, n > 2.

Summarising the previous results, we can step by step
compute h(Bel), −h(Bel) and (−h(Bel))0 from any
Bel such that Pl({ωi}) > 0 for all ωi ∈ Ωn, see Figure
7. Thus the following theorem holds true:

Theorem 4 For any BF Bel defined on Ωn there ex-
ists unique consonant BF Bel0 such that,

h(Bel0 ⊕BelS) = h(Bel)

for any BF BelS such that BelS ⊕ Un = Un. If for
h(Bel) = (h1, h2, ..., hn, 0, 0, ..., 0) holds true that, 0 <
hi < 1, then further exists unique BF −Bel0 such
that,

h(−Bel0⊕BelS)=−h(Bel) and h(Bel0)⊕−h(Bel0)=Un.

Proof. For existence and uniqueness of Bel0 see
Lemma 2. Existence of −Bel0 follows its construc-
tion, h(Bel) is unique according to its definition, for
uniqueness of −h(Bel) see Lemma 3 and final unique-
ness of −Bel0 follows Lemma 2 again. ¤

Corollary 1 (i) For any consonant BF Bel such
that Pl({ωi}) > 0 there exist a unique BF −Bel;
−Bel is consonant in this case.

Figure 7: Detailed schema of a decomposition of BF
Bel.

(ii) There is one-to-one correspondence between
Bayesian BFs and consonant BFs.

Proof. (i) Just take a consonant BF Bel, due to
uniqueness of Bel0 we have Bel = Bel0, and also
−Bel = −Bel0. Pl({ωi}) > 0 for all ωi in the case
of a consonant BF implies that m(Ω) > 0, thus also
mh({ωi}) > 0 for all ωi, where Belh = h(Bel) =
Bel⊕Un, thus we have −Belh and (−Belh)0 = −Bel;
according its construction −Bel is consonant and
unique. If Pl({ωi}) = 0 for some ωi ∈ Ω, then
m(Ω) = 0, thus there exists ωj such, that mh({ωj}) =
0, hence we have not defined either −Belh or −Bel.
(ii) Taking any BBF Bel, we obtain unique consonant
Bel0; h(Bel0) is also unique. ¤
We observed that −m(X) = m(Ω \ X) for X ⊂ Ω
and SSF m. We can verify that the definition of
−Bel using −h(Bel) agree with this observation.
E.g., Bel = Bel0 = ( 2

3 , 0, 0, 0, 0, 0; 1
3 ), h(Bel) =

( 3
5 ,

1
5 ,

1
5 , 0, 0, 0; 0), −h(Bel) = ( 1

7 ,
3
7 ,

3
7 , 0, 0, 0; 0),

and −Bel = (−h(Bel))0 = (0, 0, 0, 0, 0, 2
3 ; 1

3 ). In
general we have m(X) = a and m(Ω) = 1 − a,
where |X| = k, |Ω| = n. Thus h(m)(ωi) =

a+(1−a)
k(a+(1−a))+(n−k)(1−a) = 1

n−(n−k)a for ωi ∈ X and
h(m)(ωj) = 1−a

k(a+(1−a))+(n−k)(1−a) = 1−a
n−(n−k)a

for ωj ∈ Ω \ X. Further, −h(m)(ωi) =
1k−1(1−a)n−k

k·1k−1(1−a)n−k+(n−k)1k(1−a)n−k−1 = 1−a
n−ka ,

−h(m)(ωj) = 1k(1−a)n−k−1

k·1k−1(1−a)n−k+(n−k)1k(1−a)n−k−1 =
1

n−ka , hence −m(Ω \ X) = (−h(m))0(Ω \ X) =

(−h(m))(ωj)− (−h(m))(ωi) =
1

n−ka−
1−a

n−ka
1

n−ka−
1−a

n−ka + 1−a
n−ka

= a,

and −m(Ω) = (−h(m))0(Ω) = (−h(m))(ωi) =
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1−a
n−ka

1
n−ka−

1−a
n−ka + 1−a

n−ka

= 1 − a. Thus really

−m(Ω \X) = m(X) and −m(Ω) = m(Ω). ¤
For completion of the diagram in Figure 7, we need
a definition of −Bel for general BFs on Ω to com-
pute Bel ⊕ −Bel and analysis of indecisive BFs
(i.e. BFs Bel such that, h(Bel) = Un) to compute
BelS ⊕−BelS and resulting BelS and specify condi-
tions under which BelS is defined and unique. Hence
an algebraic analysis of BFs on a general finite frame
of discernment is required.

5 Comments on other belief
combination rules

There arises an interesting question about similar
kind of decomposition of belief functions with another
combination rules.

As it was already mentioned, the non-conflicting part
Bel0 of a belief function Bel defined above is indepen-
dent from Dempster’s rule of combination, as we can
use the representation of homomorphism h using nor-
malized plausibility of singletons Pl P (Bel) instead
of the original h(Bel) = Bel ⊕ Un. Thus Bel0 can
be computed without any relation to Dempster’s rule
and Pl P (Bel0) = Pl P (Bel) independently from
any combination rule.

On the other hand Pl P (Bel) 6= Bel0 Y©Un,
Pl P (Bel) 6= Bel0DP©Un, Pl P (Bel) 6= Bel0 ∪©Un, see
Example 2. Even Pl P (Bel) 6= Pl P (Bel0 ?©Un),
where ?© is either Y©, DP©, ∪© or some other combination
rule. The equality holds true only for Dempster’s rule:
Pl P (Bel) = Bel0⊕Un; in the case of un-normalized
conjunctive rule ∩© we can apply additional normaliza-
tion to obtain the equality, thus we have normalized
conjuntive rule, i.e., Dempster’s rule ⊕ again.

Example 2 Let us take Bel = (0.3, 0.2, 0.1, 0.2,
0.1, 0.0; 0.1), thus there is Pl = (0.7, 0.5, 0.3, 0.9, 0.8,
0.7; 1.0), Pl P (Bel) = ( 7

15 ,
5
15 ,

3
15 ), and Bel0 = ( 2

7 , 0,
0, 2

7 , 0, 0; 3
7 ). Hence we obtain ( 2

7 , 0, 0, 2
7 , 0, 0; 3

7 ) ⊕
( 1
3 ,

1
3 ,

1
3 , 0, 0, 0; 0) = ( 7

15 ,
5
15 ,

3
15 , 0, 0, 0; 0); but ( 2

7 , 0,
0, 2

7 , 0, 0; 3
7 ) Y©( 1

3 ,
1
3 ,

1
3 , 0, 0, 0; 0) = ( 7

21 ,
5
21 ,

3
21 , 0, 0, 0;

6
21 ) 6= ( 7

15 ,
5
15 ,

3
15 , 0, 0, 0; 0), ( 2

7 , 0, 0,
2
7 , 0, 0; 3

7 )DP©( 1
3 ,

1
3 ,

1
3 , 0, 0, 0; 0) = ( 7

21 ,
5
21 ,

3
21 ,

2
21 ,

2
21 , 0; 2

21 ) 6= ( 7
21 ,

5
21 ,

3
15 ,

0, 0, 0; 0), and similarly ( 2
7 , 0, 0,

2
7 , 0, 0; 3

7 ) ∪©( 1
3 ,

1
3 ,

1
3 , 0,

0, 0; 0) = ( 2
21 , 0, 0,

6
21 ,

2
21 , 0; 11

21 ) 6= ( 7
15 ,

5
15 ,

3
15 , 0, 0, 0; 0).

Further Pl P ( 7
21 ,

5
21 ,

3
21 , 0, 0, 0; 6

21 ) = ( 13
33 ,

11
33 ,

9
33 ) 6=

( 7
15 ,

5
15 ,

3
15 ), Pl P ( 7

21 ,
5
21 ,

3
15 ,

2
21 ,

2
21 , 0; 2

21 ) = ( 13
29 ,

9
29 ,

7
29 ) 6= ( 7

15 ,
5
15 ,

3
15 ), and Pl P (( 2

21 , 0, 0,
6
21 ,

2
21 , 0; 11

21 ) =
( 21
51 ,

17
51 ,

13
51 ) 6= ( 7

15 ,
5
15 ,

3
15 ).

Nevertheless, if there is a couple of homomorphisms
for any combination rule ?© analogic to morphisms f

and h from Dempster’s semigroup, then there exists
an analogy of Bel0 also for the combination rule ?©.

When expressing h using Pl P (Bel) there arises an-
other interesting question about similar kind of non-
conflicting part and decomposition of belief functions
using a different probabilistic transformations.

Considering Smets’ pignistic transformation BetT for
computing pignistic probability BetP we obtain non-
conflicting BF Bel0−BetP , where mw−BetP (

⋃m
i=1 Ωi) =

|⋃m
i=1 Ωi|(h(Bel)(ωm1) − h(Bel)(ω(m+1)1)), which is

normalized, hence m0−BetP = mw−BetP . BetT does
not commute either with Dempster’s rule nor with
other rules defined for belief combination, thus we
cannot use Bel0−BetP for decomposition of belief func-
tions to conflicting and non-conflicting parts. For
counter-examples see [10].

The most perspective pignistic transformation is nor-
malized belief of singletons Bel P which is compat-
ible with disjunctive rule of combination [7], unfor-
tunately, the reverse transformation maps any Bel
and Bel P (Bel) to the vacuous belief function 0 =
(0, 0, ....., 0; 1), which is really non-conflicting, but it
does not reprezent non-conflicting part of the belief
function Bel. In this case it represents zero conflict-
ing part, as the disjunctive rule is completely non-
conflicting; thus it holds true Bel = Bel ∪©0, where
Bel is trivial ’disjunctive non-conflicting’ part of itself
and 0 is trivial ’disjunctive conflicting’ part of any BF
Bel.

Moreover, it is possible to show that there is no similar
decomposition of belief functions for Y©, DP©, ∪© and a
for a series of other combination rules, see [10]. Any
Bayesian BF serves as counter-example there.

6 Conclusion

Decomposition of a belief function (BF) defined on
a two-element frame of discernment to Dempster’s
sum of its unique non-conflicting and unique indeci-
sive conflicting part is defined and presented here.

Homomorphic properties of mapping h(Bel) = Bel⊕
Un which corresponds to normalized plausibility of
singletons were verified for BFs defined on a general
finite frame of discernment. −Bel was generalized to
Bayesian BFs and for consonant BFs on a general n-
element frame.

Further a unique consonant non-conflicting part Bel0
of a general BF Bel on a finite frame was defined.
For specification of a corresponding conflicting part
of Bel and its uniqueness/existence properties, an al-
gebraic analysis of BFs on a general finite frame of
discernment is required.
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The presented topic is finally discused also from the
point of view of alternative rules of combination and
alternative probabilistic transformations.

The presented results improve general understand-
ing of belief functions and their combination, espe-
cially in conflicting cases. They can be used as one
of corner-stones to further study of conflicts between
belief functions.
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Information Processing in Expert Systems. CRC
Press, Boca Raton, Florida, 1992.
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Abstract
We present an efficient exact algorithm for estimating state
sequences from outputs (or observations) in imprecise hid-
den Markov models (iHMM), where both the uncertainty
linking one state to the next, and that linking a state to
its output, are represented using coherent lower previsions.
The notion of independence we associate with the credal
network representing the iHMM is that of epistemic irrel-
evance. We consider as best estimates for state sequences
the (Walley–Sen) maximal sequences for the posterior joint
state model (conditioned on the observed output sequence),
associated with a gain function that is the indicator of the
state sequence. This corresponds to (and generalises) find-
ing the state sequence with the highest posterior probability
in HMMs with precise transition and output probabilities
(pHMMs). We argue that the computational complexity is
at worst quadratic in the length of the Markov chain, cu-
bic in the number of states, and essentially linear in the
number of maximal state sequences. For binary iHMMs,
we investigate experimentally how the number of maximal
state sequences depends on the model parameters.

Keywords. Imprecise hidden Markov model, optimal state
sequence, maximality, coherent lower prevision, credal net-
work, epistemic irrelevance.

1 Introduction

In a recent paper on inference in credal networks [5],
De Cooman et al. developed the so-called MePiCTIr1 al-
gorithm for coherently updating beliefs about a single node
in the tree after instantiating any number of other nodes.
The local uncertainty models associated with the nodes of
the network are coherent lower previsions [10, 14], and the
independence notion used to interpret the graphical struc-
ture is that of epistemic irrelevance [2, 14]. This algorithm
is quite efficient—it is essentially linear in the number of
nodes—but it has a number of limitations. First of all, it only
works for very special graphical structures: trees. While this

1MePiCTIr: Message Passing in Credal Trees under Irrelevance.

is a serious limitation, there are, nevertheless quite a num-
ber of models and applications that involve a tree structure.
Amongst these, hidden Markov models (HMMs) are defin-
itely the simplest, and perhaps also the most popular ones.
But this brings us to the second limitation: MePiCTIr only
allows updating of beliefs about a single node. Whereas
one of the most important applications for, say, HMMs,
involves finding the sequence of (hidden) states with the
highest posterior probability after observing a sequence of
outputs [11]. For HMMs with precise local transition and
emission probabilities, there are quite efficient dynamic
programming algorithms, such as Viterbi’s [11, 13], for per-
forming this task. For imprecise-probabilistic local models,
such as coherent lower previsions, we know of no algorithm
in the literature for which the computational complexity
comes even close to that of Viterbi’s.

In this paper, we take the first steps towards remedying this
situation. We describe imprecise hidden Markov models
as special cases of credal trees (a special case of credal
networks) under epistemic irrelevance in Section 2. We
show in particular how we can use the ideas underlying the
MePiCTIr algorithm (independent natural extension and
marginal extension) to construct a most conservative joint
model from imprecise local transition and emission models,
and derive a number of interesting and useful formulas from
that construction. In Section 3 we explain how a sequence
of observations leads to (a collection of) so-called maximal
state sequences. Finding all of them seems a daunting task
at first: it has a search space that grows exponentially in the
length of the Markov chain. However, in Section 4 we use
the basic formulas found in Section 2 to derive an appropri-
ate version of Bellman’s [1] Principle of Optimality, which
allows for an exponential reduction of the search space. By
using a number of additional tricks, we are able in Sec-
tion 5 to devise an algorithm for finding all maximal state
sequences that is essentially linear in the number of such
maximal sequences, quadratic in the length of the chain, and
cubic in the number of states. We perceive this complexity
to be comparable to that of the Viterbi algorithm, especially
after realising that the latter makes the simplifying step of
resolving ties more or less arbitrarily in order to produce
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only a single optimal state sequence. This is something we
will not allow our algorithm to do, for reasons that should
become clear further on. In Section 6, we consider the spe-
cial case of binary iHMMs, and investigate experimentally
how the number of maximal state sequences depends on
the model parameters. We comment on the very interesting
structures that emerge, and give an heuristic explanation for
them. We show off the algorithm’s efficiency in Section 7
by calculating the maximal sequences for a specific iHMM
of length 100.

We assume that the reader has a good working knowledge
of the theory of coherent lower previsions; see Ref. [14] for
an in-depth study, and Ref. [10] for a recent survey.

2 Basic notions

A hidden Markov model can be depicted using the follow-
ing probabilistic graphical model:

X1 X2 . . . Xn

O1 O2 . . . Onoutput sequence:

state sequence:

Figure 1: Tree representation of a hidden Markov model

Here n is some natural number. The state variables X1, . . . ,
Xn assume values in the respective finite sets X1, . . . , Xn,
and the output variables O1, . . . , On assume values in the
respective finite sets O1, . . . , On. We denote generic values
of Xk by xk, x̂k or zk, and generic values of Ok by ok.

Local uncertainty models. We assume that we have the
following local uncertainty models for these variables. For
X1, we have a marginal lower prevision Q1, defined on the
set G (X1) of all real-valued maps (or gambles) on X1. For
the subsequent states Xk, with k ∈ {2, . . . ,n}, we have a
conditional lower prevision Qk(·|Xk−1) defined on G (Xk),
called a transition model. In order to maintain uniformity
of notation, we will also denote the marginal lower previ-
sion Q1 as a conditional lower prevision Q1(·|X0), where
X0 denotes a variable that may only assume a single value,
and whose value is therefore certain. For any gamble fk in
G (Xk), Qk( fk|Xk−1) is interpreted as a gamble on Xk−1,
whose value Qk( fk|zk−1) in any zk−1 ∈Xk−1 is the lower
prevision (or lower expectation) of the gamble fk(Xk), con-
ditional on Xk−1 = zk−1.

In addition, for each output Ok, with k∈ {1, . . . ,n}, we have
a conditional lower prevision Sk(·|Xk) defined on G (Ok),
called an emission model. For any gamble gk in G (Ok),
Sk(gk|Xk) is interpreted as a gamble on Xk, whose value
Sk(gk|zk) in any zk ∈Xk is the lower prevision (or lower
expectation) of the gamble gk(Ok), conditional on Xk = zk.

We take all these local (marginal, transition and emission)

uncertainty models to be separately coherent; see for in-
stance Ref. [5] for more details about such local uncertainty
models and their separate coherence.

Interpretation of the graphical structure. We will as-
sume that the tree in Fig. 1 represents the following irrelev-
ance assessments: conditional on its mother variable, the
non-parent non-descendants of any variable in the tree are
epistemically irrelevant to this variable and its descendants.
This is a weaker condition than the one usually associated
with credal networks [3], which imposes strong independ-
ence rather than epistemic irrelevance. Recent work [5] has
shown that using this weaker condition guarantees that an
efficient algorithm exists for updating a credal tree, that is
essentially linear in the number of nodes in the tree.

A joint uncertainty model. By applying the general ana-
lysis in Ref. [5] to the special case considered here, we find
that the local uncertainty models can always be extended
to a point-wise smallest (most conservative or least com-
mittal) coherent family of joint lower previsions Pk(·|Xk−1)
on G (Xk:n×Ok:n), where k ∈ {1, . . . ,n}, Xk:n :=×n

i=kXi
and Ok:n := ×n

i=kOi. Again, for k = 1 the joint lower pre-
vision P1 = P1(·|X0) is effectively an unconditional lower
prevision, defined on G (X1:n×O1:n). These joint lower
previsions are given by the following recursion equations:

Ek(·|Xk) :=

{
Sn(·|Xn) k = n
Sk(·|Xk)⊗Pk+1(·|Xk) k = n−1, . . . ,1

(1)
and

Pk(·|Xk−1) := Qk(Ek(·|Xk)|Xk−1) for k = n, . . . ,1. (2)

Eq. (1) states that, for k = n− 1, . . . ,1, the conditional
lower prevision Ek(·|Xk) on G (Xk+1:n×Ok:n) is the so-
called (conditionally) independent natural extension [14,
Chapter 9] of the conditional lower previsions Sk(·|Xk) and
Pk+1(·|Xk), which was studied in detail in Ref. [6]. For our
present purposes, it will suffice to recall from that study
that such independent natural extensions are factorising,
which implies in particular that

Ek( f g|zk) = Ek(gEk( f |zk)|zk)

=

{
Sk(g|zk)Pk+1( f |zk) if Pk+1( f |zk)≥ 0
Sk(g|zk)Pk+1( f |zk) if Pk+1( f |zk)≤ 0

= Sk(g|zk)�Pk+1( f |zk), (3)

for all zk ∈Xk, all f ∈ G (Xk+1:n×Ok+1:n) and all non-
negative g ∈ G (Ok), where k ∈ {1, . . . ,n− 1} (we call a
gamble non-negative if all its values are). In this expression,
we have used the shorthand notation a�b := amax{0,b}+
amin{0,b}.

Interesting lower and upper probabilities. Without too
much trouble, we can use Eqs. (1)–(3) to derive the follow-
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ing expressions for a number of interesting lower and upper
probabilities:

Pk({zk:n}|zk−1) =
n

∏
i=k

Qi({zi}|zi−1)

Pk({zk:n}|zk−1) =
n

∏
i=k

Qi({zi}|zi−1),

and

Pk({zk:n}×{ok:n}|zk−1) =
n

∏
i=k

Si({oi}|zi)Qi({zi}|zi−1)

(4)

Pk({zk:n}×{ok:n}|zk−1) =
n

∏
i=k

Si({oi}|zi)Qi({zi}|zi−1),

(5)

for k = {1, . . . ,n}. We will assume throughout that

P1({z1:n}×{o1:n})> 0 for all z1:n ∈X1:n and o1:n ∈ O1:n

or equivalently, that all local lower previsions are positive
[5], in the sense that

Qk({zk}|zk−1)> 0 and Sk({ok}|zk)> 0

for all zk−1 ∈Xk−1, zk ∈Xk and ok ∈ Ok, k ∈ {1, . . . ,n}.
This implies in particular that Pk({ok:n}|zk−1) > 0 for all
k ∈ {1, . . . ,n}, zk−1 ∈Xk−1 and ok:n ∈ Ok:n.

We have good reason to believe that our results remain
valid, mutatis mutandis, on the weaker condition that all
local upper previsions should be positive, and we intend to
deal with this issue in further work.

3 Estimating states from outputs

In a hidden Markov model, the states are not directly ob-
servable, but the outputs are, and the general aim is to use
the outputs to estimate the states. In the present paper, we
concentrate on the following problem: Suppose we have
observed the output sequence o1:n, estimate the state se-
quence x1:n. We will use an essentially Bayesian approach
to do so, but need to allow for the fact that we are working
with imprecise rather than precise probability models.

Updating the iHMM. The first step in our approach con-
sists in updating (or conditioning) the joint model P1 on the
observed outputs O1:n = o1:n. Given our positivity assump-
tions on the local lower prevision, we see that the lower
probability P1({o1:n}) of the conditioning event {o1:n} is
strictly positive. This implies [5] that there is only one co-
herent way to perform this updating, namely using the Gen-
eralised Bayes Rule [14], which reduces to Bayes’s Rule
when all local models are precise. We are thus led to con-
sider the updated lower prevision P1(·|o1:n) on G (X1:n),
given by

P1( f |o1:n) := max
{

µ ∈ R : P1(I{o1:n}[ f −µ])≥ 0
}
, (6)

for all gambles f on X1:n. Using the coherence of P1,
it is not too hard to prove that when P1({o1:n}) > 0,
P1(I{o1:n}[ f −µ]) constitutes a strictly decreasing and con-
tinuous function of µ , which therefore has a unique zero.
As a consequence, we have for any f ∈ G (X1:n) that

P1( f |o1:n)≤ 0⇔ (∀µ > 0)P1(I{o1:n}[ f −µ])< 0

⇔ P1(I{o1:n} f )≤ 0. (7)

In fact, it is not hard to infer from the strictly decreasing and
continuous character of P1(I{o1:n}[ f − µ]) that P1( f |o1:n)
and P1(I{o1:n} f ) have the same sign. They are either both
negative, both positive or both equal to zero; see also the
illustration below.

µ
P1(I{o1:n}[ f −µ])

P1( f |o1:n)

P1(I{o1:n} f )

Maximal state sequences. The next step consists in us-
ing the posterior model P1(·|o1:n) to find best estimates for
the state sequence x1:n. On the Bayesian approach, this is
usually done by solving a decision-making, or optimisation,
problem: we associate a gain function I{x1:n} with every
candidate state sequence x1:n, and select as best estimates
those state sequences x̂1:n that maximise the expected gain,
resulting in state sequences with maximal posterior probab-
ility.

Here we generalise this decision-making approach towards
working with imprecise probability models. The criterion
we use to decide which estimates are optimal for the given
gain functions is that of (Walley–Sen) maximality [12, 14].
Maximality has a number of very desirable properties that
make sure it works well in optimisation contexts [7, 9], and
it is well-justified from a behavioural point of view, as we
shall see presently.

We can express a strict preference � between two state
sequence estimates x̂1:n and x1:n as follows:

x̂1:n � x1:n⇔ P1(I{x̂1:n}− I{x1:n}|o1:n)> 0.

On a behavioural interpretation, this expresses that a sub-
ject with lower prevision P1(·|o1:n) is disposed to pay some
strictly positive amount of utility to replace the (gain asso-
ciated with the) estimate x1:n with the (gain associated with
the) estimate x̂1:n; see Ref. [14, Section 3.9]. This induces a
strict partial order � [an irreflexive and transitive binary re-
lation] on the set of state sequences X1:n, and we consider
an estimate x̂1:n to be optimal when it is undominated, or
maximal, in this strict partial order:
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x̂1:n ∈ opt(X1:n|o1:n)

⇔ (∀x1:n ∈X1:n)x1:n 6� x̂1:n

⇔ (∀x1:n ∈X1:n)P1(I{x1:n}− I{x̂1:n}|o1:n)≤ 0

⇔ (∀x1:n ∈X1:n)P1(I{o1:n}[I{x1:n}− I{x̂1:n}])≤ 0,

(8)

where the last equivalence follows from Eq. (7). In sum-
mary then, the aim of this paper is to develop an effi-
cient algorithm for finding the set of maximal estimates
opt(X1:n|o1:n).

Another approach, which we will not consider here, could
consist in trying to find the so-called maximin state se-
quences x1:n, which maximise the posterior lower probabil-
ity:

x1:n ∈ argmaxx1:n∈X1:n
P1({x1:n}|o1:n)

While it is well known that any such maximin sequence
is in particular guaranteed to also be a maximal sequence,
finding such maximin sequences seems to be a much more
complicated affair.2

More general optimality operators. We shall see below
that in order to find the set of maximal estimates, it is useful
to consider a more general collection of ‘optimality oper-
ators’: for any k ∈ {1, . . . ,n} and zk−1 ∈Xk−1, we define
the optimality operator

opt(·|zk−1,ok:n) : P(Xk:n)→P(Xk:n)

such that for all S ∈P(Xk:n), or in other words S⊆Xk:n,
and all x̂k:n ∈ S:

x̂k:n ∈ opt(S|zk−1,ok:n)
⇔ (∀xk:n ∈ S)Pk(I{ok:n}[I{xk:n}− I{x̂k:n}]|zk−1)≤ 0. (9)

The interpretation of these operators is immediate: consider
the following part of the original iHMM:

Xk Xk+1 . . . Xn

Ok Ok+1 . . . Onoutput sequence:

state sequence:

where we take Qk(·|zk−1) as the marginal model for the
first state Xk. Then the corresponding joint lower prevision
on G (Xk:n×Ok:n) is precisely Pk(·|zk−1), and if we have
a sequence of outputs ok:n, then opt(·|zk−1,ok:n) selects
from a set S⊆Xk:n those state sequence estimates that are
undominated by any other estimate in S. It should be clear
that the set opt(X1:n|o1:n) we are eventually looking for,
can also be written as opt(X1:n|z0,o1:n).

2Private communication from Cassio de Campos. Of course, once we
know all maximal solutions, we could determine which of them are the
maximin solutions by comparing their posterior lower probabilities. As
far as we can see now, calculating these does not seem a trivial task.

Useful recursion equations. Fix any k in {1, . . . ,n}. If
we look at Eq. (9), we see that it will be useful to derive
a manageable expression for Pk(∆[xk:n, x̂k:n]|zk−1), where
∆[xk:n, x̂k:n] is the gamble on Xk:n×Ok:n given by:

∆[xk:n, x̂k:n] := I{ok:n}[I{xk:n}− I{x̂k:n}].

Using Eqs. (1)–(5) together with a few algebraic ma-
nipulations, we can derive the following equations for
Pk(∆[xk:n, x̂k:n]|zk−1):

If k ∈ {1, . . . ,n− 1} and x̂k = xk then, with some fairly
obvious abuse of notation:

Pk(∆[xk:n, x̂k:n]|zk−1) = Qk({xk}|zk−1)Sk({ok}|xk)

�Pk+1(∆[xk+1:n, x̂k+1:n]|xk).
(10)

If x̂n = xn then

Pn(∆[xn, x̂n]|zn−1) = 0. (11)

If k ∈ {1, . . . ,n} and x̂k 6= xk then

Pk(∆[xk:n, x̂k:n]|zk−1)
= Qk(I{xk}β (xk:n)− I{x̂k}α(x̂k:n)|zk−1), (12)

where we define, for any zk:n ∈Xk:n:

β (zk:n) := Sk({ok}|zk)
n

∏
i=k+1

Si({oi}|zi)Qi({zi}|zi−1)

α(zk:n) := Sk({ok}|zk)
n

∏
i=k+1

Si({oi}|zi)Qi({zi}|zi−1).

For any given sequence of states zk:n ∈Xk:n, the α(zk:n)
and β (zk:n) can be found by simple backward recursion:

α(zk:n) = α(zk+1:n)Sk({ok}|zk)Qk+1({zk+1}|zk) (13)
β (zk:n) = β (zk+1:n)Sk({ok}|zk)Qk+1({zk+1}|zk), (14)

for k ∈ {1, . . . ,n−1}, and starting from:

α(zn:n) = α(zn) = Sn({on}|zn)
β (zn:n) = β (zn) = Sn({on}|zn).

4 The Principle of Optimality

Determining the state sequences in opt(X1:n|o1:n) directly
using Eq. (8) clearly has exponential complexity (in the
length of the chain). We are now going to take a dynamic
programming approach [1] to reducing this complexity by
deriving a recursion equation for the optimality operators
opt(·|zk−1,ok:n).

Theorem (Principle of Optimality). For k ∈ {1, . . . ,n−1},
all zk−1 ∈Xk−1 and all x̂k:n ∈Xk:n:

x̂k:n ∈ opt(Xk:n|zk−1,ok:n)
⇒ x̂k+1:n ∈ opt(Xk+1:n|x̂k,ok+1:n) .
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Proof. Fix k ∈ {1, . . . ,n− 1}, zk−1 ∈ Xk−1 and x̂k:n ∈
Xk:n. Assume that x̂k+1:n /∈ opt(Xk+1:n|x̂k,ok+1:n), then
we show that x̂k:n /∈ opt(Xk:n|zk−1,ok:n). It follows from
the assumption that there is some xk+1:n ∈ Xk+1 such
that Pk+1(∆[xk+1:n, x̂k+1:n]|x̂k) > 0. Now prefix the state
sequence xk+1:n with the state x̂k to form the state sequence
xk:n, implying that x̂k = xk. We then infer from Eq. (10) that

Pk(∆[xk:n, x̂k:n]|zk−1)

= Qk({x̂k}|zk−1)Sk({ok}|x̂k)Pk+1(∆[xk+1:n, x̂k+1:n]|x̂k)

> 0,

which tells us that indeed x̂k:n /∈ opt(Xk:n|zk−1,ok:n).

As an immediate consequence, we find that

opt(Xk:n|zk−1,ok:n)⊆
⋃

zk∈Xk

zk⊕opt(Xk+1:n|zk,ok+1:n) ,

(15)
where ⊕ denotes concatenation of state sequences. From
this we can infer that

opt(Xk:n|zk−1,ok:n)

= opt
( ⋃

zk∈Xk

zk⊕opt(Xk+1:n|zk,ok+1:n)
∣∣∣∣zk−1,ok:n

)
,

(16)

since the optimality operator selecting the maximal ele-
ments in a strict partial order is insensitive to the omission
of non-optimal elements; see Ref. [7] for a detailed dis-
cussion. While Eq. (16) clearly exhibits the reduction in
computational complexity that the Principle of Optimality
allows for, it is perhaps useful to point out here that we will
not use this specific form for it in our algorithm.

5 An algorithm for finding maximal state
sequences

Instead, we use Eq. (15) to devise an algorithm for con-
structing the set opt(X1:n|o1:n) of maximal state sequences
in a recursive manner.

Initial set-up using backward recursion. We begin by
defining a few auxiliary notions. First of all, we consider
the thresholds:

θk(x̂k,xk|zk−1)

:= min
{

a ∈ R : Qk(I{xk}−aI{x̂k}|zk−1)≤ 0
}

(17)

for all k ∈ {1, . . . ,n}, zk−1 ∈ Xk−1 and xk, x̂k ∈ Xk. Ob-
serve that it follows from the positivity assumptions on the
Qk(·|Xk−1) that θk(x̂k,xk|zk−1)> 0.

Next, we define

αmax
k (xk) := max

zk:n∈Xk:nzk=xk

α(zk:n) (18)

and
β max

k (xk) := max
zk:n∈Xk:nzk=xk

β (zk:n) (19)

for all k ∈ {1, . . . ,n} and xk ∈Xk. Using Eq. (13)–(14),
these can be calculated efficiently using the following back-
ward recursive (dynamic programming) procedure:

αmax
k (xk)

= max
zk+1∈Xk+1

αmax
k+1 (zk+1)Sk({ok}|xk)Qk+1({zk+1}|xk)

= Sk({ok}|xk) max
zk+1∈Xk+1

αmax
k+1 (zk+1)Qk+1({zk+1}|xk),

(20)

and

β max
k (xk)

= max
zk+1∈Xk+1

β max
k+1 (zk+1)Sk({ok}|xk)Qk+1({zk+1}|xk)

= Sk({ok}|xk) max
zk+1∈Xk+1

β max
k+1 (zk+1)Qk+1({zk+1}|xk),

(21)

for k ∈ {1, . . . ,n−1}, starting from

αmax
n (xn) = α(xn) = Sn({on}|xn) (22)

and
β max

n (xn) = β (xn) = Sn({on}|xn). (23)

Finally, we let

αopt
k (x̂k|zk−1) := max

xk∈Xk
xk 6=x̂k

β max
k (xk)θk(x̂k,xk|zk−1), (24)

for all k ∈ {1, . . . ,n}, zk−1 ∈Xk−1 and x̂k ∈Xk.

Reformulation of the optimality condition. First, we
consider k = n. For every zn−1 ∈ Xn−1, we determine
opt(Xn|zn−1,on) as the set of those elements x̂n of Xn
for which

(∀xn ∈Xn \{x̂n})Qn(I{xn}β (xn)− I{x̂n}α(x̂n)|zn−1)≤ 0,

as this condition is equivalent to condition (9) for k = n,
considering Eqs. (11) and (12). But this condition is also
equivalent to

(∀xn ∈Xn \{x̂n})
α(x̂n)

β max
n (xn)

≥ θn(x̂n,xn|zn−1),

considering Eqs. (23) and (17). Eq. (24) now tells us that
this is equivalent to α(x̂n)≥ αopt

n (x̂n|zn−1). In summary,

opt(Xn|zn−1,on) =
{

x̂n ∈Xn : α(x̂n)≥ αopt
n (x̂n|zn−1)

}
.

(25)
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Next, we consider any k ∈ {1, . . . ,n−1}. Fix zk−1 ∈Xk−1,
then we must determine opt(Xk:n|zk−1,ok:n). We know
from the Principle of Optimality (15) that we can limit
the candidate optimal sequences x̂k:n to the set

⋃

zk∈Xk

zk⊕opt(Xk+1:n|zk,ok+1:n) . (26)

Consider any such x̂k:n, then we must check for any
xk:n ∈Xk:n whether Pk(∆[xk:n, x̂k:n]|zk−1)≤ 0; see Eq. (9).
But if xk:n is such that xk = x̂k, then it follows from
Eq. (10) that Pk(∆[xk:n, x̂k:n]|zk−1) ≤ 0, because the fact
that x̂k+1:n ∈ opt(Xk+1:n|x̂k,ok+1:n) also guarantees that
Pk+1(∆[xk+1:n, x̂k+1:n]|x̂k) ≤ 0. So we can limit ourselves
to checking the inequality for xk:n for which xk 6= x̂k.

So fix any xk 6= x̂k, then we must check whether

(∀xk+1:n ∈Xk+1:n)
Qk(I{xk}β (xk:n)− I{x̂k}α(x̂k:n)|zk−1)≤ 0;

see Eq. (12). Considering Eq. (19), this is equivalent to

Qk(I{xk}β
max
k (xk)− I{x̂k}α(x̂k:n)|zk−1)≤ 0,

and therefore also equivalent to

α(x̂k:n)
β max

k (xk)
≥ θk(x̂k,xk|zk−1),

considering Eq. (17). Since this inequality must hold for
every xk 6= x̂k, we infer from Eq. (24) that we must have
that

α(x̂k:n)≥ αopt
k (x̂k|zk−1). (27)

So we must check this condition for all the candidate se-
quences x̂k:n in the set (26). We can do this efficiently by
using the following backward-forward recursion approach.

Backward-forward recursion. We start by letting k run
backward from n to 1.

For k = n, it is a straightforward matter to determine
opt(Xn|zn−1,on) for every zn−1 ∈Xn−1 using Eq. (25).

For each k < n, we now show how we can determine
opt(Xk|zk−1,ok:n) by executing the following forward run-
ning procedure for every zk−1 ∈Xk−1.

If we combine Eqs. (27) and (18), we see that a necessary
condition for x̂k to be the state at time k in some optimal
state sequence in opt(Xk|zk−1,ok:n) is that

αmax
k (x̂k)≥ αopt

k (x̂k|zk−1), (28)

meaning we can eliminate from our search those sequences
for which the first state x̂k does not satisfy this condition. On
the other hand, for any x̂k that satisfies the condition (28),
we know from Eq. (18) that there is at least one state se-
quence with first state x̂k that satisfies the condition (27).

So now we consider any x̂k that satisfies the condition (28),
and any x̂k+1 that is a first state in some optimal sequence
in opt(Xk+1|x̂k,ok+1:n). Observe that we can determine
whether x̂k+1 satisfies this condition, because we have de-
termined opt(Xk+1|x̂k,ok+1:n) in the forward run for k + 1.

Taking into account the recursion equation (13), we see that
the condition (27) is equivalent to

α(x̂k+1:n)≥ αopt(x̂k:k+1|zk−1), (29)

where

αopt(x̂k:k+1|zk−1) :=
αopt

k (x̂k|zk−1)
Sk({ok}|x̂k)Qk+1({x̂k+1}|x̂k)

.

So if we combine Eqs. (29) and (18), we see that a necessary
condition for x̂k+1 to be a state at time k+1 in some optimal
sequence starting with x̂k is that

αmax
k+1 (x̂k+1)≥ αopt(x̂k:k+1|zk−1), (30)

meaning we can eliminate from our search those sequences
in opt(Xk+1|x̂k,ok+1:n) for which the first state x̂k+1 does
not satisfy this condition. On the other hand, for any x̂k+1
that satisfies the condition (30), we know from Eq. (18)
[for k + 1] that there is at least one state sequence in
opt(Xk+1|x̂k,ok+1:n) with first state x̂k+1 that satisfies the
condition (29).

Next, we consider any x̂k and x̂k+1 that satisfy the
condition (30) and any x̂k+2 for which x̂k+1 and x̂k+2
are the first two states in some optimal sequence in
opt(Xk+1|x̂k,ok+1:n). Taking into account the recursion
equation (13), we see that the condition (27) is equivalent
to

α(x̂k+2:n)≥ αopt(x̂k:k+2|zk−1), (31)

where

αopt(x̂k:k+2|zk−1)

:=
αopt(x̂k:k+1|zk−1)

Sk+1({ok+1}|x̂k+1)Qk+2({x̂k+2}|x̂k+1)
.

So if we combine Eqs. (31) and (18), we see that a necessary
condition for x̂k+2 to be a state at time k+2 in some optimal
sequence starting with x̂k:k+1 is that

αmax
k+2 (x̂k+2)≥ αopt(x̂k:k+2|zk−1), (32)

meaning we can eliminate from our search those sequences
in opt(Xk+1|x̂k,ok+1:n) for which the second state x̂k+2
does not satisfy this condition. On the other hand, for any
x̂k+2 that satisfies the condition (32), there is at least one
state sequence in opt(Xk+1|x̂k,ok+1:n) with a second state
x̂k+2 that satisfies the condition (31).

It should be clear that we can go forward in this way until
we reach time n, and that in doing so we construct all the
sequences x̂k:n in opt(Xk|zk−1,ok:n).
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A brief discussion of the algorithm’s complexity. We
begin with the preparatory calculations of the quantities
in Eqs. (17)–(24). For the thresholds θk(x̂k,xk|zk−1) in
Eq. (17), the computational complexity is clearly cubic in
the number of states, and linear in the number of nodes. Cal-
culating the αmax

k (xk) and β max
k (xk) in Eqs. (20) and (21) is

linear in the number of nodes, and quadratic in the number
of states. The complexity of finding the αopt

k (x̂k|zk−1) in
Eq. (24) is linear in the number of nodes, and cubic in the
number of states.

On the other hand, the computational complexity of the
backward-forward loop is clearly quadratic in the number
of nodes, quadratic in the number of states, and roughly
speaking linear in the number of maximal sequences.3

For precise HMMs, the state sequence estimation prob-
lem can be solved very efficiently by the Viterbi algorithm
[11, 13], whose complexity is linear in the number of nodes,
and quadratic in the number of states. However, this al-
gorithm only emits a single optimal (most probable) state
sequence, even in cases where there are multiple (equally
probable) optimal solutions: this of course simplifies the
problem. If we would content ourselves with giving only
a single maximal solution, the ensuing algorithm would
have a complexity that is similar to Viterbi’s. So, to al-
low for a fair comparison between Viterbi’s algorithm and
ours, we would need to alter Viterbi’s algorithm in such
a way that it no longer resolves ties arbitrarily, and emits
all (equally probable) optimal state sequences. This new
version will remain linear in the number of nodes, and
quadratic in the number of states, but emitting the optimal
sequences will be linear in the number of them. For the com-
plexity for the most time-consuming part of our algorithm
(the backward-forward loop), the only difference is this:
Viterbi’s approach is linear and ours quadratic in the num-
ber of nodes. Where does this difference come from? In
iHMMs we have mutually incomparable solutions, whereas
in pHMMs the optimal solutions are indifferent, or equally
probable. This makes sure that the algorithm for pHMMs
requires no forward loops. We believe that this added com-
plexity is a reasonable price to pay for the robustness that
working with imprecise-probabilistic models offers.

Additional comments. All that is needed in order to pro-
duce the α- and β -functions are assessments for the lower
and upper transition and emission mass functions:

Qk({zk}|zk−1),Qk({zk}|zk−1),Sk({ok}|zk),Sk({ok}|zk)

for all k ∈ {1, . . . ,n}, zk−1 ∈Xk−1, zk ∈Xk and ok ∈ Ok.
The most conservative coherent models Qk(·|Xk−1) that
correspond to such assessments are 2-monotone [4, 8]. Due
to their comonotone additivity, this implies that:

Qk(I{xk}−aI{x̂k}|zk−1) = Qk({xk}|zk−1)−aQk({x̂k}|zk−1)

3Each backward step in the backward-forward loop has a linear com-
plexity in the number of maximal elements at that stage.

for all a≥ 0, and therefore Eq. (17) leads to

θk(x̂k,xk|zk−1) =
Qk({xk}|zk−1)

Qk({x̂k}|zk−1)
. (33)

The right-hand side is the smallest possible value of the
threshold θk(x̂k,xk|zk−1) corresponding to the assessments
Qk({xk}|zk−1) and Qk({x̂k}|zk−1), leading to the most con-
servative inferences, and therefore the largest possible sets
of maximal sequences, that correspond to these assess-
ments.

6 Some experiments

While a linear complexity in the number of maximal se-
quences is probably the best we can hope for, we also see
that we will only be able to find all maximal sequences effi-
ciently provided their number is reasonably small. Should
it, say, tend to increase exponentially with the length of the
chain, then no algorithm, however cleverly designed, could
overcome this hurdle. Because this number of maximal
sequences is so important, we study its behaviour in more
detail. In order to do so, we take a closer look at how this
number of maximal sequences depends on the transition
probabilities of the model, and how it evolves when we
let the imprecision of the local models grow. We shall see
that this number displays very interesting behaviour that
can be explained, and even predicted to some extent. To
allow for easy visualisation, we limit this discussion to bin-
ary iHMMs, where both the state and output variables can
assume only two possible values, say 0 and 1.

Describing a binary stationary iHMM. We first con-
sider a binary stationary HMM. The (precise) transition
probabilities for going from one state to the next are com-
pletely determined by numbers in the unit interval: the
probability p to go from state 0 to state 0, and the probabil-
ity q to go from state 1 to state 0. To further pin down the
HMM we also need to specify the (marginal) probability m
for the first state to be 0, and the two emission probabilities:
the probability r of emitting output 0 from state 0 and the
probability s of emitting output 0 from state 1.

In this binary case, all imprecise models can be found by
contamination: taking convex mixtures of precise models,
with mixture coefficient 1−ε , and the vacuous model, with
mixture coefficient ε , leading to a so-called linear-vacuous
model. To simplify the analysis, we let the emission model
remain precise, and use the same mixture coefficient ε for
the marginal and the transition models. As ε ranges from
zero to one, we then evolve from a precise HMM towards
an iHMM with vacuous marginal and transition models
(and precise emission models).

Explaining the basic ideas using a chain of length two.
We now examine the behaviour of an iHMM of length two,
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with the following (precise) probabilities fixed:4

m = 0.1, r = 0.8 and s = 0.3.

Fixing an output sequence and a value for ε , we can use
our algorithm to calculate the corresponding numbers of
maximal state sequences as p and q range over the unit
interval. The results can be represented conveniently in
the form of a heat plot. The plots below correspond to the
output sequence o1:2 = 01.

0 1p
0

1

q

ε = 2%

0 1p
0

1

q

ε = 5%

0 1p
0

1

q

ε = 10%

0 1p
0

1

q

ε = 15%

The number of maximal state sequences clearly depends
on the transition probabilities p and q. In the rather large
parts of ‘probability space’ that are coloured white, we get a
single maximal sequence—as we would for HMMs—, but
there are contiguous regions where we see a higher number
appear. In the present example (binary chain of length two),
the highest possible number of maximal sequences is of
course four. In the dark grey area, there are three maximal
sequences, and two in the light grey regions. The plots
show what happens when we let ε increase: the grey areas
expand and the number of maximal sequences increases.
For ε = 15%, we even find a small area (coloured black)
where all four possible state sequences are maximal: locally,
due to the relatively high imprecision of our local models,
we cannot give any useful robust estimates of the state
sequence producing the output sequence o1:2 = 01.

For small ε , the areas with more than one maximal state
sequence are quite small and seem to resemble strips that
narrow down to lines as ε tends to zero. This suggests that
we should be able to explain at least qualitatively where
these areas come from by looking at compatible precise
models: the regions where an iHMM produces different

4This choice is of course arbitrary. Different values would yield com-
parable results.

maximal (mutually incomparable) sequences, are widened
versions of loci of indifference for precise HMMs.

By a locus of indifference, we mean the set of (p,q) that
correspond to two given state sequences x1:2 and x̂1:2 having
equal posterior probability:

p(x1:2|o1:2) = p(x̂1:2|o1:2),

or, provided that p(o1:2)> 0,

p(x1:2,o1:2) = p(x̂1:2,o1:2).

In our example where o1:2 = 01, we find the following
expressions for each of the four possible state sequences:

p(00,01) = mr(1− r)p

p(01,01) = mr(1− s)(1− p)
p(10,01) = (1−m)s(1− r)q

p(11,01) = (1−m)s(1− s)(1−q)

By equating any two of these expressions, we express that
the corresponding two state sequences have an equal pos-
terior probability. Since the resulting equations are a func-
tion of p and q only, each of these six possible combinations
defines a locus of indifference. All of them are depicted as
lines in the following figure:

0 1
p

0

1

q

00−
01

00−10

00−11

01−
10

01−11

10−11

11

1001

Parts of these loci, depicted in blue (darker and bolder in
monochrome versions of this paper) demarcate the three
regions where the state sequences 01, 10 and 11 are optimal
(have the highest posterior probability).

What happens when the transition models become impre-
cise? Roughly speaking, nearby values of the original p
and q enter the picture, effectively turning the loci (lines) of
indifference into bands of incomparability: the emergence
of regions with two and more maximal sequences can be
seen to originate from the loci of indifference; compare the
figure for these loci with the heat plots given above.
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Extending the argument to a chain of length three.
For a chain of length three, we can determine the loci of
indifference for precise models in a completely analogous
manner. If we use the same marginal model and emission
model as in the previous example, the resulting lines of
indifference for the output sequence 000 look as follows:

0 1p
0

1

q

If we compare this with the visualisation below of the num-
ber of maximal elements for the same sequence, the resemb-
lance is again quite striking.

0 1p
0

1

q

ε = 2%

0 1p
0

1

q

ε = 5%

0 1p
0

1

q

ε = 10%

0 1p
0

1

q

ε = 15%

7 Showing off the algorithm’s power

In order to demonstrate that our algorithm is indeed quite
efficient, we let it determine the maximal sequences for a

1110000011010000100010000111111111101111010000101101101100001101001001100110101100011011000010111001
1110000011010000100010000111111111101111010000101101101100001101001001100110101100011011000010111001
1100000011010000100010000111111111101111010000101101101100001101001001100110101100011011000010111001
1110000001010000100010000111111111101111010000101101101100001101001001100110101100011011000010111001
1110000011000000100010000111111111101111010000101101101100001101001001100110101100011011000010111001
1110000011010000000010000111111111101111010000101101101100001101001001100110101100011011000010111001

random output sequence of length 100.

We consider the same binary station-
ary HMM as we presented above, but
with the following precise marginal
and emission probabilities:

m = 0.1, r = 0.98 and s = 0.01.

In practical applications, the probabil-
ity for an output variable to have the
same value as the corresponding hid-
den state variable is usually quite high,
which explains why we have chosen r
and s to be close to 1 and to 0, respect-
ively. In contrast with the previous ex-
periments, we do not let the transition
probabilities vary, but fix them to the
following values:

p = 0.6 and q = 0.5.

The iHMM we use to determine the
maximal sequences is then generated
by mixing these precise local models
with a vacuous one, using the same
mixture coefficient ε for the marginal,
transition and emission models. On
the right, we display the five maximal
sequences corresponding to the high-
lighted output sequence, and ε = 2%.
Since the emission probabilities were
chosen to be quite accurate, it is no sur-
prise that the output sequence itself is
one of the maximal sequences. In ad-
dition, we have indicated in bold face
the state values that differ from the out-
puts in the output sequence. We see
that the model represents more inde-
cision about the values of the state vari-
ables as we move further away from
the end of the sequence. This is a res-
ult of a phenomenon called dilation,
which—as has been noted in another
paper [5]—tends to occur when infer-
ences in a credal tree proceed from the
leaves towards the root.

As for the efficiency of our algorithm:
it took about 0.2 seconds to calculate
these 5 maximal sequences. The reason
why this could be done so fast is that
the algorithm is linear in the number of
solutions, which in this case is only 5. If we let ε grow to
for example 5%, the number of maximal sequences for the
same output sequence is 764 and these can be determined
in about 32 seconds. This demonstrates that the complexity
is indeed linear in the number of solutions and that the
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algorithm can efficiently calculate the maximal sequences
even for long output sequences.

8 Conclusions

Interpreting the graphical structure of an imprecise hid-
den Markov model as a credal network under epistemic
irrelevance, leads to an efficient algorithm for finding the
maximal state sequences for a given output sequence. Pre-
liminary simulations show that, even for transition models
with non-negligible imprecision, the number of maximal
elements seems to be reasonably low in fairly large regions
of parameter space, with high numbers of maximal ele-
ments concentrated in fairly small regions. It remains to
be seen whether this observation can be corroborated by a
theoretical analysis, and whether increasing the imprecision
of the emission models changes this picture appreciably.

It is not clear to us, at this point, whether ideas similar to the
ones we discussed above could be used to derive similarly
efficient algorithms for imprecise hidden Markov models
whose graphical structure is interpreted as a credal network
under strong independence [3]. This could be interesting
and relevant, as the more stringent independence condition
leads to joint models that are less imprecise, and therefore
produce fewer maximal state sequences (although they will
be contained in our solutions).
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Abstract
We investigate how to combine a number of marginal co-
herent sets of desirable gambles into a joint set using the
properties of epistemic irrelevance and independence. We
provide formulas for the smallest such joint, called their
independent natural extension, and study its main proper-
ties. The independent natural extension of maximal sets
of gambles allows us to define the strong product of sets
of desirable gambles. Finally, we explore an easy way to
generalise these results to also apply for the conditional
versions of epistemic irrelevance and independence.

Keywords. Epistemic irrelevance, epistemic independence,
independent natural extension, strong product, coherent set
of desirable gambles.

1 Introduction

One disadvantage of working with coherent lower previ-
sions (or previsions and probabilities for that matter), is
that conditioning a lower prevision does not necessarily
lead to uniquely coherent results when the conditioning
event has lower probability zero; see for instance Ref. [8,
Section 6.4]. For precise probabilities, this difficulty can
be circumvented by using full conditional measures [5]. In
an imprecise-probabilities context, working with the more
informative coherent sets of desirable gambles rather than
with lower previsions provides a very elegant and intuiti-
vely appealing way out of this problem, as Walley already
suggested in 1991 [8, Section 3.8.6 and Appendix F], and
argued in much more detail in 2000 [9]. The connection bet-
ween full conditional measures and maximal coherent sets
of desirable gambles was explored by Couso and Moral [1].
De Cooman and Quaeghebeur [4] have shown that working
with sets of desirable gambles is especially illuminating in
the context of modelling exchangeability assessments.

Exchangeability is a structural assessment, and so is inde-
pendence. Conditioning and independence are, of course,
closely related. In a recent paper [3], we investigated the no-
tions of epistemic independence of finite-valued variables

using coherent lower previsions. The above-mentioned pro-
blems with conditioning, and the fact that the coherence
requirements for conditional lower previsions are, to be
honest, quite cumbersome to work with, have turned this
into a quite complicated exercise. This is the reason why, in
the present paper, we investigate if looking at independence
using sets of desirable gambles leads to a more elegant
theory that avoids some of the complexity pitfalls of wor-
king with coherent lower previsions. In doing this, we build
on the strong pioneering work on epistemic irrelevance by
Moral [7]. While we focus here on the symmetrised notion
of epistemic independence, much of what we do can be
seen as an application and continuation of his ideas.

In Section 2 we summarise relevant results in the existing
theory of sets of desirable gambles. After mentioning useful
notational conventions in Section 3, we recall the basic
marginalisation, conditioning and extension operations for
sets of desirable gambles in Sections 4 and 5. We use these
to combine a number of marginal sets of desirable gambles
into a joint satisfying epistemic irrelevance (Section 6), and
epistemic independence (Section 7). In Section 8, we study
the particular case of maximal sets of desirable gambles,
and derive the concept of a strong product. Section 9 deals
with conditional independence assessments.

2 Coherent sets of desirable gambles and
natural extension

Consider a variable X taking values in some non-empty
set X , that we shall assume to be finite. We model infor-
mation about X by means of sets of desirable gambles. A
gamble is a real-valued function on X , and we denote the
set of all gambles on X by G (X). It is a linear space under
point-wise addition of gambles and point-wise multiplica-
tion of gambles with real numbers. For any subset A of
G (X), we denote by posi(A ) the set of all positive linear
combinations of gambles in A :

posi(A ) :=
{ n

∑
k=1

λk fk : fk ∈A, λk > 0, n> 0
}
.
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We call A a convex cone if it is closed under positive linear
combinations, meaning that posi(A ) = A .

For any gambles f and g on X , we write ‘ f ≥ g’ if
(∀x ∈ X) f (x) ≥ g(x), and ‘ f > g’ if f ≥ g and f 6= g.
A gamble f > 0 is called positive. A gamble g≤ 0 is cal-
led non-positive. G (X)6=0 denotes the set of all non-zero
gambles, G (X)>0 the convex cone of all positive gambles,
and G (X)≤0 the convex cone of all non-positive gambles.

2.1 Coherence and avoiding non-positivity

Definition 1 ([4]). A set of desirable gambles D ⊆ G (X)
avoids non-positivity if G (X)≤0∩posi(D) = /0. It is called
coherent if:

D1. 0 /∈D;
D2. G (X)>0 ⊆D;
D3. D = posi(D).

We denote by D(X) the set of all coherent sets of desirable
gambles on X .

Requirement D3 turns D into a convex cone. Due to D2,
it includes G (X)>0; due to D1–D3, it excludes G (X)≤0,
and therefore avoids non-positivity.

2.2 Natural extension

If we consider any non-empty family of coherent sets of
desirable gambles Di, i ∈ I, then their intersection

⋂
i∈I Di

is still coherent. This is the idea behind the following result.
If a subject gives us an assessment, a set A ⊆ G (X) of
gambles on X that he finds desirable, then we can tell
exactly when this assessment can be extended to a coherent
set, and how to construct the smallest such set.
Theorem 1 (Natural extension [4]). Consider an assess-
ment A ⊆ G (X), and define its natural extension as:1

E(A ) :=
⋂
{D ∈ D(X) : A ⊆D}

Then the following statements are equivalent:

(i) A avoids non-positivity;
(ii) A is included in some coherent set of desirable

gambles;
(iii) E(A ) 6= G (X);
(iv) the set of desirable gambles E(A ) is coherent;
(v) E(A ) is the smallest coherent set of desirable gambles

that includes A .

When any (and hence all) of these equivalent statements
hold, then E(A ) = posi

(
G (X)>0∪A

)
.

2.3 Helpful lemmas

In order to prove a number of results in this paper, we need
the following lemmas, one of which is convenient version

1As usual, in this expression, we let
⋂

/0 = G (X ).

of the separating hyperplane theorem:

Lemma 2. Consider a finite subset A of G (X). Then 0 /∈
posi(G (X)>0∪A ) if and only if there is some probability
mass function p such that ∑x∈X p(x) f (x)> 0 for all f ∈
A and p(x)> 0 for all x ∈X .
Proof. It clearly suffices to prove necessity. Since 0 /∈
posi(G (X)>0 ∪A ), we infer from a version of the separating
hyperplane theorem [8, Appendix E.1] that there is a linear func-
tional Λ on G (X) such that

(∀x ∈X)Λ(I{x})> 0 and (∀ f ∈A )Λ( f )> 0.

Then Λ(X) = ∑x∈X Λ(I{x}) > 0, and if we let p(x) :=
Λ(I{x})/Λ(X) > 0 for all x ∈X , then p is a probability mass
function on X for which Λ( f )/Λ(X) = ∑x∈X p(x) f (x)> 0 for
all f ∈A . �
Lemma 3. Consider a convex cone A of gambles on X
such that max f > 0 for all f ∈A . Consider any non-zero
gamble g on X . If g /∈A then 0 /∈ posi(A ∪{−g}).
Proof. Consider a non-zero gamble g /∈ A , and assume ex ab-
surdo that 0 ∈ posi(A ∪{−g}). Then it follows from the assump-
tions that there are f ∈ A and µ > 0 such that 0 = f + µ(−g).
Hence g ∈A , a contradiction. �

2.4 Maximal sets of desirable gambles

An element D of D(X) is called maximal if it is not strictly
included in any other element of D(X), or in other words,
if adding any gamble f to D makes sure we can no longer
extend the set D∪{ f} to a set that is still coherent:

(∀D ′ ∈ D(X))(D ⊆D ′⇒D = D ′)

M(X) denotes the set of all maximal elements of D(X).

The following proposition provides a characterisation of
such maximal elements.

Proposition 4 ([1, 4]). Let D ∈ D(X), then D is a maxi-
mal coherent set of desirable gambles if and only if

(∀ f ∈ G (X)6=0)( f /∈D⇒− f ∈D).

For the following important result, it is easy to provide a
constructive proof, based on the same ideas as in Ref. [1].
For the more general case of infinite X , a non-constructive
proof can be based on Zorn’s Lemma [4].

Theorem 5 ([1, 4]). A subset A of G (X) avoids non-
positivity if and only if m(A ) := {M ∈M(X) : A ⊆M}
is non-empty. Moreover, E(A ) =

⋂
m(A ).

2.5 Coherent lower previsions

Given a coherent set of desirable gambles D, the functional
P defined on G (X) by

P( f ) := sup{µ : f −µ ∈D} (1)
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is a coherent lower prevision [8, Theorem 3.8.1], and there-
fore corresponds to taking a lower envelope of expectations
with respect a set of probability mass functions. Many dif-
ferent coherent sets of desirable gambles induce the same
coherent lower prevision P. The smallest is called the asso-
ciated set of strictly desirable gambles:

D ′ := { f ∈ G (X) : f > 0 or P( f )> 0} . (2)

When D is a maximal coherent set of desirable gambles,
the lower prevision P defined by Eq. (1) is a linear previ-
sion, meaning that it corresponds to an expectation operator
with respect to a probability mass function. For more in-
formation, see Refs. [1, Section 5], [6, Proposition 6], [8]
and [10].

3 Basic notation

From now on we consider a number of variables Xn, n ∈ N,
taking values in the respective finite sets Xn. Here N is
some finite non-empty index set.

For every subset R of N, we denote by XR the tuple of
variables (with one component for each r ∈ R) that takes va-
lues in the Cartesian product XR :=×r∈RXr. The elements
of XR are generically denoted by xR or zR, with correspon-
ding components xr := xR(r) or zr := zR(r), r ∈ R.

We will assume that the variables Xn are logically inde-
pendent, which means that for each subset R of N, XR may
assume all values in XR.

We denote by G (XR) the set of gambles defined on XR.
We will frequently resort to the simplifying device of iden-
tifying a gamble on XR with a gamble on XN , namely its
cylindrical extension. To give an example, if K ⊆ G (XN),
this trick allows us to consider K ∩ G (XR) as the set
of those gambles in K that depend only on the variable
XR. As another example, this device allows us to identify
the gambles I{xR} and I{xR}×XN\R , and therefore also the
events {xR} and {xR}×XN\R. More generally, for any
event A⊆XR, we can identify the gambles IA and IA×XN\R ,
and therefore also the events A and A×XN\R.

We draw attention to the case R = /0. By definition, X /0
contains only one element x /0: the empty map /0→ /0. There
is no uncertainty about the value of the variable X/0: it can
assume only one value (the empty map), and IX /0 = I{x /0} =
1. We can identify G (X /0) with the set of real numbers R.
There is only one coherent set of desirable gambles on X /0:
the set R>0 of positive real numbers.

4 Marginalisation and cylindrical extension

Suppose that we have a set DN ⊆ G (XN) of desirable
gambles modelling a subject’s information about the un-
certain variable XN . We are interested in modelling the

information about the variable XO, where O is some subset
of N. This can be done using the set of desirable gambles
that belong to DN but only depend on the variable XO:

margO(DN) := {g ∈ G (XO) : g ∈DN}= DN ∩G (XO)
(3)

is called a marginal set of desirable gambles [7]. Observe
that marg /0(DN) = G (X /0)>0, which can be identified with
the set of positive real numbers R>0. Also, with O1,O2⊆N,
it is obvious that

O1 ⊆ O2⇒margO1
(margO2

(DN)) = margO1
(DN). (4)

Coherence is trivially preserved under marginalisation:

Proposition 6. Let DN be a set of desirable gambles on
XN , and consider any subset O of N.

(i) If DN avoids non-positivity, then so does margO(DN).
(ii) If DN is coherent, then margO(DN) is a coherent set

of desirable gambles on XO.

We now look for a kind of inverse operation to margina-
lisation. Suppose we have a coherent set DO ⊆ G (XO)
of desirable gambles modelling a subject’s information
about the uncertain variable XO, and we want to extend
this to a coherent set of desirable gambles on XN , repre-
senting the same information. So we are looking for a
coherent set of desirable gambles DN ⊆ G (XN) such that
margO(DN) = DO and that is as small as possible: the most
conservative coherent set of desirable gambles on XN that
marginalises to DO.

Proposition 7. Let O be a subset of N and let DO ∈
D(XO). Then the most conservative (smallest) coherent
set of desirable gambles on XN that marginalises to DO is
given by

extN(DO) := posi(G (XN)>0∪DO). (5)

It is called the cylindrical extension of DO to a set of desi-
rable gambles on XN , and satisfies

margO(extN(DO)) = DO. (6)

This extension is called weak extension by Moral [7, Sec-
tion 2.1].

Proof. It is clear from the coherence requirements and Eq. (3) that
any coherent set that marginalises to DO must include G (XN)>0
and DO, and therefore also posi(G (XN)>0∪DO) = extN(DO). It
therefore suffices to prove that posi(G (XN)>0∪DO) is coherent,
and that it marginalises to DO.

To prove coherence, it suffices to prove that DO avoids non-
positivity, by Theorem 1. But this is obvious because DO is a
coherent set of desirable gambles on XO.

We are left to prove that margO(extN(DO)) = DO. Since for
any g ∈ DO it is obvious that both g ∈ extN(DO) and g ∈
G (XO), we see immediately that DO ⊆ margO(extN(DO)), so
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we concentrate on proving that margO(extN(DO))⊆DO. Consi-
der f ∈ margO(extN(DO)), meaning that both f ∈ G (XO) and
f ∈ extN(DO). The latter means that there are g ∈ DO, h ∈
G (XN)>0, and non-negative λ and µ such that max{λ ,µ}> 0
for which f = λg + µh. Since we need to prove that f ∈ DO,
we can assume without loss of generality that µ > 0. But then
h = ( f − λg)/µ ∈ G (XO) and therefore also h ∈ G (XO)>0,
whence indeed f ∈DO, by coherence of DO. �

5 Conditioning

Suppose that we have a set DN ⊆ G (XN) of desirable
gambles modelling a subject’s information about the un-
certain variable XN . Consider a subset I of N, and assume
we want to update the model DN with the information that
XI = xI . This leads to an updated set of desirable gambles:

DN |xI :=
{

f ∈ G (XN) : I{xI} f ∈DN
}
. (7)

For technical reasons, and mainly in order to streamline the
proofs as much as possible, we also allow the admittedly
pathological case that I = /0. Since I{x /0} = 1, this amounts
to not conditioning at all.

Eq. (7) introduces the conditioning operator ‘|’ essentially
used by Walley [9] and Moral [7]. We prefer a slightly
modified version ‘c’ [4]. Since I{xI} f = I{xI} f (xI , ·), we
can characterise the updated model DN |xI through the set

DNcxI :=
{

g ∈ G (XN\I) : I{xI}g ∈DN
}
⊆ G (XN\I),

in the specific sense that for all g ∈ G (XN\I):

g ∈DNcxI ⇔ I{xI}g ∈DN ⇔ I{xI}g ∈DN |xI , (8)

and for all f ∈ G (XN): f ∈DN |xI⇔ f (xI , ·) ∈DNcxI . Co-
herence is trivially preserved under conditioning:

Proposition 8. Let DN be a coherent set of desirable
gambles on XN , and consider any subset I of N. Then
DNcxI is a coherent set of desirable gambles on XN\I .

The order of marginalisation and conditioning can be rever-
sed, under some conditions.

Proposition 9. Let DN be a coherent set of desirable
gambles on XN , and consider any disjoint subsets I and
O of N. Then margO(DNcxI) = margI∪O(DN)cxI for all
xI ∈XI .

Proof. Consider any h∈ G (XN) and observe the following chain
of equivalences:

h ∈margO(DNcxI)⇔ h ∈ G (XO) and h ∈DNcxI

⇔ h ∈ G (XO) and I{xI}h ∈DN

⇔ h ∈ G (XO) and I{xI}h ∈margI∪O(DN)

⇔ h ∈ G (XO) and h ∈margI∪O(DN)cxI

⇔ h ∈margI∪O(DN)cxI . �

6 Irrelevant natural extension

We are now ready to look at the simplest type of irrelevance
judgement. Consider two disjoint subsets I and O of N. We
say that XI is epistemically irrelevant to XO when learning
the value of XI does not influence or change our subject’s
beliefs about XO.

When does a set DN of desirable gambles on XN capture
this type of epistemic irrelevance? Observing that XI = xI
turns DN into the updated set DNcxI of desirable gambles
on XN\I , we should clearly require that:

margO(DNcxI) = margO(DN) for all xI ∈XI . (9)

As before, for technical reasons we also allow I and O
to be empty. It is clear from the definition above that the
‘variable’ X/0, about whose constant value we are certain, is
epistemically irrelevant to any variable XO. Similarly, we
see that any variable XI is epistemically irrelevant to the
‘variable’ X/0. This seems to be in accordance with intuition.

The epistemic irrelevance condition can be formulated tri-
vially in an interesting and slightly different manner.

Proposition 10. Let DN be a coherent set of desirable
gambles on XN , and let I and O be any disjoint subsets of
N. Then the following statements are equivalent:

(i) margO(DNcxI) = margO(DN) for all xI ∈XI;
(ii) for all f ∈ G (XO) and all xI ∈XI: I{xI} f ∈ DN ⇔

f ∈DN .

Irrelevance assessments are most useful in constructing sets
of desirable gambles from other ones. Suppose we have
a coherent set DO of desirable gambles on XO, and an
assessment that XI is epistemically irrelevant to XO, where I
and O are disjoint index sets. Then how can we combine DO
and this structural irrelevance assessment into a coherent
set of desirable gambles on XI∪O, or more generally, on
XN , where N ⊇ I ∪O? To see how this can be done in a
way that is as conservative as possible, we introduce:

A irr
I→O := posi

({
I{xI}g : g ∈DO and xI ∈XI

})
.

It follows from the next lemma that for all h ∈ G (XI∪O):

h ∈A irr
I→O⇔ h 6= 0 and (∀xI ∈XI)h(xI , ·) ∈DO∪{0}.

(10)
Clearly, and this will be quite important in streamlining
proofs, A irr

/0→O = DO and A irr
I→ /0 = G (XI)>0. We also give

two important properties of these sets:

Lemma 11. Consider disjoint subsets I and O of N, and a
coherent set DO of desirable gambles on XO. Then A irr

I→O
is a coherent set of desirable gambles on XI∪O.
Proof. D1. Assume ex absurdo that there are n > 0, real λk >
0 and fk ∈ A irr

I→O such that ∑n
k=1 λk fk = 0. It follows from the

assumptions that there are ` ∈ {1, . . . ,n} and xI ∈XI such that
f`(xI , ·) 6= 0. This implies that in the sum ∑n

k=1 λk fk(xI , ·) = 0
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not all the gambles λk fk(xI , ·) are zero. Since the non-zero ones
belong to DO, this contradicts the coherence of DO.

D2. Consider any h ∈ G (XI∪O)>0. Then clearly h(xI , ·)≥ 0 and
therefore h(xI , ·) ∈DO∪{0} for all xI ∈XI . Since h 6= 0, it fol-
lows that indeed h ∈A irr

I→O.

D3. Trivial if we recall that posi(posi(D)) = posi(D) for any set
of desirable gambles D. �
Lemma 12. Consider disjoint subsets I and O of N, and
a coherent set DO of desirable gambles on XO. Then
margO(A irr

I→O) = DO.

Proof. It is obvious from Eq. (10) that indeed:

margO(A irr
I→O) = A irr

I→O∩G (XO)

=
{

h ∈ G (XO)6=0 : (∀xI ∈XI)h ∈DO∪{0}
}

=
{

h ∈ G (XO)6=0 : h ∈DO∪{0}
}

= DO. �

Theorem 13. Consider disjoint subsets I and O of N, and
a coherent set DO of desirable gambles on XO. Then
the smallest coherent set of desirable gambles on XN
that marginalises to DO and satisfies the epistemic irrele-
vance condition (9) of XI to XO is given by extN(A irr

I→O) =
posi(G (XN)>0∪A irr

I→O).

Proof. Consider any coherent set DN on XN that margina-
lises to DO and satisfies the irrelevance condition (9). This im-
plies that margO(DNcxI) = DO for any xI ∈XI , so g ∈ DNcxI ,
and therefore I{xI}g ∈ DN for any g ∈ DO, by Eq. (8). So we
infer by coherence that A irr

I→O ⊆ DN , and therefore also that
posi(G (XN)>0 ∪A irr

I→O) ⊆ DN . As a consequence, it suffices
to prove that (i) extN(A irr

I→O) is coherent, (ii) marginalises to DO,
and (iii) satisfies the epistemic irrelevance condition (9). This is
what we now set out to do.

(i). By Lemma 11, A irr
I→O is a coherent set of desirable gambles on

XI∪O, so Proposition 7 implies that posi(G (XN)>0∪A irr
I→O) =

extN(A irr
I→O) is a coherent set of desirable gambles on XN .

(ii). Marginalisation leads to:

margO(extN(A irr
I→O)) = margO(margI∪O(extN(A irr

I→O)))

= margO(A irr
I→O) = DO,

where the first equality follows from Eq. (4), the second from
Eq. (6), and the third from Lemma 12.

(iii). It follows from Proposition 9 and Eq. (6) that

margO(extN(A irr
I→O)cxI) = margI∪O(extN(A irr

I→O))cxI

= A irr
I→OcxI ,

and we have just shown in (ii) that margO(extN(A irr
I→O)) = DO,

so proving that margO(extN(A irr
I→O)cxI) = margO(extN(A irr

I→O))
amounts to proving that A irr

I→OcxI = DO. It is obvious from the
definition of A irr

I→O that DO ⊆ A irr
I→OcxI , so we concentrate on

the converse inclusion. Consider any h ∈A irr
I→OcxI ; then I{xI}h ∈

A irr
I→O, so we infer from Eq. (10) that in particular h ∈DO∪{0}.

But since A irr
I→O is coherent by Lemma 11, we see that h 6= 0 and

therefore indeed h ∈DO. �

Theorem 13 is mentioned briefly, with only a hint at the
proof, by Moral [7, Section 2.4]. We believe the result is not
so trivial and have therefore decided to include our version
of the proof here. Our notion of epistemic irrelevance is
called weak epistemic irrelevance by Moral. For his ver-
sion of epistemic irrelevance he requires in addition that
DN should be equal to the irrelevant natural extension of
DO, and therefore be the smallest model that satisfies the
(weak) epistemic irrelevance condition (9). While we feel
comfortable with his reasons for doing so, we have decided
not to follow his lead in this.

7 Independent natural extension

We now turn to independence assessments, which consti-
tute a symmetrisation of irrelevance assessments. We say
that the variables Xn,n ∈ N are epistemically independent
when learning the values of any number of them does not
influence or change our beliefs about the remaining ones:
for any two disjoint subsets I and O of N, XI is epistemically
irrelevant to XO.

When does a set DN of desirable gambles on XN capture
this type of epistemic independence?

Definition 2. A coherent set DN of desirable gambles on
XN is called independent if

margO(DNcxI) = margO(DN)
for all disjoint I,O⊆ N, and all xI ∈XI .

In this definition, we allow I and O to be empty too, but
doing so does not lead to any substantive requirement, be-
cause the condition margO(DNcxI) = margO(DN) is tri-
vially satisfied when I or O are empty.

Independent sets have an interesting factorisation property
(see Ref. [3] for another paper where factorisation is consi-
dered in this somewhat unusual form).

Proposition 14 (Factorisation). Let DN be an inde-
pendent coherent set of desirable gambles on XN . Then for
all disjoint subsets I and O of N and for all f ∈ G (XO):

f ∈DN ⇔ (∀g ∈ G (XI)>0) f g ∈DN . (11)

Proof. Fix arbitrary disjoint subsets I and O of N and any f ∈
G (XO); we show that Eq. (11) holds. The ‘⇐’ part is trivial. For
the ‘⇒’ part, assume that f ∈DN and consider any g ∈ G (XI)>0.
We have to show that f g ∈DN . Since g = ∑xI∈XI

I{xI}g(xI), we
see that f g = ∑xI∈XI

g(xI)I{xI} f . Now since f ∈ margO(DN),
we infer from the independence of DN and the assumption (i)
in Proposition 10 that f ∈DNcxI and therefore I{xI} f ∈DN for
all xI ∈XI . We conclude that f g is a positive linear combina-
tion of elements I{xI} f of DN , and therefore belongs to DN by
coherence. �

Independence assessments are useful in constructing joint
sets of desirable gambles from marginal ones. Suppose
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we have coherent sets Dn of desirable gambles on Xn, for
each n ∈ N and an assessment that the variables Xn, n ∈ N
are epistemically independent. Then how can we combine
the Dn and this structural independence assessment into a
coherent set of desirable gambles on XN in a way that is
as conservative as possible? If we call independent product
of the Dn any independent DN ∈ D(XN) that marginalises
to the Dn for all n ∈ N, this means we are looking for the
smallest such independent product.

Further on, we are going to prove that such a smallest in-
dependent product always exists. Before we can do this
elegantly, however, we need to do some preparatory work
involving particular sets of desirable gambles that can be
constructed from the Dn. Consider, as a special case of
Eq. (10), for any subset I of N and any o ∈ N \ I:

A irr
I→{o} := posi

({
I{xI}g : g ∈Do and xI ∈XI

})

It is again easy to see that for all h ∈ G (XI∪{o}):

h ∈A irr
I→{o}⇔ h 6= 0 and (∀xI ∈XI)h(xI , ·) ∈Do∪{0}.

(12)
We use these sets to construct the following set of desirable
gambles on XN :

⊗n∈NDn := posi
(

G (XN)>0∪
⋃

n∈N

A irr
N\{n}→{n}

)
. (13)

Observe that, quite trivially, A irr
{n}\{n}→{n} = Dn and there-

fore⊗m∈{n}Dm = Dn. We now prove a number of important
properties for ⊗n∈NDn.

Proposition 15 (Coherence). ⊗n∈NDn is a coherent set of
desirable gambles on XN .
Proof. Let, for ease of notation AN :=

⋃
n∈N A irr

N\{n}→{n}. It fol-
lows from Theorem 1 that we have to prove that AN avoids non-
positivity. So consider any f ∈ posi(AN), and assume ex absurdo
that f ≤ 0. Then there are λn ≥ 0 and fn ∈A irr

N\{n}→{n} such that

f = ∑n∈N λn fn and maxn∈N λn > 0 [recall that the A irr
N\{n}→{n}

are convex cones, by Lemma 11]. Fix arbitrary m ∈ N. Let

A N
m :=

{
fm(xN\{m}, ·) : xN\{m} ∈XN\{m}, fm(xN\{m}, ·) 6= 0

}
,

then it follows from Eq. (12) that A N
m is a finite non-empty subset

of Dm, so the coherence of Dm, Theorem 1 and Lemma 2 imply
that there is some mass function pm on Xm with expectation
operator Em such that (∀xm ∈Xm)pm(xm)> 0 and

(∀xN\{m} ∈XN\{m})

( fm(xN\{m}, ·) 6= 0⇒ Em( fm(xN\{m}, ·))> 0).

So if we define the gamble gN\{m} on XN\{m} by letting
gN\{m}(xN\{m}) := Em( fm(xN\{m}, ·)) for all xN\{m} ∈XN\{m},
then gN\{m} > 0.

Since we can do this for all m ∈ N, we can define the mass
function pN on XN by letting pN(xN) := ∏m∈N pm(xm)> 0 for
all xN ∈XN . The corresponding expectation operator EN is of

course the product operator of the marginals Em. But then it fol-
lows from the reasoning and assumptions above that EN( f ) =
∑m∈N λmEN( fm) = ∑m∈N λmEN(gm) > 0, whereas f ≤ 0 leads
us to conclude that EN( f )≤ 0, a contradiction. �
Lemma 16. Consider any disjoint subsets I, R of N and
any o ∈ N \ (I ∪R). Then f (xR, ·) ∈ A irr

I→{o} ∪{0} for all

f ∈A irr
I∪R→{o} and all xR ∈XR.

Proof. Fix f ∈A irr
I∪R→{o} and xR ∈XR and consider the gamble

g := f (xR, ·) on XI∪O. It follows from the assumptions that for
all xI ∈XI , g(xI , ·) = f (xR,xI , ·) ∈Do∪{0}, whence indeed g ∈
A irr

I→{o}∪{0}. �
Proposition 17 (Marginalisation). Let R be any subset of
N, then margR(⊗n∈NDn) =⊗r∈RDr.
Proof. Since we are interpreting gambles on XR as special
gambles on XN , it is clear from Eq. (12) that for any r ∈ R,
A irr

R\{r}→{r} ⊆ A irr
N\{r}→{r}. Eqs. (5) and (13) now tell us that

extN(⊗r∈RDr) ⊆ ⊗n∈NDn. If we invoke Eq. (6), this leads
to ⊗r∈RDr = margR(extN(⊗r∈RDr))⊆margR(⊗n∈NDn), so we
can concentrate on the converse inclusion.

Consider therefore any f ∈ margR(⊗n∈NDn) = (⊗n∈NDn) ∩
G (XR), and assume ex absurdo that f /∈ ⊗r∈RDr.

It follows from the coherence of ⊗n∈NDn [see Proposition 15]
that f 6= 0. Since f ∈⊗n∈NDn, there are S⊆ N, fs ∈A irr

N\{s}→{s},
s∈ S and g∈G (XN) with g≥ 0 such that f = g+∑s∈S fs. Clearly
S\R 6= /0, because S\R = /0 would imply that, with xN\R any ele-
ment of XN\R, f = f (xN\R, ·) = g(xN\R, ·)+∑s∈S∩R fs(xN\R, ·)∈
⊗r∈RDr, since we infer from Lemma 16 that fs(xN\R, ·) ∈
A irr

R\{s}→{s}∪{0} for all s ∈ S∩R.

It follows from the coherence of ⊗r∈RDr [Proposition 15], f /∈
⊗r∈RDr and Lemma 3 that 0 /∈ posi({− f}∪⊗r∈RDr). Let, for
ease of notation, A N

S∩R be the set
{

fs(zN\R, ·) : s ∈ S∩R,zN\R ∈XN\R, fs(zN\R, ·) 6= 0
}
.

Then A N
S∩R is clearly a finite subset of ⊗r∈RDr [to see this, use

a similar argument as above, involving Lemma 16], so we infer
from Lemma 2 that there is some mass function pR on XR with
associated expectation operator ER such that





(∀xR ∈XR)pR(xR)> 0

(∀s ∈ S∩R)(∀zN\R ∈XN\R)ER( fs(zN\R, ·))≥ 0

ER( f )< 0.

Since f = f (zN\R, ·) for any choice of zN\R in XN\R, we see that
f = g(zN\R, ·)+ ∑s∈S∩R fs(zN\R, ·)+ ∑s∈S\R fs(zN\R, ·), whence:

0> ER( f )−ER(g(zN\R, ·))− ∑
s∈S∩R

ER( fs(zN\R, ·))

= ∑
s∈S\R

ER( fs(zN\R, ·)) = ∑
s∈S\R

∑
xR∈XR

pR(xR) fs(zN\R,xR).

The gambles fs(·,xR) on XN\R, with xR ∈XR and s ∈ S\R, can
clearly not all be zero. The non-zero ones all belong to⊗s∈N\RDs,
by Lemma 16, so the coherence of the set of desirable gambles
⊗s∈N\RDs [Proposition 15] guarantees that their positive linear
combination h := ∑s∈S\R ∑xR∈XR

pR(xR) fs(·,xR) also belongs to
⊗s∈N\RDs. This contradicts h< 0. Hence indeed f ∈ ⊗r∈RDr.�
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Proposition 18 (Conditioning). ⊗n∈NDn is independent:
for all disjoint subsets I and O of N, and all xI ∈XI ,

margO(⊗n∈NDncxI) = margO(⊗n∈NDn) =⊗o∈ODo.

This could probably be proved indirectly using the ‘semi-
graphoid’ properties of conditional epistemic irrelevance,
proved by Moral [7]; it appears we need reverse weak union,
reverse decomposition, and contraction. Here we give a
direct proof. Proposition 17 can also be seen as a special
case of the present result for I = /0.

Proof. Fix arbitrary disjoint subsets I and O of N, and arbitrary
xI ∈XI . The second equality follows from Proposition 17, so we
concentrate on proving that margO(⊗n∈NDncxI) =⊗o∈ODo.

We first show that ⊗o∈ODo ⊆⊗n∈NDncxI . Consider any gamble
f ∈ ⊗o∈ODo, then we have to show that I{xI} f ∈ ⊗n∈NDn. By
assumption, there are non-negative reals λo and µ , gambles
fo ∈ A irr

O\{o}→{o} for all o ∈ O and g ∈ G (XO)>0 such that
f = µg + ∑o∈O λo fo and max{µ,maxo∈O λo} > 0. Fix o ∈ O
and let f ′o := I{xI} fo ∈ G (XN). Then it follows from the defi-
nition of A irr

O\{o}→{o} that f ′o(zN\{o}, ·) = I{xI}(zI) fo(zO\{o}, ·) ∈
Do ∪{0} for all zN\{o} ∈XN\{o}. Since f ′o 6= 0, the definition
of A irr

N\{o}→{o} tells us that f ′o ∈A irr
N\{o}→{o}. Similarly, if we let

g′ := I{xI}g ∈ G (XN), then g′ > 0. So it follows from Eq. (13)
that indeed I{xI} f = µg′+ ∑o∈O λo f ′o ∈ ⊗n∈NDn.

We now turn to the converse inclusion ⊗n∈NDncxI ⊆ ⊗o∈ODo.
Consider any gamble f ∈ G (XO) such that I{xI} f belongs to
⊗n∈NDn and assume ex absurdo that f /∈ ⊗o∈ODo. Let, for the
sake of notational simplicity, C := N \ (I∪O).

It follows from the coherence of ⊗n∈NDn [Proposition 15] that
f 6= 0. Since I{xI} f ∈⊗n∈NDn, there are S⊆N, fs ∈A irr

N\{s}→{s},
s ∈ S and g ∈ G (XN) with g≥ 0 such that I{xI} f = g + ∑s∈S fs.
Clearly S\O 6= /0, because S\O = /0 would imply that, with xC any
element of XC, f = g(xI ,xC, ·)+ ∑s∈S∩O fs(xI ,xC, ·) ∈ ⊗o∈ODo,
because fs(xI ,xC, ·) ∈A irr

O\{s}→{s} for all s ∈ S∩O by Lemma 16.

It follows from the coherence of ⊗o∈ODo [Proposition 15], f /∈
⊗o∈ODo and Lemma 3 that 0 /∈ posi({− f}∪⊗o∈ODo). The set

A N
S∩O := { fs(xI ,zC, ·) : s ∈ S∩O,zC ∈XC, fs(xI ,zC, ·) 6= 0}

is clearly a finite subset of ⊗o∈ODo [use Lemma 16 again], so we
infer from Lemma 2 that there is some mass function pO on XO
with associated expectation operator EO such that





(∀xO ∈XO)pO(xO)> 0

(∀s ∈ S∩O)(∀zC ∈XC)EO( fs(xI ,zC, ·))≥ 0

EO( f )< 0.

Since f = g(xI ,zC, ·)+ ∑s∈S∩O fs(xI ,zC, ·)+ ∑s∈S\O fs(xI ,zC, ·)
for any choice of zC ∈XC, we see that:

0> EO( f )−EO(g(xI ,zC, ·))− ∑
s∈S∩O

EO( fs(xI ,zC, ·))

= ∑
s∈S\O

EO( fs(xI ,zC, ·)) = ∑
s∈S\O

∑
xO∈XO

pO(xO) fs(xI ,zC,xO).

Similarly, for any zC ∈XC and any zI ∈XI \{xI} we infer from
0 = g(zI ,zC, ·)+ ∑s∈S∩O fs(zI ,zC, ·)+ ∑s∈S\O fs(zI ,zC, ·) that:

0≥−EO(g(zI ,zC, ·))− ∑
s∈S∩O

EO( fs(zI ,zC, ·))

= ∑
s∈S\O

EO( fs(zI ,zC, ·)) = ∑
s∈S\O

∑
xO∈XO

pO(xO) fs(zI ,zC,xO).

Hence h := ∑s∈S\O ∑xO∈XO
pO(xO) fs(·, ·,xO)< 0. The gambles

fs(·, ·,xO) on XI∪C, with xO ∈ XO and s ∈ S \O, can clearly
not all be zero. The non-zero ones all belong to ⊗s∈I∪CDs, by
Lemma 16. But then the coherence of the set of desirable gambles
⊗s∈I∪CDs [Proposition 15] guarantees that their positive linear
combination h is an element of⊗c∈CDc for which h< 0, a contra-
diction. Hence indeed f ∈ ⊗o∈ODo. �
Theorem 19 (Independent natural extension).
⊗n∈NDn is the smallest coherent set of desirable
gambles on XN that is an independent product of the
coherent sets Dn of desirable gambles on Xn, n ∈ N.

We call ⊗n∈NDn the independent natural extension of the
marginals Dn.
Proof. It follows from Propositions 15, 17 and 18 that ⊗n∈NDn
is an independent product DN of the Dn. To prove that it
is the smallest one, consider any independent product DN of
the Dn. Fix n ∈ N. If we consider any xN\{n} ∈XN\{n}, then
margn(DNcxN\{n}) = Dn, by assumption. If we therefore consi-
der any g ∈ Dn, this in turn implies that g ∈ DNcxN\{n}, and
therefore I{xN\{n}}g ∈ DN , by Eq. (8). So we infer by coherence

that A irr
N\{n}→{n} ⊆DN , and therefore also that⊗n∈NDn ⊆DN .�

Theorem 20 (Associativity). Let N1,N2 be disjoint non-
empty index sets, and let Dnk ∈ D(Xnk ), nk ∈ Nk, k = 1,2.
Then ⊗n∈N1∪N2Dn = (⊗n1∈N1Dn1)⊗ (⊗n2∈N2Dn2).
Proof. Consider, for ease of notation, DN1 := ⊗n1∈N1Dn1 and
DN2 := ⊗n2∈N2Dn2 . We have to prove that DN1 ⊗ DN2 =
⊗n∈N1∪N2Dn.

We first prove that DN1 ⊗DN2 ⊆ ⊗n∈N1∪N2Dn. Fix any gamble
h ∈ A irr

{N1}→{N2} and any xN1 ∈ XN1 , so h(xN1 , ·) ∈ DN2 ∪ {0}
by Eq. (12). It follows from Eq. (13) that there are gambles
hn2

xN1
∈A irr

N2\{n2}→{n2} ∪{0} for all n2 ∈ N2 such that h(xN1 , ·)≥
∑n2∈N2 hn2

xN1
. Define, for any n2 ∈ N2, the gamble gn2 on XN by

letting gn2 (xN\{n2}, ·) := hn2
xN1

(xN2\{n2}, ·) for all xN ∈XN . Then
it follows from Eq. (12) that gn2 (xN\{n2}, ·) ∈ Dn2 ∪{0} for all
xN ∈XN , and therefore gn2 ∈A irr

N\{n2}→{n2}∪{0}. Moreover,

h = ∑
xN1∈XN1

I{xN1}h(xN1 , ·)≥ ∑
xN1∈XN1

I{xN1} ∑
n2∈N2

hn2
xN1

= ∑
n2∈N2

∑
xN1∈XN1

I{xN1}h
n2
xN1

= ∑
n2∈N2

gn2 ,

Since clearly h 6= 0, we infer from Eq. (13) that h ∈ ⊗n∈N1∪N2Dn.
We conclude that A irr

{N1}→{N2} ⊆⊗n∈N1∪N2Dn. Similarly, we can

prove the inclusion A irr
{N2}→{N1} ⊆ ⊗n∈N1∪N2Dn, and therefore

also DN1 ⊗DN2 ⊆⊗n∈N1∪N2Dn, again by Eq. (13).

To conclude, we turn to the converse inclusion ⊗n∈N1∪N2Dn ⊆
DN1 ⊗DN2 . Consider any gamble h ∈ ⊗n∈N1∪N2Dn, then by
Eq. (13) there are hn ∈ A irr

N1∪N2\{n}→{n} ∪ {0}, n ∈ N1 ∪ N2,
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such that h ≥ h1 + h2, where we let h1 := ∑n1∈N1 hn1 and h2 :
= ∑n2∈N2 hn2 . Fix any xN1 ∈XN1 . For any n2 ∈ N2, we infer that
hn2 (xN1 , ·)∈A irr

N2\{n2}→{n2}∪{0} from hn2 ∈A irr
N1∪N2\{n2}→{n2}∪

{0} by Lemma 16. Hence h2(xN1 , ·) ∈ DN2 ∪ {0} by Eq. (13),
and therefore h2 ∈ A irr

{N1}→{N2} ∪ {0} by Eq. (12). Similarly,

h1 ∈A irr
{N2}→{N1}∪{0}, and therefore h∈DN1⊗DN2 by Eq. (13),

since clearly h 6= 0. �

To conclude this section, we establish a connection bet-
ween independent natural extension for sets of desirable
gambles and the eponymous notion for coherent lower pre-
visions studied in detail in Ref. [3]. Given coherent lower
previsions Pn on G (Xn), n ∈ N, their independent natural
extension is the coherent lower prevision given by

EN( f ) :=

sup
hn∈G (XN)

n∈N

min
zN∈XN

[
f (zN)−∑

n∈N
[hn(zN)−Pn(hn(·,zN\{n}))]

]

(14)

for all gambles f on XN . It is the point-wise smallest (most
conservative) joint lower prevision that is jointly coherent
with the marginals Pn given an assessment of epistemic
independence of the variables Xn, n ∈ N.

Theorem 21. Let Dn be coherent sets of desirable gambles
on Xn for n ∈ N, and let ⊗n∈NDn be their independent na-
tural extension. Consider the coherent lower previsions Pn
on G (Xn) given by Pn( fn) := sup{µ ∈ R : fn−µ ∈Dn}
for all fn ∈G (Xn). Then the independent natural extension
EN of the marginal lower previsions Pn, n ∈ N satisfies

EN( f ) = sup{µ ∈ R : f −µ ∈ ⊗n∈NDn}

for all gambles f on XN .

Proof. Fix any gamble f in G (XN). First, consider any real
number µ < EN( f ), then it follows from Eq. (14) that there
are δ > 0 and hn ∈ G (XN), n ∈ N, such that f − µ ≥ ∑n∈N gn,
where we defined the gambles gn on XN by gn(zN) := hn(zN)−
Pn(hn(zN\{n}, ·))+ δ for all zN ∈XN . It follows from the defini-
tion of Pn that gn(zN\{n}, ·) = hn(zN\{n}, ·)−Pn(hn(zN\{n}, ·)) +
δ ∈ Dn for all zN\{n} ∈XN\{n}. Since clearly gn 6= 0, Eq. (12)
then tells us that gn ∈A irr

N\{n}→{n}, and we infer from Eq. (13) that
∑n∈N gn ∈ ⊗n∈NDn, and therefore also f − µ ∈ ⊗n∈NDn. This
guarantees that EN( f )≤ sup{µ ∈ R : f −µ ∈ ⊗n∈NDn}.
To prove the converse inequality, consider any real µ such that
f −µ ∈ ⊗n∈NDn. We infer using Eq. (13) that there are gambles
hn ∈ A irr

N\{n}→{n} ∪ {0}, n ∈ N, such that f − µ ≥ ∑n∈N hn.
For all n ∈ N and zN\{n} ∈ XN\{n}, it follows from Eq. (12)
that hn(zN\{n}, ·) ∈ Dn ∪ {0}, whence Pn(hn(zN\{n}, ·)) ≥ 0.
This leads to ∑n∈N [hn(zN)−Pn(hn(zN\{n}, ·))]≤∑n∈N hn(zN)≤
f (zN)−µ . We then infer from Eq. (14) that EN( f )≥ µ and so we
find that indeed also EN( f )≥ sup{µ ∈ R : f −µ ∈ ⊗n∈NDn}.�

8 Maximal sets of desirable gambles and
strong products

The following result was (essentially) proved in Ref. [1].

Proposition 22. Let MN ∈M(XN), and consider any dis-
joint subsets I and O of N. Then margO(MNcxI)∈M(XO)
for all xI ∈XI .

Now consider the case where we have coherent marginal
sets of desirable gambles Dn for all n ∈ N. We define their
strong product �n∈NDn as the set of desirable gambles on
the product space XN given by:

�n∈NDn :=
⋂
{⊗n∈NMn : Mn ∈ m(Dn),n ∈ N}

Observe that for maximal sets Mn ∈M(Xn), n ∈ N the
strong product and the independent natural extension coin-
cide: �n∈NMn =⊗n∈NMn.

The marginalisation properties of the strong product follow
from those of the independent natural extension.

Proposition 23 (Marginalisation). Consider coherent
sets of desirable gambles Dn for all n ∈ N. Let R be any
subset of N, then margR(�n∈NDn) = �r∈RDr.

Proof. Consider any f ∈ G (XR) and observe the following chain
of equivalences:

f ∈�n∈NDn⇔ (∀Mn ∈ m(Dn),n ∈ N) f ∈ ⊗n∈NMn

⇔ (∀Mn ∈ m(Dn),n ∈ N) f ∈ ⊗r∈RMr

⇔ (∀Mr ∈ m(Dr),r ∈ R) f ∈ ⊗r∈RMr

⇔ f ∈�r∈RDr,

where the second equivalence follows from Proposition 17. �

As we have come to expect from our treatment of the in-
dependent natural extension, the proof of the following
independence property is very similar to that of the margi-
nalisation property.

Proposition 24. Consider coherent sets of desirable
gambles Dn for all n ∈ N. Then their strong product
�n∈NDn is an independent product of these marginals.

Proof. Consider any disjoint subsets I and O of N, and any
xI ∈XI , then it suffices to prove that, also using Proposition 23,
margO(�n∈NDncxI) = �o∈ODo. So consider any gamble f on
XO and observe the following chain of equivalences:

f ∈�n∈NDncxI ⇔ I{xI} f ∈�n∈NDn

⇔ (∀Mn ∈ m(Dn),n ∈ N)I{xI} f ∈ ⊗n∈NMn

⇔ (∀Mn ∈ m(Dn),n ∈ N) f ∈ ⊗o∈OMo

⇔ (∀Mo ∈ m(Do),o ∈ O) f ∈ ⊗o∈OMo

⇔ f ∈�o∈ODo,

where the third equivalence follows from Proposition 18. �

It is still an open problem at this point whether, like the
natural extension, the strong product is associative.
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To conclude this section, we establish a connection between
the strong product of sets of desirable gambles and the
eponymous notion for coherent lower previsions, studied
in Ref. [3]. Given coherent lower previsions Pn on G (Xn),
n ∈ N, their strong product is defined by

SN( f ) := inf{×n∈NPn( f ) : (∀n ∈ N)Pn ∈M (Pn)}

for all gambles f on XN . If we start from linear previsions
Pn on G (Xn), their strong product corresponds to their
linear product ×n∈NPn, and it coincides also with their in-
dependent natural extension EN . If we begin with coherent
lower previsions Pn on G (Xn), their strong product SN is
the lower envelope of the set of strong products determined
by the dominating linear previsions.

Theorem 25. Let Dn be coherent sets of desirable gambles
in G (Xn) for all n ∈ N, and let �n∈NDn be their strong
product. Consider the coherent lower previsions Pn on
G (Xn) given by Pn( f ) := sup{µ ∈ R : f −µ ∈Dn}. Then
the strong product SN of the marginal lower previsions Pn,
n ∈ N satisfies SN( f ) = sup{µ ∈ R : f −µ ∈�n∈NDn}.

Proof. Assume first of all that Dn is a maximal set of desirable
gambles for all n in N. Then it follows from Theorem 3.8.3 in
Ref. [8] that Pn is a linear prevision, which we denote by Pn, for
all n ∈ N. The strong product of the linear previsions Pn, n ∈ N
coincides with their linear independent product ×n∈NPn, which
is also their independent natural extension, by Proposition 10 in
Ref. [3]. Since we have proved in Theorem 21 that this is the
coherent lower prevision associated with ⊗n∈NDn = �n∈NDn,
we conclude that the strong product �n∈NDn is associated with
the strong product of the linear previsions Pn.

Next, fix any gamble f on XN . Consider any real number µ <
SN( f ). For any n ∈ N, consider any maximal set Mn ∈ m(Dn),
and the associated linear prevision Pn, then clearly Pn ∈M (Pn).
Hence ×n∈NPn( f ) ≥ SN( f ) > µ , and we infer from the argu-
ments above that then necessarily f − µ ∈ ⊗n∈NMn. Hence
f − µ ∈ �n∈NDn. This leads to the conclusion that SN( f ) ≤
sup{µ ∈ R : f −µ ∈�n∈NDn}.
Conversely, consider any real µ such that f −µ ∈�n∈NDn. Consi-
der arbitrary Pn ∈M (Pn), n ∈ N, then there are maximal sets
Mn ∈ m(Dn) inducing them: indeed, the set of strictly desirable
gambles D

′
n that induces Pn, given by Eq. (2), is coherent by Theo-

rem 3.8.1 in Ref. [8]; Theorem 5 implies that there is some maxi-
mal set Mn ∈m(D

′
n)⊇m(Dn), and now Theorem 3.8.3 in Ref. [8]

implies that D
′
n and Mn induce the same Pn by means of Eq. (1).

But then f −µ ∈⊗n∈NMn, and therefore ×n∈NPn( f )≥ µ , using
the argumentation above. Hence SN( f ) ≥ µ , and therefore also
SN( f )≥ sup{µ ∈ R : f −µ ∈�n∈NDn}. �

Together with Theorem 21 and the fact that the strong pro-
duct of lower previsions may strictly dominate their inde-
pendent natural extension [see Example 9.3.4 in Ref. [8]],
this shows that the strong product of marginal sets of desi-
rable gambles may strictly include their independent natural
extension.

9 Conditional irrelevance and
independence

We turn to conditional irrelevance judgements. Next to the
variables XN in XN , we now also consider another variable
Y assuming values in a finite set Y .

Consider two disjoint subsets I and O of N. We say that XI
is epistemically irrelevant to XO when, conditional on Y ,
learning the value of XI does not influence or change our
beliefs about XO. In order for a set D of desirable gambles
on XN ×Y to capture this type of conditional epistemic
irrelevance, we should require that:

margO(DcxI ,y) = margO(Dcy) ∀xI ∈XI ,y ∈ Y .

As before, for technical reasons we also allow I and O
to be empty. It is clear from the definition above that the
‘variable’ X/0, about whose constant value we are certain,
is conditionally epistemically irrelevant to any variable
XO. Similarly, we see that any variable XI is conditionally
epistemically irrelevant to the ‘variable’ X/0. This seems to
be in accordance with intuition.

Also, if Y is a singleton, then there is no uncertainty about
Y and conditioning on Y amounts to not conditioning at
all: epistemic irrelevance can be seen as a special case of
conditional epistemic irrelevance. We now want to argue
that, conversely, there is a very specific and definite way
in which conditional epistemic irrelevance statements can
be reduced to simple epistemic irrelevance statements. The
crucial results that allow us to establish this, are the follo-
wing conceptually very simple theorem and its corollary.

Theorem 26 (Sequential updating). Consider any subset
R of N, and any coherent set D of desirable gambles on
XN×Y . Then

(Dcy)cxR = (DcxR)cy = DcxR,y

for all xR ∈XR and y ∈ Y . (15)

Proof. Fix any xR in XR and any y ∈ Y . Clearly, all three sets
in Eq. (15) are subsets of G (XN\R). So take any gamble f on
XN\R, and consider the following chains of equivalences:

I{y}I{xR} f ∈D⇔ I{xR} f ∈Dcy⇔ f ∈ (Dcy)cxR

I{y}I{xR} f ∈D⇔ I{y} f ∈DcxR⇔ f ∈ (DcxR)cy
I{y}I{xR} f ∈D⇔ f ∈DcxR,y. �

Corollary 27 (Reduction). Consider any disjoint subsets
I and O of N, and any coherent set D of desirable gambles
on XN×Y . Then the following statements are equivalent:

(i) margO(DcxI ,y) = margO(Dcy) for all xI ∈XI and
all y ∈ Y ;

(ii) margO((Dcy)cxI) = margO(Dcy) for all xI ∈XI and
all y ∈ Y .
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This tells us that a model D about (XN ,Y ) captures episte-
mic irrelevance of XI to XO, conditional on Y if and only if
for each possible value y ∈ Y of Y , the model Dcy about
XN captures epistemic irrelevance of XI to XO.

Now suppose we have marginal conditional models DncY
on Xn, n ∈ N. The notation DncY is a concise way of
representing the family of conditional models Dncy, y ∈Y .
Then if we combine Corollary 27 and Theorem 19, we see
that the smallest conditionally independent product DcY
of these marginal models DncY is given by ⊗n∈N(DncY ),
meaning that for each y ∈ Y , Dcy =⊗n∈N(Dncy).

10 Conclusions

Sets of desirable gambles are more informative than co-
herent lower previsions, and they are helpful in avoiding
problems involving zero probabilities. They have been over-
looked for much of the development of the theory, and it
is only in the last five or six years that more effort is being
devoted to bringing this simplifying and unifying notion to
the fore.

Our results here show that we can model assessments
of epistemic independence easily using sets of desirable
gambles, and that we can derive from them existing results
for lower previsions.

They also indicate that constructing global joint models
(i.e. coherent sets of desirable gambles) from local ones is
something that can be easily and efficiently done for the
following types of simple credal networks:

. . .

They may therefore open up the way towards finding effi-
cient algorithms for inference in credal trees under episte-
mic irrelevance using sets of desirable gambles as uncer-
tainty models, building on the ideas proposed in Ref. [2].
We expect that generalising those algorithms towards more
general credal networks (polytrees, . . . ) will be more diffi-
cult, and will have to rely heavily on the pioneering work of
Moral [7] on graphoid properties for epistemic irrelevance.
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Abstract

In this paper uncertainties in limit state functions g as aris-

ing in engineering problems are modelled by adding addi-

tional parameters and by introducing parameterized prob-

ability density functions which describe the uncertainties

of these new additional parameters and of the basic vari-

ables of g. This will lead to a function p f (a,b) for the
probability of failure depending on parameters a and b

corresponding to the two parameterized density functions.

Further the parameters a and b are assumed to be uncer-

tain. Using intervals, sets or random sets to model their

uncertainty results in upper probabilities p f of failure. In

this context we also discuss different notions of indepen-

dence such as strong independence, epistemic irrelevance

and random set independence and present a simple engi-

neering example.

Keywords. Probability of failure, limit state functions,

parameterized probability measures, random sets, random

set independence, epistemic irrelevance, strong indepen-

dence.

1 Introduction

In reliability analysis the probability p f of failure of a sys-

tem is obtained by

p f =
∫

{x: g(x)≤0}

f X (x) dx (1)

where x= (x1, . . . ,xn) are the basic variables of the system
such as material properties and loads and where f X is a

probability density function describing the uncertainty of

the variables x. The function g is the limit state function of

the system telling us for which x the system fails (g(x)≤ 0)

or not (g(x) > 0), see also [14].

In the case of scarce information about the values of the

basic variables x and the behaviour of the system it may

be neither sufficient to model the uncertainty of the vari-

ables x by a single probability density f X nor to describe

the system’s reliability by a single deterministic limit state

function g. To overcome such difficulties, fuzzy sets [17],

random sets [3], credal sets [13] or sets of parameterized

probability measures [9] have been used to model the un-

certainty of the variables x, cf. also [6, 8, 10, 11]. Un-

certainties in the limit state function g have been modelled

using additional random variables [5], fuzzy sets, random

sets [12] or fuzzy probabilities [1, 15].

The aim of this paper is to develop a function

p f (a,b) =
∫∫

{(x,z): h(x,z)≤0}

f Zb (z) dz f Xa (x) dx (2)

depending on vectors of parameters a and b parameter-

izing the probability density functions f Xa and f Zb . These

density functions describe the uncertainty of the basic vari-

ables x and the additional parameters z of an extended limit

state function h. These additional variables z are used

to parameterize a familiy of limit state functions gz with

gz(x) = h(x,z).

In a next step we assume that the parameters a and b are

uncertain themselves modelling their uncertainty by inter-

vals, sets or random sets. This approach gives us the possi-

bility to describe the uncertainty of x and z by sets of prob-

ability measures generated by the density functions f Xa and

f Zb and their uncertain parameters a and b. The functions

f Xa and f Zb allow us to use more specific probability mea-

sures such as Gaussian distributions in contrast to the case

where the uncertainty of x and z is directly modelled by

sets or random sets. Such coarser models of uncertainty

are also encompassed simply by replacing f Xa and f Zb by

Dirac measures.

A simple engineering example with one uncertain basic

variable x exemplifies different cases and models of uncer-

tainty of a and b and the computation of the upper prob-

ability p f of failure by means of p f (a,b) with respect to
different notions of indepence between the limit state func-

tions and the basic variables.

189



2 Uncertain limit state functions

2.1 Limit state functions

In reliability theory a system and its corresponding contin-

uous limit state function

g : X⊆ Rn → Y⊆ R : x→ y = g(x) (3)

is given with output y∈ Y depending on a vector of n basic

variables x= (x1, . . . ,xn) ∈X⊆Rn where g(x)≤ 0 means

failure of the system. The probability p f of failure of the

system is then defined by

p f = P(g(X)≤ 0) =
∫

X

χ(g(x)≤ 0) f X (x) dx (4)

where f X is the joint probability density function of the

basic random variables X = (X1, . . . ,Xn) and where

χ(expression) =

{
1 expression true,

0 expression false.
(5)

The set Rf = {x∈X : g(x)≤ 0} is the failure region of the
system which we describe by the indicator function

q : X→{0,1} : x→ χ(g(x)≤ 0). (6)

2.2 Parameterized limit state functions

We parameterize the limit state function g : X → Y by

means of a vector z = (z1, . . . ,zm) ∈ Z ⊆ Rm of additional

parameters using a function

h : X×Z→ Y : (x,z)→ h(x,z) (7)

where again h(x,z)≤ 0 means failure. A function

gz : X→ Y : x→ gz(x) = h(x,z) (8)

is then one of the available limit state functions specified

by a parameter value z. When both the basic variables x

and the parameters z are uncertain, the probability p f of

failure is defined by

p f =
∫

X

∫

Z

χ(h(x,z)≤ 0) f X ,Z(x,z) dz dx (9)

where f X ,Z :X×Z→R is the joint density function of the

random variables X = (X1, . . . ,Xn) and Z = (Z1, . . . ,Zm).
The uncertainty of the parameters z is the uncertainty in

the choice of an appropriate limit state function gz.

2.3 Independence of the basic variables and the

parameters

In the following we always assume that the random vari-

ables X and Z are independent which has the following

meaning:

(a) If we learn the values of the basic variables x,

our knowledge about the parameters z and therefore

about the choice of the limit state functions gz does

not change.

(b) Learning the values of the parameters z and therefore

learning which limit state function gz to use has no

influence on our knowledge about the variables x.

Then the probability p f of failure is given by

p f =
∫

X

∫

Z

χ(h(x,z)≤ 0) f Z(z) dz f X (x) dx (10)

with density functions f X and f Z for their corresponding

random variables X and Z. The inner integral is a function

q : X→ [0,1] : x→
∫

Z

χ(h(x,z)≤ 0) f Z(z) dz (11)

which is a generalization of q in Eq. (6). For q in Eq. (6)

only the function values 1 and 0 are admissible telling us

wether an x ∈ X is in the failure region Rf or not, but here

q describes an uncertain failure region similar to a mem-

bership function of a fuzzy set. The value q(x) is the prob-
ability that x belongs to the failure region Rf .

2.4 Sets of probability measures and notions of

independence

We use now sets MX and MZ of probability measures to

describe the uncertainty of the basic variables x and pa-

rameters z of the limit state function h. Since we want

to keep the assumption that the basic variables x and the

limit state functions gz are independent we have to com-

pute the upper probability of failure with respect to the

different notions of independence for sets of probability

measures [2, 6]. We consider here strong independence,

the weaker and asymmetric epistemic irrelevance and later

on in Sec. 3.3 random set independence.

Strong independence [2, 6, 16]: It is the most restrictive

definition of independence simply considering all possi-

ble product measures PX ⊗PZ for PX ∈MX and PZ ∈MZ .

Then the upper probability pSf of failure in case of strong

independence is obtained by

pSf = sup
{
(PX ⊗PZ)(Sf ) : PX ∈MX , PZ ∈MZ

}

= sup
PX∈MX

PZ∈MZ

∫

X

∫

Z

χ(h(x,z)≤ 0) dPZ(z) dPX(x)

= sup
PX∈MX

q∈Q

∫

X

q(x) dPX(x) (12)
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where Sf = {(x,z) : h(x,z)≤ 0} and Q the set

Q =
{
q : X→ [0,1] : (13)

q(x) =
∫

Z

χ(h(x,z)≤ 0) dPZ(z), PZ ∈MZ

}

of all functions q describing the uncertainty of the failure

region Rf as in Eq. (11).

Epistemic irrelevance [2, 4, 16]: We start with the above

formula for pSf , but move then supPZ∈MZ
inside the outer

integral:

pSf = sup
PX∈MX

PZ∈MZ

∫

X

∫

Z

χ(h(x,z)≤ 0) dPZ(z) dPX(x)

≤ sup
PX∈MX

∫

X

sup
PZ∈MZ

∫

Z

χ(h(x,z)≤ 0) dPZ(z) dPX(x)

= sup
PX∈MX

∫

X

q(x) dPX(x) =: p
X 6→Z
f (14)

with

q(x) = sup
PZ∈MZ

∫

Z

χ(h(x,z)≤ 0) dPZ(z) = sup
q∈Q

q(x). (15)

The result is a formula for the upper probability p
X 6→Z
f in

case of epistemic irrelevance, because for each x we can

choose its own PZ ∈ MZ or more exactly a conditional

probability measure PZ( · |x) given x. The notation X 6→ Z

means that X is epistemically irrelevant to Z, see [4], or

in our case that the basic variables are epistemically irrel-

evant to the parameterized limit state functions gz. Epis-

temic irrelevance is an asymmetric notion of independence

meaning only what we have stated in (a) in Sec. 2.3, but

not necessarily the other way round as in (b). The set

MX 6→Z of all probability measures according to epistemic

irrelevance of X to Z is defined by

MX 6→Z =
{
P : P(E) =

∫

X

∫

Z

χ((x,z) ∈ E) dPZ(z |x) dPX(x),

PX ∈MX , PZ( · |x) ∈MZ

}
(16)

where E is an event. In Eq. (14) we write PZ(z) instead of
PZ(z |x) since it is clear that we use different probability
measures PZ and not only one because of the supPZ∈MZ

in

the formula.

When it is possible to assume epistemic irrelevance we

have the advantage that we can treat the uncertainty of the

basic variables and of the limit state functions completely

separately. We can compute q in advance and then using q

for different models of uncertainty of x.

The function q is the upper envelope of the set Q defined

in Eq. (13). If this upper envelope q is an element of Q we

have pSf = p
X 6→Z
f .

3 The probability of failure p f (a,b) with
uncertain parameters a and b

3.1 The function p f (a,b)

Let us now extend Equation (10) by adding parameters

a = (a1, . . . ,ana) ∈ Rna for the probability density func-

tion f X describing the uncertainty of the basic variables x

and parameters b = (b1, . . . ,bnb) ∈ Rnb for the density f Z

of the additional parameters z which leads to a function

p f (a,b) =
∫

X

∫

Z

χ(h(x,z)≤ 0) f Zb (z) dz f Xa (x) dx .

(17)

This function p f (a,b) provides an interface for control-

ling the shape of the probability density functions used for

modelling the uncertainty of the basic variables x and the

parameters z. We also write p f (a,b; f Xa , f Zb ) if it is neces-
sary to emphasize which density functions are used.

In the following the parameters a and b are assumed to

be uncertain; intervals, sets or random sets are used to de-

scribe their uncertainty. This and the approach with pa-

rameterized density functions f Xa and f Zb give us a conve-

nient way to generate the sets MX and MZ of probability

measures and the possibility to model the uncertainty of x

and z by means of more specific probability measures than

directly using sets or random sets for x and z. An example

for such a parameterized density f Xa or f Zb is the density

of a Gaussian distribution depending on expectation µ and

variance σ2. Then describing the uncertainty of µ and σ
by sets or random sets leads to sets MX or MZ of proba-

bility measures.

3.2 Uncertainty of the parameters a and bmodelled

by sets A and B

We describe the uncertainty of the parameter a ∈ Rna by a

set A⊆Rna and the uncertainty of b∈Rnb by a set B⊆Rnb

and show how the upper probability of failure is deter-

mined in case of strong independence or epistemic irrele-

vance. But first we have to generate the sets of probability

measures MX and MZ .

Generating MX and MZ:

MX =
{
P : P(E) =

∫

A

∫

X

χ(x ∈ E) f Xa (x) dx dPA(a),

PA ∈M(A)
}

(18)

where M(A) = {P : P(A) = 1} is the set of all probability
measures living on the set A and where E is an event. The

set MZ is generated in an analogous way using f Zb and

M(B).

Strong independence: Eq. (12) together with Eq. (18)

leads to the following formula for the upper probability
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pSf in case of strong independence:

pSf = sup
PX∈MX

PZ∈MZ

∫

X

∫

Z

χ(h(x,z)≤ 0) dPZ(z) dPX(x)

= sup
PA∈M(A)
PB∈M(B)

∫

A

∫

X

∫

B

∫

Z

χ(h(x,z)≤ 0) f Zb (z) dz ·
· dPB(b) f Xa (x) dx dPA(a)

= sup
PA∈M(A)
PB∈M(B)

∫

A

∫

B

p f (a,b) dPB(b) dPA(a) (19)

= sup
a∈A
b∈B

∫

A

∫

B

p f (ξ ,η) dδb(η) dδa(ξ ) = sup
a∈A
b∈B

p f (a,b).

The Dirac measures δa and δb are extreme points in the

sets M(A) and M(B) of probability measures.

Epistemic irrelevance: Eq. (14) together with Eq. (18)

leads to the formula for the upper probability p
X 6→Z
f in case

of epistemic irrelevance:

p
X 6→Z
f = sup

PA∈M(A)

∫

A

∫

X

sup
PB∈M(B)

∫

B

∫

Z

χ(h(x,z)≤ 0) f Zb (z) ·

· dz dPB(b) f Xa (x) dx dPA(a)

= sup
a∈A

∫

X

sup
b∈B

∫

Z

χ(h(x,z)≤ 0) f Zb (z) dz f Xa (x) dx

= sup
a∈A

∫

X

q(x) f Xa (x) dx (20)

with q(x) = supb∈B
∫
Z χ(h(x,z)≤ 0) f Zb (z) dz , again using

that δa and δb are extreme points in M(A) and M(B).

3.3 Uncertainty of a and bmodelled by random sets

A and B

A random set as introduced by [3] is a family A of focal

sets Ai together withweights mA (Ai)which sum up to one.

Then the upper probability P(E) or plausibility PlA (E) of
an event E is given in the case of a finite random set with

focal sets A1, . . . ,A|A | by the formula

P(E) = PlA (E) = ∑
i:E∩Ai 6=∅

mA (Ai) =
|A |
∑
i=1

mA (Ai) sup
P∈M(Ai)

P(E)

(21)

where |A | denotes the number of focal sets where
M(Ai) = {P : P(Ai) = 1} (22)

is the set of all probability measures on the focal set Ai,

cf. [6]. The lower probability P(E) or belief BelA (E) is
defined by

P(E) = BelA (E) =∑
i:Ai⊆E

mA (Ai) =
|A |
∑
i=1

mA (Ai) inf
P∈M(Ai)

P(E).

(23)

First we have to generate the setsMX andMZ by means of

random sets A and B modelling the uncertainty of a and

b. Then we show how to determine the upper probabilities

of failure for strong independence, epistemic irrelevance

and random set independence.

Generating the sets MX and MZ:

MX =
{
P : P(E) =

∫

A

∫

X

χ(x ∈ E) f Xa (x) dx dPA(a),

PA ∈M(A )
}

=
{
P : P(E) =

|A |
∑
i=1

mA (Ai) · (24)

·
∫

A

∫

X

χ(x ∈ E) f Xa (x) dx dPAi(a),

PAi ∈M(Ai), i = 1, . . . ,n
}

where M(A ) is the set of all probability measures gen-
erated by a random set A , cf. [9]. A probability mea-

sure in M(A ) is a weighted sum of probability measures

PAi ∈ M(Ai) living on the focal sets Ai. The set MZ is

obtained in a similar way using f Zb and the random set B.

Strong independence: Eq. (12) together with Eq. (24)

leads to the upper probability

pSf = sup
PAr∈M(Ar),r=1,...,|A |
PBs∈M(Bs),s=1,...,|B|

|A |
∑
i=1

|B|
∑
j=1

mA (Ai)mB(B j) · (25)

·
∫

A

∫

B

p f (a,b) dPAi(a) dPB j
(b)

= sup
ar∈Ar,r=1,...,|A |
bs∈Bs,s=1,...,|B|

|A |
∑
i=1

|B|
∑
j=1

mA (Ai)mB(B j)p f (ai,b j)

in case of strong independence replacing the probability

measures PAi and PB j
by Dirac measures δai and δb j on

their corresponding focal sets Ai and B j similar to the sec-

tion before. A general proof that the upper probability can

be obtained by means of Dirac measures can be found in

[7].

Epistemic irrelevance: Eq. (14) together with Eq. (24) re-

sults in the upper probability p
X 6→Z
f in case of epistemic

irrelevance:

(26)p
X 6→Z
f =

|A |
∑
i=1

mA (Ai) sup
PA∈M(Ai)

∫

A

∫

X

|B|
∑
j=1

mB(B j)·

· sup
PB∈M(B j)

∫

B

∫

Z

χ(h(x,z)≤ 0) f Zb (z) ·
· dz dPB(b) f Xa (x) dx dPA(a)

=
|A |
∑
i=1

mA (Ai) sup
a∈Ai

∫

X

|B|
∑
j=1

mB(B j) ·

· sup
b∈B j

∫

Z

χ(h(x,z)≤ 0) f Zb (z) dz f Xa (x) dx .
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The function q is given here by

q(x) =
|B|
∑
j=1

mB(B j) sup
b∈B j

∫

Z

χ(h(x,z)≤ 0) f Zb (z) dz .

(27)

Random set independence: Let the uncertainty of a vari-

able a be modelled by a random set A with focal sets Ai

and weightsmA (Ai) and the uncertainty of a variable b by
a random set B with focal sets B j and weights mB(B j).
The joint random set, in the classical version assuming

random set independence, is defined as the family C of

all Cartesian products Ci j = Ai×B j of focal sets Ai and

B j. The weights of these joint focal sets Ci j are given by

the product mC (Ci j) = mA (Ai)mB(B j) and the formula

for the joint plausibility measure Pl by

Pl(E) =
|A |
∑
i=1

|B|
∑
j=1

mA (Ai)mB(B j)χ(E ∩ (Ai×B j) 6= ∅)

(28)

=
|A |
∑
i=1

|B|
∑
j=1

mA (Ai)mB(B j) sup
P∈M(Ai×B j)

P(E)

with set M(Ai×B j) = {P : P(Ai×B j)= 1}, cf. [2, 3, 6].
This set is the largest possible set of joint probability mea-

sures generated by the marginal sets M(Ai) and M(B j).
The key properties of random set independence are that

(i) there are no interactions between focal sets Ai and B j,

(ii) the focal sets Ai and B j are chosen in a stochastically

independent way;

(iii) the joint plausibility Pl(E) is obtained by solving

optimization problems supP∈M(Ai×B j)P(E) on each

joint focal set Ai×B j separately and independently

of the other joint focal sets.

Our problem here is that density functions are involved

in the formulas and that we have to combine not only two

random sets A and B but also two density functions f Xa
and f Zb . So we have to generalize the formula for the joint

plausibility measure. One possibility is to replace the set

M(Ai×B j) by a set of joint probability measures gener-
ated by sets Mi

X and M
j
Z defined by

Mi
X =

{
P : P(E) =

∫

A

∫

E

f Xa (x) dx dPA(a), PA ∈M(Ai)
}
,

(29)

M
j
Z =

{
P : P(E) =

∫

B

∫

E

f Zb (z) dz dPB(b), PB ∈M(B j)
}

as the sets MX and MZ in Sec. 3.2. Now the question

arises how to combine Mi
X and M

j
Z . Since M(Ai×B j)

is the largest possible set of joint probability measures

generated by M(Ai) and M(B j) an analogous approach

would be to use here the set of all possible joint proba-

bility measures generated by Mi
X and M

j
Z. But this means

to consider also all possible joint density functions with

marginals f Xa and f Zb which is not very attractive because

of the computational effort and because independence is

not taken into account on the level of the density functions.

Another approach is to combineMi
X and M

j
Z according to

strong independence or epistemic irrelevance as in Sec. 3.2

which means to replace supP∈M(Ai×B j)P(E) in Eq. (28) by
the results of Eq. (19) or of Eq. (20):

For strong independence, locally for each pair of sets Mi
X

and M
j
Z , we get the upper probability

pRSf =
|A |
∑
i=1

|B|
∑
j=1

mA (Ai)mB(B j) sup
a∈Ai,b∈B j

p f (a,b) (30)

by means of Eq. (19), cf. also [9]. We denote this upper

probability by a superscript “RS” where “R” means ran-

dom set independence and “S” indicates that the sets Mi
X

and M
j
Z corresponding to Ai× B j are combined accord-

ing to strong independence. The difference to the “global”

version of strong independence in Eq. (25) is that here the

“sup” is inside instead of outside the sums. So it is clear

that we have the ordering pSf ≤ pRSf .

Epistemic irrelevance, locally for each pair of setsMi
X and

M
j
Z, leads to

p
R,X 6→Z
f =

|A |
∑
i=1

|B|
∑
j=1

mA (Ai)mB(B j) sup
a∈Ai

∫

X

q j(x) f
X
a (x)dx

(31)

q j(x) = sup
b∈B j

∫

Z

χ(h(x,z)≤ 0) f Zb (z) dz , (32)

cf. Eq. (20). We use here the superscript “R,X 6→Z” instead

of “RS” to denote the upper probability.

Summarizing the orderings of all upper probabilities we

have pSf ≤ p
X 6→Z
f ≤ p

R,X 6→Z
f and pSf ≤ pRSf ≤ p

R,X 6→Z
f .

We note that Dirac measures δa and δb instead of arbi-

trary density functions f Xa and f Zb lead to the classical joint

plausibility measure: For Dirac measures we always have

Mi
X = M(Ai), M

j
Z = M(B j). Further the resulting upper

probabilities for M(Ai×B j) as in Eq. (28) or for sets of
probability measures generated by M(Ai), M(B j) accord-
ing to strong independence or epistemic irrelevance coin-

cide since Dirac measures δa⊗ δb, a ∈ Ai, b ∈ B j are ex-

treme points in all these three sets. This means that we

have pRf := pRSf = p
R,X 6→Z
f .

4 Alternative approaches and views

LetY|x = h(x,Z) be the conditional random variable for the

uncertain output of the parameterized limit state function

h given a value of the basic variables x, Z the random vari-

able corresponding to the parameters z, fY |x : Y ⊆ R→ R
the probability density ofY|x and FY |x : Y→ [0,1] the prob-
ability distribution function. Then q :X→ [0,1] describing
the uncertainty of the failure region is defined here by

q(x) = FY |x(0) =
0∫

−∞

fY |x(y) dy (33)

since y≤ 0 means failure.
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On the one hand the functions fY |x, FY |x and q (or F
Y |x

and q if sets of probability measures are used, see below)

can be used to visualize the uncertainties in the limit state

function. On the other hand the uncertainties in the limit

state function can be specified providing these functions.

Especially describing the uncertainty in the failure region

by means of the function q in case of epistemic irrele-

vance opens the possibility to start also with fuzzy failure

regions. Note that there may be a conceptual but not a for-

mal difference between q and a membership function of a

fuzzy set. To specify the limit state function g in its uncer-

tain format instead of introducing additional parameters

was also suggested in [12].

We show now how the two approaches are connected for

the case that h is given by y = h(x,z) = g(x) + z which

means to add something uncertain to a deterministic limit

state function g. Substituting z= y−g(x) in Eq. (17) leads
to

p f (a,b) =
∫

X

∫

Z

χ(g(x)+ z≤ 0) f Zb (z) dz f Xa (x) dx

=
∫

X

∫

Y

χ(y≤ 0) f Zb (y− g(x)) dy f Xa (x) dx

=
∫

X

0∫

−∞

f
Y |x
(g(x),b)(y) dy f

X
a (x) dx

=
∫

X

F
Y |x
(g(x),b)(0) f

X
a (x) dx (34)

with f
Y |x
(g(x),b)(y) = f Zb (y− g(x)). The density f

Y |x
(g(x),b) de-

scribes the uncertainty of the output of the limit state func-

tion and it is the same density function as f Zb , but moved

from 0 to g(x). This is indicated by the additional param-
eter g(x) of the probability density f

Y |x
(g(x),b) depending now

on parameters which are not constant on X. Modelling the

uncertainty of parameter b by a set B we get an example

for a function

q(x) = sup
b∈B

∫

Z

χ(h(x,z)≤ 0) f Zb (z) dz (35)

= sup
b∈B

F
Y |x
(g(x),b)(0) =: F

Y |x(0)

using both approaches. The function F
Y |x

is the upper dis-

tribution function of Y|x. In an analogous way we obtain
the lower bound

q(x) = inf
b∈B

∫

Z

χ(h(x,z)≤ 0) f Zb (z) dz (36)

= inf
b∈B

F
Y |x
(g(x),b)(0) =: FY |x(0).

It is the lower probability of failure given x ∈X.

5 Numerical example

5.1 Problem statement

As a simple numerical example we consider a beam of

length 3m supported on both ends and additionally bed-

ded on a spring, cf. Fig. 1. The values of the beam rigidity

EI = 1 kNm2 and of the load f (ξ ) = 100 kN/m are de-

terministic, but the value of the spring constant x (in our

notation for the basic variables) is assumed to be uncertain.

The deterministic limit state function g is given as1

g(x) = Myield− max
ξ∈[0,3]

|M(ξ ,x)| (37)

= Myield−
qL2

4
max

(
(1− c(x))2

2
,c(x)− 1

2

)

with c(x) = 5x/(384EI/L3 + 8x), see Fig. 1. M(ξ ,x) is
the bending moment at ξ ∈ [0,3] on the beam depending

on the spring constant x andMyield = 21 kNm is the elastic

limit moment of the beam for both positive and negative

moments.

spring constant x

g
(x

)

15 20 25 30 35 40 45
−2

0

2

Figure 1: Beam bedded on a spring and deterministic limit

state function g.

5.2 Modelling the uncertainty of spring constant x

The uncertainty of the spring constant x ([kN/m]) is mod-

elled either by an interval A, by a random set A or by a

Gaussian distribution. In the following we present what

we will use for the basic variable x in the examples in the

next section.

Interval A modelling the uncertainty of x:

We will use the interval A = [a,a] = [20,30]kN/m.

Random set A modelling the uncertainty of x:

The random set A is given by the focal sets A1 = [17,30],
A2 = [23,31], A3 = [27,32.5] and weights mA (A1) = 0.2,
mA (A2) = 0.3 and mA (A3) = 0.5.

1Thanks to one of the reviewers for providing an explicit formula.
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Probability distribution modelling the uncertainty of the

basic variable x:

We assume that x is Gaussian distributed with parameters

µ = 34 and σ2 = 1.

6 Cases and examples

In this section we present examples and special cases with

respect to the different notions of independence.

6.1 Sets of parameterized limit state functions

Let B be a set and

G = {gz : gz(x) = h(x,z), z ∈ B} (38)

the family of limit state functions parameterized by z ∈
B. Further let the function g be the lower envelope of G

defined by g(x) = infgz∈G gz(x) and g the upper envelope.

In this case we have to set f Zb := δz and b := z in Eqs. (19)

and (20) which leads to

pSf = sup
a∈A
z∈B

p f (x,z; f Xa ,δz) (39)

= sup
a∈A
z∈B

∫

X

∫

Z

χ(h(x,η)≤ 0)δz(η) dη f Xa (x) dx

= sup
a∈A
z∈B

∫

X

χ(gz(x)≤ 0) f Xa (x) dx

for strong independence and to q and the upper probability

for epistemic irrelevance:

q(x) = sup
z∈B

∫

Z

χ(h(x,η)≤ 0)δz(η) dη (40)

= sup
z∈B

χ(gz(x)≤ 0) = χ(g(x)≤ 0),

p
X 6→Z
f = sup

a∈A

∫

X

q(x) f Xa (x)dx = sup
a∈A

∫

X

χ(g(x)≤ 0) f Xa (x)dx .

(41)

As an example we use h(x,z) = g(x+z) with z ∈ B= [0,2]
moving g to the left and the limit state function g defined in

the previous section. In Fig. 2 the set G, the functions q, q

and the upper and lower probability distribution functions

F
Y |x

and FY |x at x = 20 are depicted, see also Sec. 4.

Uncertainty of x modelled by an interval A:

Here we have to set f Xa := δx and a := x. In this case the

results for strong independence and epistemic irrelevance

coincide:

pSf = sup
x∈A
z∈B

p f (x,z;δx,δz) = sup
x∈A
z∈B

∫

X

χ(h(ξ ,z)≤ 0)δx(ξ )dξ

= sup
x∈A
z∈B

χ(gz(x)≤ 0) = sup
x∈A

χ(g(x)≤ 0), (42)

p
X 6→Z
f = sup

x∈A

∫

X

q(ξ )δx(ξ ) dξ = sup
x∈A

q(x) (43)

= sup
x∈A

χ(g(x)≤ 0)

because only one single x ∈ A is used at the same time in

the formulas.

We obtain the upper probabilities for our example by

means of

pSf = p
X 6→Z
f = sup

x∈A
χ(g(x)≤ 0) = χ(g(A)∩ (−∞,0] 6= ∅)

(44)

where g(A) =
[
min
x∈A

g(x),max
x∈A

g(x)
]

= [g(A),g(A)] is the

image of A under a function g. For the computation of

χ(g(A)∩ (−∞,0] 6= ∅) it is sufficient to know the lower

bound g(A) of the image g(A):

χ(g(A)∩ (−∞,0] 6= ∅) = χ(g(A)≤ 0). (45)

Since in our example all gz and g are a concave functions

we have g(A) = min(g(a),g(a)) = 0.2763 for the interval

A = [a,a] = [20,30] and therefore the upper probability of
failure pSf = p

X 6→Z
f = χ(0.2763≤ 0) = 0.

g
(x

)

g

G

−1

0

1

2

x

q(
x
)

q q

20 30 40
0

0.5

1

y

at x = 20

F
Y |x

FY |x

0 0.5 1

Figure 2: Set G of limit state functions gz, lower envelope

g; q(x) = FY |x(0), q(x) = F
Y |x(0), focal sets of random set

A (gray bars); FY |x and FY |x
at x = 20.

Uncertainty of x modelled by a random set A :

First we do some preliminary work replacing in Eqs. (25),

(26), (30) and (31) the density functions by Dirac mea-

sures:

pSf = sup
xr∈Ar,r=1,...,|A |
zs∈Bs,s=1,...,|B|

|A |
∑
i=1

|B|
∑
j=1

mA (Ai)mB(B j)p f (xi,z j)

(46)
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p
X 6→Z
f =

|A |
∑
i=1

mA (Ai) sup
x∈Ai

∫

X

|B|
∑
j=1

mB(B j) · (47)

· sup
z∈B j

∫

Z

χ(h(ξ ,η)≤ 0)δz(η) dη δx(ξ ) dξ

=
|A |
∑
i=1

mA (Ai) sup
x∈Ai

|B|
∑
j=1

mB(B j) sup
z∈B j

χ(h(x,z)≤ 0)

=
|A |
∑
i=1

mA (Ai) sup
x∈Ai

q(x)

q(x) =
|B|
∑
j=1

mB(B j) sup
z∈B j

χ(h(x,z)≤ 0), (48)

pRSf = p
R,X 6→Z
f =

|A |
∑
i=1

|B|
∑
j=1

mA (Ai)mB(B j) sup
x∈Ai
z∈B j

p f (x,z)

(49)

where p f (x,z) = χ(h(x,z) ≤ 0) and where pRSf = p
R,X 6→Z
f

coincides for Dirac measures as already mentioned. While

these equations are needed in the next section we further

use here that we have only one set B with weight 1 which

leads to the following simplified versions:

pSf = sup
xr∈Ar,r=1,...,|A |

z∈B

|A |
∑
i=1

mA (Ai)p f (xi,z), (50)

p
X 6→Z
f =

|A |
∑
i=1

mA (Ai) sup
x∈Ai

sup
z∈B

χ(h(x,z)≤ 0), (51)

pRSf = p
R,X 6→Z
f =

|A |
∑
i=1

mA (Ai) sup
x∈Ai
z∈B

p f (x,z) (52)

where p
X 6→Z
f = p

R,X 6→Z
f because p f (x,z) = χ(h(x,z)≤ 0).

The difference between pSf and p
X 6→Z
f is that there is a sin-

gle z used for all xr together in case of strong independence

while for epistemic irrelevance z can be chosen for each xr
separately. The numerical results are obtained by

pSf = sup
z∈B

|A |
∑
i=1

mA (Ai) sup
x∈Ai

χ(gz(x)≤ 0) (53)

= sup
z∈B

PlA (gz(x)≤ 0) = 0.5

and

p
X 6→Z
f =

|A |
∑
i=1

mA (Ai) sup
x∈Ai

χ(g(x)≤ 0) (54)

= PlA (g(x)≤ 0) = 0.2 ·1+ 0.3 ·0+0.5 ·1= 0.7,

cf. Eqs. (50), (51).

We have always pSf = p
X 6→Z
f if g∈G. This holds in the case

where h(x,z) = g(x)+ z, z ∈ B= [b,b] g(x) = g(x)+b and

g(x) = g(x)+ b.

6.2 Random sets of parameterized limit state

functions

Modelling the uncertainty of the limit state function:

For modelling the uncertainty of the parameter z we use

a random set B given by the following focal sets B j and

weights mB(B j):

B1 = [−0.9,1.3], mB(B1) = 0.1,

B2 = [−0.6,0.9], mB(B2) = 0.3,

B3 = [−0.4,0.6], mB(B3) = 0.4,

B4 = [−0.2,0.4], mB(B4) = 0.2.

In the view of Sec. 4 we define a random set G of limit

state functions by the focal sets G j = {gz : z ∈ B j} and

weightsmG (G j) =mB(B j). At a point x∈Xwe have then

a random set G (x) with focal sets G j(x) = {g(x) : g ∈G j}
and the same weights, which describes the output of the

uncertain limit state function.

The function q is obtained by

q(x) = F
Y |x(0) =

|B|
∑
j=1

mB(B j)χ(G j(x)∩(−∞,0] 6= ∅)

= PlG (x)((−∞,0]) (55)

which is the plausibility measure of (−∞,0] for the ran-
dom set G (x) at x. The lower bound q is the belief measure
at x (cf. Fig. 3):

q(x) = FY |x(0) =
|B|
∑
j=1

mB(B j)χ(G j(x)⊆ (−∞,0])

= BelG (x)((−∞,0]). (56)
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Figure 3: Random set G , lower envelopes g j; q(x) =

FY |x(0) and q(x) = F
Y |x(0), focal sets of random set A

(gray bars); FY |x and FY |x
at x = 20.

Uncertainty of x modelled by a random set A :

We consider now the special case where h(x,z) is given by
gz(x) = h(x,z) = g(x)+ z resulting in the uncertain limit

state function depicted in Fig. 3.
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Then it holds for the lower envelopes g j of the focal sets

G j that g
j ∈G j. It is clear that we can reduce the focal sets

G j to their lower envelopes which leads to a discrete set of

limit state functions eqipped with a probability distribu-

tion induced by the weights of the focal sets G j. But then

there is only one single probability distribution and there-

fore no possibility of choice which leads to pSf = p
X 6→Z
f .

Further we have pSf = pRSf because of the ordering of the

four lower envelopes (g1 ≤ g2 ≤ g3 ≤ g4, see Fig. 3).

In the following the upper probabilities pRSf = p
R,X 6→Z
f and

p
X 6→Z
f are computed: Since in our example the results co-

incide for all notions of independence we have the possi-

bility to choose between two methods for the upper prob-

ability of failure where either discontinuous or continuous

optimization problems involved: For the upper probabil-

ity p
X 6→Z
f in case of epistemic irrelevance we have to solve

|A | discontinuous (q is discontinuous) optimization prob-
lems

p
X 6→Z
f =

|A |
∑
i=1

mA (Ai) sup
x∈Ai

q(x) (57)

=
|A |
∑
i=1

mA (Ai) sup
x∈Ai

|B|
∑
j=1

mB(B j)χ(g j(x)≤ 0)

= 0.2 ·1.0+ 0.3 ·0.4+0.5 ·1.0= 0.82

and for the upper probability in case of random set inde-

pendence |A | · |B| continuous one (g is continuous):

pRSf = p
R,X 6→Z
f = ∑

i, j

mA (Ai)mB(B j)sup
x∈Ai
z∈B j

p f (x,z) (58)

=
|B|
∑
j=1

mB(B j)
|A |
∑
i=1

mA (Ai)χ(g j(Ai)≤ 0)

=
|B|
∑
j=1

mB(B j)PlA (g j(x)≤ 0)

= 0.1 ·1.0+ 0.3 ·1.0+0.4 ·0.7+0.2 ·0.7= 0.82.

6.3 Random limit state functions

We have again h(x,z) = g(x)+z and model the uncertainty

of the parameter z by a Gaussian distribution (density f Zb )

with parameters b = (µ ,σ).

Let us start with deterministic parameters, say b= (0,0.5),
which leads to pSf = p

X 6→Z
f . Using the notation of Sec. 4 we

have Y|x = g(x) + Z with random variable Z ∼ N(µ ,σ2)
and conditional random variable Y|x ∼ N(g(x) + µ ,σ2)
given the basic variable x. The function q is obtained by

q(x) =
∫

Z

χ(g(x)+ z≤ 0) f Z(0,0.5)(z) dz = F
Y |x
(g(x),0.5)(0)

(59)

where FY |x is the probability distribution function of Y|x,
cf. Sec. 4 and Fig. 4.
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Figure 4: Uncertain limit state function g(x)+ z where the

uncertainty of z is described by a Gaussian distribution

with µ = 0 and σ = 0.5; q(x) = F
Y |x
(g(x),0.5)(0), focal sets

of random set A ; F
Y |x
(g(x),0.5) at x = 20.

Uncertainty of x modelled by an interval A = [20,30]:
We obtain

pSf = p
X 6→Z
f = sup

x∈A
p f (x,b;δx, f Zb ) = sup

x∈A
q(x) = 0.1222

(60)

using Eqs. (19) and (20).

Uncertainty of x modelled by a random set: We get

pSf = p
R,X 6→Z
f = pRSf = p

X 6→Z
f =

|A |
∑
i=1

mA (Ai) sup
x∈Ai

q(x) (61)

= 0.2 ·0.6604+ 0.3 ·0.1576+0.5 ·0.3682= 0.3635

for the random set A given in Sec. 5.2 using very simpli-

fied versions of Eqs. (26), (30) and (31).

Uncertainty of x modelled by a single probability distribu-

tion: For a Gaussian distribution (density f Xa ) with deter-

ministic parameters a = (µ ,σ) = (34,1) we get the result

p f ((34,1),(0,0.5), f Xa , f Zb ) = (62)

=
∫

X

∫

Z

χ(g(x)+ z≤ 0) f Z(0,0.5)(z) dz f
X
(34,1)(x) dx

=
∫

X

q(x) f X(34,1)(x) dx = 0.5976.

Uncertainty of b modelled by a set B:

Let the set B for the parameters b in f Zb given by

[µ ,µ ]× [σ ,σ ] = [−0.3,0.3]× [0.2,0.6].

The function q and the corresponding lower bound q are

obtained here by

q(x) = F
Y |x(0) =




F
Y |x
(g(x)+µ,σ)(0) if g(x)+ µ > 0,

F
Y |x
(g(x)+µ,σ)(0) if g(x)+ µ ≤ 0

(63)
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and

q(x) = FY |x(0) =




F
Y |x
(g(x)+µ,σ)(0) if g(x)+ µ > 0,

F
Y |x
(g(x)+µ,σ)(0) if g(x)+ µ ≤ 0.

(64)

In Fig. 5 the densities f
Y |x
(g(x)+µ,σ) and f

Y |x
(g(x)+µ,σ) resulting

in q are depicted as well as the functions q, q and the upper

and lower distribution functions F
Y |x

and FY |x at x = 20.

The numerical results for uncertain x as above (set A, ran-

dom set A , probability distribution) can be obtained in

case of epistemic irrelevance by simply replacing q by q

in the Eqs. (60), (61) and (62). The results for p
X 6→Z
f are

0.3192 for the set A, 0.6817 for the random set A and

0.9387 for the Gaussian distribution.
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Figure 5: Uncertain limit state function g(x)+ z where the

uncertainty of z is modelled by a set of Gaussian distribu-

tions.

Conclusion

To model uncertainties in limit state functions g we ex-

tended g depending on basic variables x to functions h by

adding additional parameters z and introduced a function

p f (a,b) for the probability of failure. This function pro-
vides an interface for controlling the parameters a and b of

the probability density functions f Xa and f Zb used for mod-

elling the uncertainty of the basic variables x and the new

additional parameters z. In a next step the two parameters

a and bwere assumed to be uncertain using sets or random

sets to model their uncertainty resulting in sets of proabil-

ity measures for x and z. In this context we discussed sev-

eral notions of independence, gave computational formu-

las for different cases of uncertainty models exemplified

by a simple engineering example and addressed visualiza-

tion methods and alternative approaches as well.
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Abstract

In this paper we study the relationship between the
notion of coherence for conditional probability assess-
ments on a family of conditional events and the no-
tion of admissibility with respect to scoring rules. By
extending a recent result given in literature for un-
conditional events, we prove, for any given strictly
proper scoring rule s, the equivalence between the co-
herence of a conditional probability assessment and
its admissibility with respect to s. In this paper we
focus our analysis on the case of continuous bounded
scoring rules. In this context a key role is also played
by Bregman divergence and by a related theoretical
aspect. Finally, we briefly illustrate a possible way
of defining (generalized) coherence of interval-valued
probability assessments by exploiting the notion of ad-
missibility given for precise probability assessments.

Keywords. Conditional probability assessments,
coherence, penalty criterion, proper scoring rules,
conditional scoring rules, weak dominance, strong
dominance, admissibility, Bregman divergence, g-
coherence, total coherence, imprecise probability as-
sessments.

1 Introduction

The theory and the applications of proper scoring
rules have a long history in statistical literature (see,
e.g., [1, 20, 23, 24, 25, 26, 28, 29, 31, 32, 33, 36, 37]).
This theory was central to de Finetti’s ideas about as-
sessing the relative values of different subjective prob-
ability assessments ([9], see also [12]). A review of
the general theory, with applications, has been given
in [25] and, more recently, in [20]. A scoring rule
for the probability of a given event E is a function
of both the observation that comes to be observed, E
true, or E false, and of the assessed probability P (E).
Assume that you were asked to assert P (E), knowing
that your assertion were to be scored according to the
rule s(E,P (E)); moreover, assume that your degree

of belief were P (E) = p, while you announced instead
some other number P (E) = x, in the expectation that
you would achieve a better score. The rule is said to
be proper if you cannot expect a better score by spec-
ifying a value x different from p. Proper scoring rules
encourage sincerity, because for you the best decision
is to announce probabilities which conform to your
beliefs.
The connections between the notions of coherence and
of admissibility for probability assessments have been
investigated in the work of de Finetti ([9, 10, 11]),
by means of a penalty criterion based on the Brier
quadratic scoring rule ([5]). A generalization of the
work of de Finetti to a broad class of scoring rules has
been given by Lindley in [26]. In his paper Lindley
assumes suitable properties for the score function and
admissibility for the numerical values which describe
the uncertainty. Then, he shows that such numeri-
cal values can be transformed into numerical values
which satisfy the basic properties of conditional prob-
abilities.
The relationship between the notions of coherence and
of non-dominance, with respect to strictly proper con-
tinuous scoring rules, has been investigated in [27].
In the same paper the connection of coherence and
strictly proper scoring rules to Bregman divergence
has been clarified.
A rich analysis of scoring rules which extends the re-
sults obtained in [27] to conditional probability as-
sessments has been given in [33], where different no-
tions of coherence have been discussed. In the same
paper, some conditions are given under which the
quadratic scoring rule can be replaced by a general
strictly proper scoring rule, preserving the equivalence
of the notions of coherence introduced through the
gambling and the penalty arguments. In [33] are also
examined the cases of scoring rules which are discon-
tinuous and/or not strictly proper. In particular, in
Example 8 of the same paper, by using a discontin-
uous strictly proper scoring rule it is shown that an
incoherent probability assessment cannot be weakly
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dominated by any coherent probability assessment,
while it is dominated by other incoherent assessments.
Moreover, in Example 9 of [33], by using a discontin-
uous merely proper scoring rule it is shown that a
coherent probability assessment is weakly dominated
by another coherent probability assessment.
In our paper we adopt a notion of coherence for con-
ditional events which is different from that ones given
in [33] and is based on the strengthened coherence
principle of de Finetti ([11], vol. 2, Axiom 3, pag.
339). Such a strengthened principle allows to prop-
erly manage conditioning events with zero probability
and, as proved in [14, 15] (see also [18]), is equiva-
lent to the notion of coherence for conditional prob-
ability assessments studied by other authors; see e.g.
[8, 22, 30, 34, 35]. In order to unify the treatment of
unconditional and conditional events, the definition of
coherence given by de Finetti with the penalty crite-
rion was suitably modified in [15] (see also [16]).
As it can be shown by suitable examples (see [8, 17]),
if a function P defined on a family of conditional
events satisfies the axiomatic properties of a condi-
tional probability, but the set of conditioning events
doesn’t have any structure, it may happen that P
is not coherent. On the contrary, if P is coherent,
then P satisfies all the properties of conditional prob-
abilities. In particular, (strengthened) coherence re-
quires that 0 ≤ P (A|B) ≤ 1, for any given condi-
tional event A|B. As another example, let us consider
the assessment P (A1|B) = 0.9, P (A2|B) = 0.7, with
A1 ∧ A2 = ∅ and B 6= Ω (see [33], p. 204). Such an
assessment, which is coherent based on Definition 1
in [33], is not coherent in our approach.
We observe that the notions of coherence given in [33]
and strengthened coherence are equivalent in the case
of unconditional probabilities. Moreover, in Example
8 and Example 9 illustrated above only unconditional
events are considered; hence, the corresponding re-
sults also hold in our approach. Then, in our paper
we focus the analysis on continuous strictly proper
scoring rules.
In this paper, using the strengthened notion of coher-
ence, we extend the result given in [27] to the case
of conditional events. We prove that, for any given
(continuous) bounded strictly proper scoring rule s, a
probability assessment on an arbitrary family of con-
ditional events is coherent if and only if it is admissible
with respect to s.
In ([33], p. 204) the authors leave open the ques-
tion of whether their results still hold if one restricted
the notion of coherence to require that the axioms of
probability conditional on events with zero probabil-
ity be satisfied. Our answer to this open question is
that the equivalence between coherence and admissi-
bility still holds with our notion of coherence (which

restricts the notions of coherence used in [33]).
In our paper, based on the comments of an anony-
mous referee, we briefly examine how the notion of
admissibility for precise probability assessments can
be exploited in the case of interval-valued probability
assessments.
The paper is organized as follows: In Section 2 we
first give some preliminary notions; then, in Subsec-
tion 2.1 we recall the notion of coherence with the
betting scheme; in Subsection 2.2 we give the notion
of coherence with the penalty criterion of de Finetti;
in Subsection 2.3 we illustrate, by a suitable alterna-
tive theorem, the equivalence of the betting scheme
and the penalty criterion. In Section 3 we recall the
notion of strictly proper scoring rule for unconditional
events; then, we consider scoring rules for conditional
events and we give the notions of weak and strong
dominance, and of admissibility, for conditional prob-
ability assessments with respect to a scoring rule.
We also consider a function s(p, x) connected with
the prevision of unconditional and conditional scor-
ing rules. In Section 4 we illustrate some well known
properties of s(p, x). In Section 5 we recall the no-
tion of Bregman divergence and a related theoretical
aspect. Then, we prove for conditional probability
assessments the equivalence between coherence and
admissibility with respect to any continuous bounded
strictly proper scoring rule. In Section 6 we recall
the notions of g-coherence, coherence and total coher-
ence for interval-valued probability assessments and
we briefly examine how these notions can be defined
by means of the admissibility property. Finally, in
Section 7 we give some conclusions.

2 Some preliminary notions

Given a real function P : K → R, where K is an
arbitrary family of conditional events, let us consider
a sub-family Fn = {E1|H1, . . . , En|Hn} ⊆ K, and the
vector Pn = (p1, . . . , pn), where pi = P (Ei|Hi) , i =
1, . . . , n. The vector Pn represents the restriction of
the function P to Fn. We denote by Hn the disjunc-
tion H1 ∨ · · · ∨Hn. Since

EiHi ∨ Ec
iHi ∨Hc

i = Ω , i = 1, . . . , n ,

where Ω is the sure event, by expanding the expres-
sion

∧n
i=1(EiHi ∨ Ec

iHi ∨ Hc
i ), we can represent Ω

as the disjunction of 3n logical conjunctions, some
of which may be impossible. The remaining ones
are the constituents generated by the family F . We
denote by C1, . . . , Cm the constituents contained in
Hn and (if Hn 6= Ω) by C0 the further constituent
Hc

n = Hc
1 · · ·Hc

n, so that

Hn = C1 ∨ · · · ∨ Cm ,

Ω = Hc
n ∨Hn = C0 ∨ C1 ∨ · · · ∨ Cm , m+ 1 ≤ 3n .
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2.1 Coherence with betting scheme

Using the same symbols for the events and their in-
dicators, with the pair (Fn,Pn) we associate the ran-
dom gain

G =
n∑

i=1

siHi(Ei − pi) ,

where s1, . . . , sn are n arbitrary real numbers. Let gh

be the value of G when Ch is true. Of course g0 = 0
(notice that g0 will not play any role in the definition
of coherence). Denoting by G|Hn the restriction of G
to Hn, it is G|Hn ∈ {g1, . . . , gm}. Then, the function
P defined on K is said coherent if and only if, for every
integer n, for every finite sub-family Fn ⊆ K and for
every s1, . . . , sn, one has

min G|Hn ≤ 0 ≤ max G|Hn . (1)

Remark 1. If the function P is coherent, then it is
called a conditional probability on K. Notice that, if P
is coherent, then P satisfies all the well known prop-
erties of conditional probabilities (while the converse
is not true; see [8], Example 13; or [17], Example 8).

2.2 Coherence with penalty criterion

Another operational definition of probabilities based
on the quadratic scoring rule has been proposed by de
Finetti ([10, 11]). This definition has been extended
to the case of conditional events in [15].
With the pair (Fn,Pn) we associate the loss L =∑n

i=1Hi(Ei − pi)2 ; we denote by Lh the value of
L if Ch is true. If You specify the assessment Pn on
Fn as representing your belief’s degrees, You are re-
quired to pay a penalty Lh when Ch is true. Then,
the function P is said coherent if and only if do not
exist an integer n, a finite sub-family Fn ⊆ K, and
an assessment Pn

∗ = (p∗1, . . . , p
∗
n) on Fn such that,

for the loss L∗ =
∑n

i=1Hi(Ei− p∗i )2 , associated with
(Fn,P∗n ), it results L∗ ≤ L and L∗ 6= L; that is
L∗h ≤ Lh , h = 1, . . . ,m , with L∗h < Lh in at least
one case.
We can develop a geometrical approach to coherence
by associating, with each constituent Ch contained in
Hn, a point Qh = (qh1, . . . , qhn), where

qhj =





1, if Ch ⊆ EjHj ,
0, if Ch ⊆ Ec

jHj ,
pj , if Ch ⊆ Hc

j .
(2)

Denoting by I the convex hull of the points
Q1, . . . , Qm, based on the penalty criterion, the fol-
lowing result can be proved ([15], see also [17])

Theorem 1. The function P is coherent if and only
if, for every finite sub-family Fn ⊆ K, one has Pn ∈ I.

2.3 Equivalence between betting scheme and
penalty criterion

The betting scheme and the penalty criterion are
equivalent ([14, 15]). This equivalence can also be
proved by the following steps ([18]):
1. The condition Pn ∈ I amounts to solvability of
the following system Σ in the unknowns λ1, . . . , λm

(Σ)
{ ∑m

h=1 qhjλh = pj , j = 1, . . . , n ;∑m
h=1 λh = 1 , λh ≥ 0 , h = 1, . . . ,m.

2. Let x = (x1, . . . , xm), y = (y1, . . . , yn)t and
A = (aij) be, respectively, a row m−vector, a col-
umn n−vector and a m× n−matrix. The vector x is
said semipositive if xi ≥ 0, ∀ i, and x1+· · ·+xm > 0.
Then, we have (cf. [13], Theorem 2.9)

Theorem 2. Exactly one of the following alternatives
holds.
(i) the equation xA = 0 has a semipositive solution;
(ii) the inequality Ay > 0 has a solution.

We observe that, choosing aij = qij − pj , ∀ i, j, the
solvability of xA = 0 means that Pn ∈ I, while
the solvability of Ay > 0 means that, choosing si =
yi, ∀ i, one has min G|Hn > 0 (and hence Pn would
be incoherent). Therefore, by applying Theorem 2
with A = (qij − pj), we obtain max G|Hn ≥ 0 if and
only if Σ is solvable, that is, max G|Hn ≥ 0 if and
only if Pn ∈ I.

3 Scoring rules and admissibility for
conditional probability assessments

In this section we recall the notion of (strictly) proper
scoring rule for unconditional events; then, based on
this notion, we consider scoring rules for conditional
events, called conditional scoring rules. Then, we il-
lustrate the notions of weak and strong dominance,
and of admissibility, for a probability assessment with
respect to a scoring rule.
A score may represent a reward or a penalty; we think
of scores as penalties, so that to improve the score
means to reduce it. To introduce strictly proper scor-
ing rules, we use the definition given in [27].
Definition 1. A function s : {0, 1}× [0, 1]→ [0,+∞]
is said to be a strictly proper scoring rule if the fol-
lowing conditions are satisfied:
(a) for every x, p ∈ [0, 1], with x 6= p, it is

p s(1, x) + (1− p) s(0, x) > p s(1, p) + (1− p) s(0, p) ; (3)

(b) the functions s(1, x) and s(0, x) are continuous.

We observe that, if x is your announced probability
for the event E, while p represents your degree of
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belief on E, then the quantity ps(1, x) + (1−p)s(0, x)
is nothing but your expected score.
For brevity, a strictly proper scoring rule will be called
proper scoring rule.
We indicate by the same symbol the events and their
indicators. Then, given any event E, we have

s(E, x) =
{
s(1, x), E,
s(0, x), Ec.

Given a scoring rule s, with any conditional event
E|H we associate the conditional scoring rule
s(E|H,x) : {0, 1} × [0, 1]→ [0,+∞] defined as

s(E|H,x) = Hs(E, x) =





s(1, x), EH,
s(0, x), EcH,
0, Hc.

We consider, for any given proper scoring rule s de-
fined on the set {0, 1} × [0, 1], the extension of s to
the set [0, 1]× [0, 1], defined as

s(p, x) = p s(1, x) + (1− p) s(0, x) . (4)

We remark that, if x is your announced probability for
the conditional event E|H, while p numerically repre-
sents your degree of belief on E|H, then the quantity
s(p, x) in (4) represents the conditional prevision

P[s(E|H,x) |H] = P[Hs(E, x) |H] = P[s(E, x) |H] .

Moreover,

P[s(E|H,x)] = s(1, x)P (EH) + s(0, x)P (EcH) ;

of course, s(p, x) 6= s(1, x)P (EH) + s(0, x)P (EcH).
Given a probability assessment Pn = (p1, p2, . . . , pn),
with pi ∈ [0, 1], on a family of conditional event Fn =
{E1|H1, E2|H2, . . . , En|Hn}, where pi = P (Ei|Hi),
and a proper scoring rule s, assuming that the scores
are additive, we define the random penalty, or loss
function, L associated with the pair (Fn,Pn) as

L =
n∑

i=1

s(Ei|Hi, pi) =
n∑

i=1

His(Ei, pi).

For the Brier quadratic scoring rule s(E, x) = (E−x)2

it is s(E|H,x) = H(E − x)2. The loss function asso-
ciated with this conditional scoring rule was used in
[15] (see also [18]), in the framework of the penalty
criterion of de Finetti, to give a unified definition of
the notion of coherence for conditional and uncondi-
tional events.
For the (unbounded and proper) logarithmic scoring
rule ([21]) s(E, x) = − log(1− |E − x|), we have

s(E|H,x) = −H log(1− |E − x|) .

The associated random penalty is

L = −
n∑

i=1

[EiHi log pi + Ec
iHi log(1− pi)] ,

which was proposed in ([25], p. 355) for the case of
unconditional events, with {E1, . . . , En} a partition of
Ω. The above random penalty was used in [7] to intro-
duce a suitable discrepancy measure with the aim of
correcting incoherent conditional probability assess-
ments.
Given the constituents C0, C1, . . . , Cm generated by
Fn, we denote by Lk the value of L associated with
Ck, k = 0, 1, . . . ,m. Of course, L0 = 0.
Definition 2. Let be given a scoring rule s and a
probability assessment Pn on a family of n conditional
events Fn. Given any assessment P∗n on Fn, with
P∗n 6= Pn, we say that Pn is weakly dominated by
P∗n, with respect to s, if denoting by L (resp., L∗)
the penalty associated with the pair (Fn,Pn) (resp.,
(Fn,P∗n)), it is L∗ ≤ L, that is: L∗k ≤ Lk, for every
k = 0, 1, . . . ,m.

We observe that Pn is not weakly dominated by P∗n
if and only if L∗k > Lk for at least a subscript k.
Definition 3. Let be given a scoring rule s and a
probability assessment Pn on a family of n conditional
events Fn. We say that Pn is admissible w.r.t. s if
Pn is not weakly dominated by any P∗n 6= Pn.
Remark 2. We observe that, by Definition 3, it fol-
lows:
- If the assessment Pn on Fn is admissible, then
for every subfamily FJ ⊂ Fn the sub-assessment PJ

associated with FJ is admissible.

In order to manage infinite families of conditional
events we give the following
Definition 4. Let be given a scoring rule s and a
probability assessment P on an arbitrary family of
conditional events K. We say that P is admissible
with respect to s if, for every finite subfamily Fn ⊆ K,
the restriction of P on Fn is admissible w.r.t. s.

By observing that L0 = L∗0 = 0, we give the following
Definition 5. Let be given a scoring rule s and a
probability assessment Pn on a family of n conditional
events Fn. Given any assessment P∗n on Fn, we say
that Pn is strongly dominated by P∗n, with respect to
s, if L∗k < Lk, for every k = 1, . . . ,m.

4 Properties of the function s(p, x)

For the convenience of the reader and to make our
exposition self-contained, in the Proposition below we
illustrate some well known properties of the function
s(p, x) defined in (4).
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Proposition 1. Given a proper scoring rule s, the
function s(p, x) satisfies the following properties:

1. s(αp′+(1−α)p′′, x) = α s(p′, x)+(1−α) s(p′′, x);

2. s(p, x) ≥ s(p, p), with s(p, x) = s(p, p) if and only
if x = p;

3. s(p, p) is strictly concave on (0, 1);

4. s(p, x) is partially derivable with respect to x at
(p, p), for every p ∈ (0, 1), and it is

∂s(p, x)
∂x

|(p,p) = 0 ;

5. for every p ∈ (0, 1), s(p, p) is differentiable, with
a continuous decreasing derivative

s′(p, p) = a(p) = s(1, p)− s(0, p) ;

6. for every p ∈ [0, 1], x ∈ (0, 1), it is

s(p, x) = s(x, x) + s′(x, x)(p− x) .

Proof. 1. We have s(p, x) = a(x)p+ b(x), where

a(x) = s(1, x)− s(0, x) , b(x) = s(0, x) ,

so that

s(αp′ + (1− α)p′′, x) =
a(x)[αp′ + (1− α)p′′] + b(x)[α+ (1− α)] =
α s(p′, x) + (1− α) s(p′′, x).

2. The property immediately follows by observing
that the restriction of the function s(p, x) to the set
{0, 1} × [0, 1] is a proper scoring rule.
3. For every x, y, α ∈ (0, 1), by setting z = αx+ (1−
α)y, we have s(x, x) < s(x, z), s(y, y) < s(y, z); then

s(z, z) = s(αx+ (1− α)y, αx+ (1− α)y) =
α s(x, z) + (1− α) s(y, z) > αs(x, x) + (1− α) s(y, y)

4. Given any p ∈ (0, 1) and 0 < ε < 1−p, by property
2 we have

s(p, p+ ε)− s(p, p)
ε

> 0 ,
s(p+ ε, p+ ε)− s(p+ ε, p)

ε
< 0 .

(5)

Moreover

s(p+ε,p+ε)−s(p+ε,p)
ε =

= s(p+ε,p+ε)−s(p,p+ε)
ε − s(p+ε,p)−s(p,p)

ε +

+ s(p,p+ε)−s(p,p)
ε =

= ε[s(1,p+ε)−s(0,p+ε)]
ε − ε[s(1,p)−s(0,p)]

ε +

+ s(p,p+ε)−s(p,p)
ε =

= ε[s(1,p+ε)−s(0,p+ε)]
ε − ε[s(1,p)−s(0,p)]

ε +

+ s(p,p+ε)−s(p,p)
ε =

=[s(1,p+ε)−s(0,p+ε)]−[s(1,p)−s(0,p)]+
s(p,p+ε)−s(p,p)

ε .

Then, by (5), it follows

0 <
s(p, p+ ε)− s(p, p)

ε
<

< [s(1, p)− s(0, p)]− [s(1, p+ ε)− s(0, p+ ε)] ,
(6)

and by continuity of the function s(1, x) − s(0, x) it
follows

lim
ε→0+

s(p, p+ ε)− s(p, p)
ε

= 0 .

Analogously, given any p ∈ (0, 1) and 0 < ε < p, by
property 2 we have

s(p, p− ε)− s(p, p)
ε

> 0 ,
s(p− ε, p− ε)− s(p− ε, p)

ε
< 0 .

(7)

Moreover

s(p−ε,p−ε)−s(p−ε,p)
ε =

= s(p−ε,p−ε)−s(p,p−ε)
ε − s(p−ε,p)−s(p,p)

ε +

+ s(p,p−ε)−s(p,p)
ε =

= −ε[s(1,p−ε)−s(0,p−ε)]
ε − −ε[s(1,p)−s(0,p)]

ε +

+ s(p,p−ε)−s(p,p)
ε =

=−[s(1,p−ε)−s(0,p−ε)]+[s(1,p)−s(0,p)]+
s(p,p−ε)−s(p,p)

ε .

Then, by (7), it follows

0 <
s(p, p− ε)− s(p, p)

ε
<

< [s(1, p− ε)− s(0, p− ε)]− [s(1, p)− s(0, p)] ,

and by continuity of the function s(1, x) − s(0, x) it
follows

lim
ε→0+

s(p, p− ε)− s(p, p)
−ε =

= − lim
ε→0+

s(p, p− ε)− s(p, p)
ε

= 0 .
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Therefore, for every p ∈ (0, 1), there exists the partial
derivative of s(p, x) with respect to x at (p, p) and it
is zero.
5. Given any p ∈ (0, 1) and −p < ε < 1 − p, ε 6= 0,
we have

s(p+ε,p+ε)−s(p,p)
ε =

= s(p+ε,p+ε)−s(p,p+ε)
ε + s(p,p+ε)−s(p,p)

ε =

= ε[s(1,p+ε)−s(0,p+ε)]
ε + s(p,p+ε)−s(p,p)

ε =

= [s(1,p+ε)−s(0,p+ε)] +
s(p,p+ε)−s(p,p)

ε ;

then, by continuity of the function s(1, x)−s(0, x) and
by property 4, it follows

s′(p, p) = lim
ε→0

s(p+ ε, p+ ε)− s(p, p)
ε

=

= a(p) = s(1, p)− s(0, p) .

We observe that, in agreement with the strict concav-
ity of s(p, p) and as shown in (6), a(p) is decreasing.
6. For every p ∈ [0, 1], x ∈ (0, 1), we have

s(p, x)− s(x, x) = [a(x)p+ b(x)]− [a(x)x+ b(x)] =

= s′(x, x)(p− x) ;

hence s(p, x) = s(x, x) + s′(x, x)(p− x).

5 Coherence and admissibility

In this section we recall the notion of Bregman di-
vergence and a related theoretical aspect. Then,
we prove the main result of the paper, by showing
the equivalence between the coherence of conditional
probability assessments and admissibility with respect
to any bounded (strictly) proper scoring rule s.
Given two vectors

Vn = (v1, . . . , vn), Pn = (p1, . . . , pn) ∈ [0, 1]n,

we set

S(Vn,Pn) =
n∑

i=1

s(vi, pi) . (8)

By property 3, the function S is strictly concave;
moreover, by property 5, S is differentiable in (0, 1)n.
By property 6, given any Pn ∈ (0, 1)n we have

S(Vn,Pn) =
∑n

i=1[s(pi, pi) + s′(pi, pi)(vi − pi)] =

= S(Pn,Pn) +∇S(Pn,Pn) · (Vn − Pn) ;
(9)

then, by setting

Φ(Pn) = −S(Pn,Pn) ,

we have

S(Vn,Pn) = −Φ(Pn)−∇Φ(Pn) · (Vn − Pn) . (10)

We recall that the function s(p, p) is continuous on
[0, 1] and strictly concave on (0, 1); then Φ(Pn) is
continuous on [0, 1]n and strictly convex on (0, 1)n.
Moreover, s(p, p) has a continuous first derivative on
(0, 1); then, the function Φ(Pn) has continuous partial
derivatives on (0, 1)n. Hence, Φ(Pn) is differentiable
on (0, 1)n and its gradient ∇Φ(Pn) is a continuous
function on (0, 1)n. If s is bounded, then ∇Φ(Pn) ex-
tends to a bounded continuous function on [0, 1]n.
In the definition below we recall the notion of Breg-
man divergence (see e.g. [6]).
Definition 6. Let C be a convex subset of Rn with
nonempty interior. Let Φ : C → R be a strictly con-
vex function, differentiable in the interior of C, whose
gradient ∇Φ extends to a bounded, continuous func-
tion on C. For Vn,Pn ∈ C the Bregman divergence
dΦ : C × C → R corresponding to Φ is given by

dΦ(Vn,Pn) = Φ(Vn)− Φ(Pn)−∇Φ(Pn) · (Vn − Pn) .

It is dΦ(Vn,Pn) ≥ 0 and, as Φ is strictly convex,
dΦ(Vn,Pn) = 0 if and only if Vn = Pn.
We remark that, assuming s bounded, C = [0, 1]n and
Φ(X ) = −S(X ,X ), by (10) and Definition 6 it follows

dΦ(Vn,Pn) = S(Vn,Pn)− S(Vn, Vn) . (11)

We observe that, for s(E, x) = − log(1− |E − x|), we
have

S(Vn,Pn) = −
n∑

i=1

[vi log pi+(1−vi) log(1−pi)] ; (12)

then, formula (11) becomes

dΦ(Vn,Pn) =

n∑
i=1

[
vi log

(
vi

pi

)
+ (1− vi) log

(
1− vi

1− pi

)]
.

This logarithmic Bregman divergence is connected
with the discrepancy measure proposed in [7] to cor-
rect incoherent conditional probability assessments.
Now, we recall the following result given in [27]; see
also [6].
Proposition 2. Let dΦ : C × C → R be a Bregman
divergence and let I ⊆ C be a closed convex subset of
Rn. For each Pn ∈ C\I, there exists a unique P∗n ∈ I,
called the projection of Pn onto I, such that

dΦ(P∗n,Pn) ≤ dΦ(Vn,Pn) , ∀Vn ∈ I .

Moreover

dΦ(Vn,P∗n) + dΦ(P∗n,Pn) ≤ dΦ(Vn,Pn) ,

∀Vn ∈ I , Pn ∈ C \ I .
(13)

204 Angelo Gilio & Giuseppe Sanfilippo



In the next result we illustrate the relationship be-
tween the notion of coherence and the property of
non dominance.

Theorem 3. Let be given a probability assessment
P on a family of conditional events K; moreover, let
be given any bounded (strictly) proper scoring rule
s. The assessment P is coherent if and only if it is
admissible with respect to s.

Proof. (⇒) Assuming P coherent, let s be any
bounded proper scoring rule. Given any subfamily
Fn = {E1|H1, . . . , En|Hn} of K, let Pn = (p1, . . . , pn)
be the restriction to Fn of P. Now, given any
P∗n = (p∗1, . . . , p

∗
n) 6= Pn, we distinguish two cases:

(a) p∗i 6= pi, for every i = 1, . . . , n;
(b) p∗i = pi, for at least one index i.
Case (a). We still denote by C0, C1, . . . , Cm, where
C0 = Hc

1 ∧· · ·∧Hc
n, the constituents generated by Fn

and by Qk = (qk1, . . . , qkn) the point associated with
Ck, k = 1, . . . ,m.

We introduce the following binary quantities

eki =
{

1, Ck ⊆ Ei,
0, Ck ⊆ Ec

i ,
, hki =

{
1, Ck ⊆ Hi,
0, Ck ⊆ Hc

i .

Then, by recalling (2), for every i = 1, . . . , n, k =
1, . . . ,m it is

qki = ekihki + (1− hki)pi . (14)

With the assessment Pn it is associated the loss

L =

n∑
i=1

[EiHis(1, pi) + Ec
i His(0, pi)] =

n∑
i=1

His(Ei, pi) ;

of course, with any other assessment P∗n on Fn it
associated the loss

L∗ =

n∑
i=1

Hi[Eis(1, p∗i ) + Ec
i s(0, p∗i )] =

n∑
i=1

His(Ei, p
∗
i ) .

For each constituent Ck, k = 0, 1, . . . ,m, the values
of L and L∗ are, respectively

Lk =
n∑

i=1

[ekihkis(1, pi) + (1− eki)hkis(0, pi)] ,

L∗k =
n∑

i=1

[ekihkis(1, p∗i ) + (1− eki)hkis(0, p∗i )] .

By recalling that L0 = L∗0 = 0, in what follows we
will only refer to the values Lk, L

∗
k, k = 1, . . . ,m.

As Pn is coherent, there exists a vector (λ1, . . . , λm),
with λk ≥ 0 and

∑
k λk = 1, such that Pn =∑

k λkQk; that is, by (14)

pi =
∑

k λkqki =
∑

k λkekihki + pi − pi

∑
k λkhki ,

for every i = 1, . . . , n; so that
∑

k

λkekihki = pi

∑

k

λkhki , i = 1, . . . , n ,

or equivalently
∑

k

λk(1− eki)hki = (1− pi)
∑

k

λkhki , i = 1, . . . , n .

Then,

∑
k λkLk =

=
∑

k λk

∑n
i=1 [ekihkis(1, pi) + (1− eki)hkis(0, pi)] =

=
∑

i (
∑

k λkekihki) s(1, pi)+

+
∑

i (
∑

k λk(1− eki)hki) s(0, pi) =

=
∑

i[pi

∑
k λkhki)s(1, pi)+(1−pi)

∑
k λkhki)s(0, pi)]

=
∑

i(
∑

k λkhki) [pi s(1, pi) + (1− pi) s(0, pi)] .

We set I ′ = {i :
∑

k λkhki > 0} ⊆ {1, 2, . . . , n}. We
observe that I ′ is not empty. In fact, for each i =
1, . . . , n, there exists a constituent Ck such that Ck ⊆
Hi and then

∑
i hki ≥ 1. Moreover, as

∑

i

∑

k

λkhki =
∑

k

λk

∑

i

hki ≥
∑

k

λk = 1 ,

there exists an index i such that
∑

k λkhki > 0; i.e.
I ′ 6= ∅.
Then, by recalling that for each i = 1, . . . , n it is

pi s(1, pi) + (1− pi)s(0, pi) < pi s(1, p∗i ) + (1− pi)s(0, p∗i ),

we have
∑

k λkLk =

=
∑

i∈I′(
∑

k λkhki)[pi s(1, pi) + (1− pi) s(0, pi)] <

<
∑

i∈I′(
∑

k λkhki)[pi s(1, p∗i ) + (1− pi) s(0, p∗i )] =

=
∑

i(
∑

k λkhki)[pi s(1, p∗i ) + (1− pi) s(0, p∗i )] =

=
∑

k λkL
∗
k .

The inequality
∑

k λkLk <
∑

k λkL
∗
k implies that

there exists an index k such that Lk < L∗k; that is
L∗ > L in at least one case. Hence Pn is admissible.
Since Fn is arbitrary, it follows that P is admissible.
Case (b). Let be given any P∗n 6= Pn, with p∗i = pi,
for at least one index i. We set J = {i : p∗i 6= pi} ⊂
Jn = {1, . . . , n}. We denote by PJ (resp., PJn\J)
the subvector of Pn associated with J (resp., Jn \ J).
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Analogously, we can consider the subvectors P∗J and
P∗Jn\J of P∗n. Then, we have

L = LJ+LJn\J , L∗ = L∗J+L∗Jn\J , LJn\J = L∗Jn\J .

By the same reasoning as in case (a), it holds that
L∗J > LJ in at least one case. Then, by observing
that L − L∗ = LJ − L∗J , it is L∗ > L in at least one
case; hence Pn is admissible. Since Fn is arbitrary, P
is admissible.
(⇐). We will prove that, given any bounded proper
scoring rule s, if P is not coherent, then P is not
admissible with respect to s. Assume that P is
not coherent. Then, there exists a subfamily Fn =
{E1|H1, . . . , En|Hn} ⊆ K such that, for the restric-
tion Pn = (p1, . . . , pn) of P to Fn, denoting by
In ⊆ [0, 1]n the associated convex hull, it is Pn /∈ In.
For each constituent Ck we set Ik = {i : Ck ⊆
Hc

i }, Jk = {i : Ck ⊆ Hi}; then, by recalling (11),
the value Lk of the penalty L is given by

Lk =
∑n

i=1 s(eki, pi)hki =

=
∑n

i=1 s(qki, pi)−
∑

i∈Ik
s(pi, pi) =

=
∑n

i=1 s(qki, pi)−
∑n

i=1 s(qki, qki)+

+
∑n

i=1 s(qki, qki)−
∑

i∈Ik
s(pi, pi) =

=
∑n

i=1 s(qki, pi)−
∑n

i=1 s(qki, qki)+

+
∑n

i∈Jk
s(eki, eki) =

= S(Qk,Pn)− S(Qk, Qk) + αk =

= dΦ(Qk,Pn) + αk ,

(15)

where αk =
∑n

i∈Jk
s(eki, eki) and Φ(X ) = −S(X ,X ).

By applying Proposition 2 with C = [0, 1]n and I =
In, by (13) we have

dΦ(Qk,P∗n) + dΦ(P∗n,Pn) ≤ dΦ(Qk,Pn) ,

where P∗n = (p∗1, . . . , p
∗
n) is the projection of Pn onto

In. Moreover, as P∗n 6= Pn it is dΦ(P∗n,Pn) > 0 and
hence

dΦ(Qk,P∗n) < dΦ(Qk,Pn) , k = 1, . . . ,m .

Now, denoting by Q∗1 = (q∗11, . . . , q
∗
1n), . . . , Q∗m =

(q∗m1, . . . , q
∗
mn) the points associated with the pair

(Fn,P∗n), recalling property 2, for each k = 1, . . . ,m
we have
dΦ(Qk,P∗n)− dΦ(Q∗k,P∗n) =

= S(Qk,P∗n)− S(Qk, Qk)− S(Q∗k,P∗n) + S(Q∗k, Q∗k) =

=

n∑
i=1

[s(qki, p
∗
i )− s(qki, qki)− s(q∗ki, p

∗
i ) + s(q∗ki, q

∗
ki)] =

=
∑n

i=1 [s(qki, p
∗
i )− s(q∗ki, p

∗
i )]+

−∑n
i=1 [s(qki, qki)− s(q∗ki, q

∗
ki)] =

=
∑

i∈Ik
[s(pi, p

∗
i )− s(p∗i , p∗i )]+

−∑i∈Ik
[s(pi, pi)− s(p∗i , p∗i )] =

=
∑

i∈Ik
[s(pi, p

∗
i )− s(pi, pi)] ≥ 0 .

Therefore, for each k = 1, . . . ,m, it is

dΦ(Q∗k,P∗n) ≤ dΦ(Qk,P∗n) < dΦ(Qk,Pn) .

Then, by (15), for each k = 1, . . . ,m it follows

L∗k = dΦ(Q∗k, P
∗
n) + αk < dΦ(Qk, Pn) + αk = Lk ;

that is, Pn is strongly dominated (and hence weakly
dominated) by P∗n; hence Pn is not admissible. This
implies that P is not admissible.

We remark that in the first part of the proof of the
previous theorem it has not been necessary to use the
Bregman divergence .
We observe that Theorem 3 can be formulated in the
following equivalent way.

Theorem 4. Given an arbitrary family of conditional
events K, let Πc the set of coherent conditional prob-
ability assessments P on K. Moreover, denoting by
Σ the class of bounded (continuous strictly) proper
scoring rules, let be given any s ∈ Σ. Then, let Πs be
the set of conditional probability assessments P on K
which are admissible with respect to s. We have

Πs = Πc , ∀ s ∈ Σ . (16)

Remark 3. The equality (16) in the case s(E, x) =
(E − x)2 has been proved in [15] (see also [18]).

6 The case of imprecise probability
assessments

In this section we illustrate a possible way of study-
ing the relationship between coherence and admis-
sibility with respect to scoring rules in the case of
interval-valued conditional probability assessments.
An anonymous referee observed that “there is an im-
possibility result due to the authors of [33] (probably
still unpublished) showing that there does not exist a
real-valued proper IP-scoring rule”.
Moreover, the referee claims that in the same paper
it is shown that “there is a lexicographic, i.e. non-
standard valued, proper scoring rule for eliciting prob-
ability intervals”.
Here, we just show that the notion of admissibility
given for precise assessments can also be exploited in
the case of imprecise probabilities.
We recall below the notions of generalized coherence
(g-coherence, [2, 3, 4]), coherence and total coherence
([19]) for interval-valued conditional probability as-
sessments.

Definition 7. Let be given an interval-valued prob-
ability assessment An = ([li, ui], i = 1, . . . , n), defined
on a family of n conditional events Fn = {Ei|Hi, i =
1, . . . , n}. We say that:
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a) An is g-coherent if there exists a coherent precise
probability assessment Pn = (pi, i = 1, . . . , n) on Fn,
with pi = P (Ei|Hi), which is consistent with An, that
is such that li ≤ pi ≤ ui for each i = 1, . . . , n;
b) An is coherent if, given any j ∈ {1, . . . , n} and any
xj ∈ [lj , uj ], there exists a coherent precise probabil-
ity assessment Pn = (pi, i = 1, . . . , n) on Fn, which is
consistent with An and is such that pj = xj ;
c) An is totally coherent if every precise probability
assessment Pn = (pi, i = 1, . . . , n) on Fn, consistent
with An, is coherent.

We observe that the notions of g-coherence and coher-
ence above amount to the well known notions of avoid-
ing uniform loss and coherence, respectively, used
in the literature on imprecise probabilities (see, e.g.,
[34]). Based on Definition 7 we can give the following
versions of our main result in the case of interval-
valued probability assessments.

Proposition 3. Let be given an interval-valued prob-
ability assessment An = ([li, ui], i = 1, . . . , n), defined
on Fn = {Ei|Hi, i = 1, . . . , n}. Moreover, let be given
any bounded (continuous and strictly) proper scoring
rule s. We have:
a) An is g-coherent if and only if there exists a precise
probability assessment Pn = (pi, i = 1, . . . , n) on Fn,
consistent with An, which is admissible w.r.t. s;
b) An is coherent if, given any j ∈ {1, . . . , n} and any
xj ∈ [lj , uj ], there exists a precise probability assess-
ment Pn = (pi, i = 1, . . . , n) on Fn, with pj = xj ,
consistent with An, which is admissible w.r.t. s;
c) An is totally coherent if every precise probability
assessment Pn = (pi, i = 1, . . . , n) on Fn, consistent
with An, is admissible w.r.t. s.

7 Conclusions

In this paper we have studied the relationship between
the notion of (strengthened) coherence for conditional
probability assessments and the property of admissi-
bility with respect to scoring rules. We have extended
to the case of conditional events a result given in [27]
for unconditional events. We have shown that, given
any bounded (continuous and strictly) proper scoring
rule s, a conditional probability assessment on an ar-
bitrary family of conditional events is coherent if and
only if it is admissible with respect to s. To obtain
our main result a key role has also been played by
Bregman divergence. Finally, we have shown that the
property of admissibility can be exploited to charac-
terize the notions of g-coherence, coherence and total
coherence for interval-valued conditional probability
assessments.
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Abstract

After a brief historical overview over various ap-
proaches to the foundations of statistics, the very gen-
eral, simple and basic concept of (potential) surprises
is introduced, which may be subjective or objective
and goes beyond previous approaches by I.J. Good
and by the author. The surprises are conditional
on the background knowledge or belief of the person
experiencing it; the updating of the so-called back-
ground, and the merging or, if not possible, the con-
trasting of different backgrounds by two or more per-
sons (otherwise they talk past each other) are very
important operations in practice. A number of ex-
amples from real life, in complement to two previous,
more qualitative papers, are given.

Keywords. Foundations of statistics, historical con-
cepts, (potential) surprises, background knowledge or
belief, combining of backgrounds, updating of back-
grounds, merging or contrasting of backgrounds, prac-
tical application of mathematical models, real life ex-
amples.

1 Introduction and overview

Over the centuries, there have been various differ-
ent approaches towards the fundamental concepts of
statistics.

One line of thought focusses on observed and hypo-
thetical frequencies of “random” events, especially –
usually under some symmetry assumptions – the ex-
pectations for games of chance. (I shall leave aside
the various philosophical meanings of “randomness”.)
After some previous isolated attempts, this led to the
work by Pascal ([33], cf. also [18, Ch. 8], and also [3,
Part 4, Ch. XVI, p. 387-388]) and Fermat (starting
1654), Huygens, de Moivre, Laplace, and later the
frequentist theories by von Mises, Neyman-Pearson
(cf., e.g., [31]), and Wald, among others. A basic

tool was the law of large numbers [5, Part 4.5] and its
later refinements, which in practice allowed to approx-
imately equate the observed percentage of successes
in a “long” sequence (whatever that means, cf. [22,
Part 5]) of random experiments with their theoretical
probability.

Besides a lot of mathematical work building upon the
basic assumptions, there is still a chance for new ideas
about this line of foundations, as shown by Cattaneo’s
[8, 9] improvement of Wald’s minimax principle.

A very different approach to the foundations of
stochastics, which apparently has not found much at-
tention, goes back to Jacob Bernoulli [5, Part 4]. Be-
sides continuing the work of Huygens (and discovering
the law of large numbers, his “theorema aurea”, as an
auxiliary tool for something very different), he tried to
develop a quantitative counterpart to the (then very
famous) dichotomic “Logique” by Arnauld and Nicole
[3]. His aim was to measure the degree of “probabil-
ity” in the old, qualitative sense of this word (cf. [7,
Ch. 2.8, 5.2, 5.3], also briefly [30, Ch. 2, espec. first
paragraph, and Ch. 4.3]). Apparently by a misunder-
standing of the eloges at the death of Bernoulli in the
year 1705, the term “probability” was then used also
for games of chance (cf. [7, Ch. 6.4.2]). (It is inter-
esting to observe that both the terms “probability”
and “statistics” (cf. [35, pp. 2f and 8f]) originally had
a very different meaning.) Bernoulli proposed in a
normative way in words (not in formulas) 9 “axioms”
or basic (self-evident) properties which the new prob-
ability ought to obey and which would exclude, for
example, both the Bayesian and the Neyman-Pearson
theory and would not even obey in general the rule
of additivity (cf. [7, Ch. 5.3.2]). But he still counted
cases, as is done in games of chance. Perhaps he hoped
to be able to derive “objective” results. Altogether,
his approach (left incomplete because of his death)
is a bold, fascinating and singular but perhaps shaky
edifice; it seems not clear to me whether it can be
worked out to a fully functioning system.
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Another approach has become highly influential,
namely the approach by Bayes [4]. Contrary to com-
mon belief, Bayes was basically a frequentist; only in
his famous Scholium did he leave some open ques-
tions between the lines (which may be even the rea-
son for not publishing his paper during his lifetime)
which led to the later “Bayesian” interpretation (cf.
[23, Ch. 1.3]). But cf. also the critical remarks by
Boole [6].

Variants of the “Bayesian” approach were used by
Laplace, Jeffreys (both normative or “logical” in dif-
ferent ways) and de Finetti (subjectivistic). Espe-
cially de Finetti [11] was a very sharp, radical, philo-
sophically deep and fascinating thinker, building a
pure and clean theory (although he did also applica-
tions). But if his theory is taken literally, I find it in
its last consequence solipsistic, without any relation
to anything like a “real world” – which for him does
not exist - or to any fellow scientist. (I only know from
L.J. Savage, one of his main pupils, that Savage was
sometimes pragmatic in applications; moreover, his
(the latter’s) pupil D. Ellsberg showed with his para-
dox that some basic assumptions of Neo-Bayesians do
not work in practice.)

All Bayesians (including “logical” or “objective”
Bayesians) consider only epistemic probabilities (re-
ferring to our knowledge or belief about Nature, not
about the (principally unknown) state of Nature itself.
(Empirical Bayesians use frequentist methods.) On
the other hand, all (traditional) frequentists consider
only (usually unknown) aleatory probabilities in Na-
ture, without any reference to what we know or may
know (the few cases with known or strongly believed
probability models excepted). Perhaps the first one to
build a formal bridge between aleatory and epistemic
probabilities was R.A. Fisher [15] with his fiducial ar-
gument. Unfortunately, he later made a mistake in its
interpretation, but this mistake can be corrected, and
Fisher’s (corrected) fiducial probabilities just turn out
to be a very special case of a general theory, using up-
per and lower probabilities [21, 23, 24, 26, 27].

It seems still unbelievable to many mathematical
statisticians that one can derive known epistemic
probabilities from unknown aleatory probabilities;
but this is correctly done by most intelligent users of
statistics who have not given up their own intuition in
favor of either the Neyman-Pearson or the Bayesian
theory (which, to be sure, are correct as far as they
go, but in my eyes do not cover all the needs of good
applied statistics, cf. [21, Ch. 4, p. 130], [23, 1.3], [24,
Ch. 1.1]). And it has been done long ago, also at the
early time of Fisher, cf., e.g., Student [38] or Pear-
son & Wishart [34]. Even though Fisher seemed only
intuitively and not rationally clear about it, his con-

cept of confidence intervals was clearly epistemic (and
hence allowing a correct “aposteriori” interpretation),
while that of Neyman was clearly aleatory, explaining
Fisher’s original doubt and later his conviction that
despite all superficial formal similarities the two con-
cepts are indeed different, referring to two different
probability spaces.

In recent times, there are a number of approaches
to statistics in a very broad sense using something
like upper and lower probabilities, instead of strictly
additive probabilities, as is only too well known at
ISIPTA conferences (cf., e.g., [14, 37, 39, 40]; cf. also
the ISIPTA conferences). Also some other statisti-
cians, although claiming to be Bayesians, occasion-
ally or inconspicuously use upper and lower probabil-
ities, notably Dempster [12, 13] and Good (cf., e.g.,
[17]). There are a number of different concepts defined
and many results developed. Also one of my lines of
work [21, 23, 24] which centrally uses bets (like the
Bayesians), but introduces also one-sided bets (thus
leading beyond Bayesians) and uses also upper and
lower fiducial probabilities, bridging the gap between
aleatory and epistemic probabilities, belongs to this
body of research.

A main goal of the present paper is to present several
new concepts, with the help of practical examples,
which ought to be able to describe the inference pro-
cess on a higher level (cf. also [28, 29]). Although in
my opinion inductive reasoning will be done mostly in
a qualitative or semi-quantitative framework (using a
discrete ordinal scale) as in the previous papers, an at-
tempt is made specifically in this paper to allow also
the introduction of a quantitative theory, still leaving
a lot of freedom for the precise choices in detail.

There is a concept which looks so simple and at the
same time so basic that it seems surprising that it is
not more popular in statistical theories: the concept
of potential surprises, or of surprises, for short. It can
be used as a generic, rather encompassing term; in
special situations, it can also be defined as, for exam-
ple, minus the logarithm of a probability, then giving
it a quantitative interpretation. This interpretation
is of course inherent in information theory, though
it is not normally given a special name. I.J. Good
([16], but not [17]), in the spirit of pure mathematics,
has defined a whole mathematical class of surprises.
A related definition of surprise is independently given
by Hampel [21, Ch. 5]; it turned out that it differs
from what Good (orally) considered his most impor-
tant special case just by an additive constant. But
surprises in my present theory can be given any sub-
jective (numerical) interpretation (as is the case with
beliefs, subjective probabilities, etc.). This concept,
which has been neglected so far, is qualitatively (and
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semi-quantitatively) investigated in Hampel [28, 29],
with a number of practical examples. Both papers are
in close connection with the present paper. It is my
belief that (like elsewhere in stochastics) the precise
numbers don’t matter so much as the more qualita-
tive features. (This is shown in the examples of the
two previous papers.)

However, some people may want a general quantita-
tive theory, and for this purpose the present paper is
written. Yet, to avoid misunderstandings, this paper
is basically philosophical and is derived from practi-
cal experience of everyday life (including experience
in science). It is not derived from some system of
axioms. Personally (and perhaps in an oldfashioned
way), I do not start with axioms (not even intuitive
looking ones as did Jacob Bernoulli), but rather I
think axioms should be the crown at the end of the
development of a body of knowledge. Later, there
were historical reasons for the Bourbaki style in pure
mathematics (trying to derive everything quickly on
the highest and most abstract level); but I find this
even dangerous, as the connections with the intuitive
sources, including the nonmathematical sources, eas-
ily tend to get lost. As I try to derive all concepts
from practical experience, and as this paper is work
in progress (with some open questions, e.g. at the end
of Ch. 4.2), I shall not try to present an axiomatic de-
velopment of surprise. (It may even be argued that
the problems Jacob Bernoulli had with his approach -
see above - may partly be due to premature axioma-
tization - even though, or perhaps because, he partly
relied on the Logique of Port-Royal, cf. [7, Ch. 5.3.2
and 5.2.2.4.].)

This paper contains several examples for the use of
the new concepts; for more examples, see the other
two papers [28, 29]. One example could even be con-
tinued: while the Arctic Warbler (Phylloscopus bo-
realis) in Poland and South China had exactly the
same song [29, Ch. 6.5], to my big surprise the same
species in Japan had a very different song. It turned
out that in Japan breeds a different subspecies (Ph.
b. xanthodryas), and it is presently being investigated
whether it ought to be separated as a new species from
the nominate form Ph. b. borealis.

As stressed already in the previous two papers, the
surprises are conditional on the assumed background
belief or available background knowledge (both in
their intuitive senses), both formally called back-
ground for short; and updating of the background,
when new information becomes available, is a very
important part of the inference or learning process.

The structure of the background is described more
fully in [29] and the corresponding poster. Briefly,

it consists of all our knowledge, beliefs, conditional
or hypothetical beliefs, etc.; but more importantly, it
exists in layers, and normally we use only the upper-
most layer, containing our most plausible (or likely, or
“normal”) world view; only when we get a (complete
or almost) contradiction with it by some new infor-
mation (an infinite or close to infinite surprise), we
abandon the uppermost layer and fully switch to the
next one [29, Sec. 4]. This is (normally) a qualitative
change of the background, not just a belief revision
(cf., e.g., the article on Belief revision in Wikipedia
(05/02/2011)) which slightly modifies the old belief
system by means of some logical operations, or in-
formation fusion (information integration) or such an
operation. It is not a deductive operation, but an
inductive jump (cf. the examples); the old theory is
false and not just modified, but replaced by something
new, created by inductive thinking from the deeper,
more hidden layers of our background.

(It might be argued that by enough logical opera-
tions one can change the background also to some-
thing qualitatively new; but this is not what I expe-
rience in the real world examples that came to my
mind. I noted already [29, end of Sec. 1] that in the
about 20 pages of [1] I could not find a single real
life example, while they abound in my papers. To be
sure, there is a place for deductive-logical operations;
but I suggest that the creative inductive thinking pro-
cess which generates genuine new knowledge has been
badly neglected in research.)

Another important part of the inference process is the
merging, or, if this is not possible, the contrasting of
the backgrounds of two or more different persons (cf.
Ch. 2.3).

As already briefly mentioned above, surprises in my
approach are completely compatible with belief the-
ory, Bayesian theory, and so on. They may be seen as
a kind of superstructure over the old theories. As long
as the surprises (in whatever reasonable way they are
measured) are in an intermediate or low range, noth-
ing essential changes. But if they are equal or close
to infinity, then the background has to be changed. –

A word or two on terminology: It seems there are too
few words in our language for all the different con-
cepts that have been defined. The editors kindly drew
my attention to [36] who used not only the term “sur-
prise”, but even “potential surprise” (loc. cit., Part II,
espec. Ch. IX). There is much overlap and in part(!) a
very similar intuition; moreover, style and basic philo-
sophical attitude are quite similar. But I am mainly
interested in inference, and Shackle in decisions, espe-
cially in economics; his formal definitions are different
from mine (for example, by always demanding also a
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surprise of zero in any disjunction); but most impor-
tantly, I could not find the change of background in
case of (as he calls it) maximum surprise, which is so
central in my approach. He also seems to avoid “...or
any other...” which for me opens the door to the rad-
ical change of background. Some of his argumenta-
tion (against traditional probability theory) now may
seem outdated, especially at an ISIPTA conference,
and he also has run into problems with his attempt
at an axiomatization (cf. above); but overall I find his
thinking and arguing quite inspiring, although there
is only partly an overlap in our approaches. (At least,
the use of the same term does still seem bearable, as
long as one is conscious of the differences.)

Another author who introduced the term “surprise” is
Neumaier [32]. Again, he just tries to modify the old
background in view of contradictions, not abandoning
it, by finding an optimal compromise (with an “army
of computer slaves” in the fictive story of the king
on p. 22), minimizing the total surprise. (This may
be appropriate if the surprise is so moderate that the
background must only be slightly modified, not aban-
doned entirely.) And again, Neumaier finds much ba-
sic intuition in common with Shackle, but many for-
mal differences. –

Our paper starts with basic definitions, properties and
examples, which are not only mathematical since the
application of the theory needs also close connections
with the nonmathematical world (cf. [22]). Then the
case of two or more different background assumptions
is discussed, the connection with cautious surprises
and successful bets is explained, and the problem of
two (or more) persons with different backgrounds is
brought into view. The updating of the background
information is shown with a complex example, and an-
other complex example asks among other points what
to do if an event is totally unexpected. A practical
example on how to concentrate incomplete knowledge
in a fairly effective way concludes the paper.

2 Basic concepts

The following subsections introduce some basic defi-
nitions, properties and examples.

2.1 Basic set-up

Consider one person, say, Ted, with his background
knowledge and collection of beliefs B, and a class of
uncertain (future or unknown) events E which are of
interest to Ted.

Let A be an event in E, and define the nonnegative
number s = s(A|B) to be the surprise of Ted, given
his background B, when A turns out to be true; with

s = 0 meaning no surprise at all; s = ∞ means Ted
considers A impossible; and s “close to∞” means Ted
considers A “practically impossible”.

More precisely, we have to distinguish
(i) the hypothetical surprise of Ted when he imagines
that A shall happen or (unknown to him) has hap-
pened (the potential surprise in the strict sense, cf.
also [36]);
(ii) the reaction of Ted when (perhaps in the future)
he is reliably told that A has happened (or is for sure
going to happen); and
(iii) Ted’s reaction when he observes A himself.
(There is not much difference between (ii) and (iii) ex-
cept the additional reliability by observing A oneself;
on the other hand, Ted can also err himself.) Situa-
tion (i) requires that Ted thinks of the possibility that
A may happen.

There may be possible events which Ted does not even
think of. In such a case, Ted’s surprise under (ii) or
(iii) may still be small if he notes he just has forgotten
a rather likely possibility; the surprise shall be very
large, if on hindsight he considers the event A possi-
ble though highly unlikely; the surprise may be even
infinite if A is not compatible with the assumed back-
ground B. In this case, Ted has to change his back-
ground belief B (one of the most fruitful sources of
qualitatively new knowledge), or else he has to change
his interpretation of the observation A (e.g., by find-
ing an error in the observation).

In general, we shall change the background, going to
the next layer (see above), not only when s is infi-
nite, but also when s is “close to infinity”. This is
in analogy with what is also called Cournot’s prin-
ciple: that in the applications of probability theory,
we consider an event with probability “close to one”
as “practically certain” or (formerly) “morally cer-
tain”. The boundary may depend on circumstances;
Bernoulli gives as an example 999/1000 [7, p. 230],
while Cournot [10, Ch. IV, 48] requires the difference
to one to be “infinitesimally small” for an event to
be “physically certain”. No matter in what way the
surprise is defined, I find the change of background
as described the most important application of the
concept of surprise.

(A logician might ask what is Ted’s surprise by A if he
has an “empty” background, e.g. if he wakes up from a
coma and has lost all memory and all thinking ability.
Then all his surprises are zero, because everything is
fully possible. As soon as Ted starts thinking again,
one has to be very careful in sorting out what he is
able to think and learn again.)
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2.2 Some basic properties of surprises

As mentioned above, a surprise s is a real number be-
tween zero and infinity, depending on the background
knowledge or belief B of a person (here called Ted)
and on the (perhaps fictive) occurrence of an event A.

It may be fully subjective, or it may be determined by
objective circumstances, yielding an intersubjectively
determined number (i.e., the same one for every per-
son with the same background B). In either case,
it is an epistemic quantity, that is, it refers to the
knowledge or belief of a person, and not to some “ob-
jective” property of Nature (unless the two happen to
coincide).

Example 1: Let F be a probability space with a known
probability P = P (A) for every (measurable) event A
in F . Then we may define s(A|B = F ) = − logP (A).
In this case, s is a very natural “objective” measure
for our surprise in case A happens. Some mathemat-
ical properties of s follow in this case, for example,
its wellknown additivity. In particular, the expected
value of s may be termed the entropy of F . And this
entropy may be called the minimum possible average
surprise of Ted. If Ted entertains another surprise
function s′, his average surprise, averaged over all pos-
sible events A with their probabilities, will be at least
as large.

2.3 Two background assumptions

Now consider the situation that Ted entertains two
different background belief systems B and C, perhaps
being in doubt which one he should adopt. This may
be the case in a learning situation, or in a conflict
between different beliefs. If he would be not surprised
if either told reliably that B is true, or else that C
is true, his (minimum) surprise when observing A is
s(A|B or C) = min(s(A|B), s(A|C)).

A more refined and more realistic situation is that
Ted has different (“apriori”) surprises b(B) and c(C)
if told that B or C, resp., is true. (The functions
or numbers b and c measure the surprise if Ted is
told that a specific belief system is true. They may
be different numbers, therefore the change of nota-
tion from s. In the following we require an addi-
tivity property of surprises, as in Example 1.) We
call the three surprises s, b, and c unrelated if no
occurrence of A or B or C (or a subset of these) af-
fects any other surprise. Then Ted’s minimum sur-
prise s(A|(B with b) or (C with c)) = min(s(A|B) +
b(B), s(A|C)+c(C)). Naturally, this can also be done
with more than two beliefs (cf. 2.4).

The observation A in turn influences Ted’s (“aposte-
riori”) surprises about B and C, given A: b(B|A) =

b(B) + s(A|B), and correspondingly for c(C|A). (The
notation is a bit stretched, as A is not a belief sys-
tem, but the meaning should be clear.) Naturally,
this is close to Bayes’ theorem, except that we do not
introduce and do not need the renormalization.

The main purpose of computing b(B|A) and compar-
ing it with c(C|A) is that if b(B|A) is infinite, B
cannot be used anymore as a background belief (ex-
cept in case of an error in A); but also if b(B|A) is
“much” larger than c(C|A), B is “practically impossi-
ble”. This is in accordance with common sense think-
ing (except in case of a very strong prejudice in favor
of B which, however, would also imply a very small
b(B)), but it is at variance with the usual procedure
in Bayes theory, belief function theory and similar ap-
proaches, where even tiny probabilities or beliefs are
being renormalized (as long as they are not exactly
zero).

If a model assumption or another basic assumption
B is clearly shown by the data to be wrong, we have
to change the model, rather than computing some fic-
tive numbers which have no relation to reality. This,
naturally, holds also for the Neyman-Pearson theory.
As C. Daniel, a highly recognized applied statistician,
once said: “We are told not to change the horses in
the middle of the stream ...”, but to continue along
his line: If the old horses drowned already, we better
use new ones. Cf. also [22].

2.4 More than two background assumptions

This subsection is an obvious generalization of 2.3.
But if every B is not a whole belief system, but just
a single parameter, Example 2 can be interpreted as
a general inference method (related to minimum en-
tropy methods).

Consider now a (finite or infinite) class of background
beliefs or assumptions B1, B2, ... with (prior) sur-
prises, b1 = b(B1), b2 = b(B2), .... In practice, we
start looking only at the smallest bi’s; however, we
have to be able to consider also larger bi’s, once an
observation A is made, because now the (near) small-
est s(A|Bi) + b(Bi) will be of the greatest interest.
And the Bi’s with “very large” s(A|Bi) + b(Bi) will
be deemed “practically impossible”.

Example 2: Let F be a measurable space with a set of
parameters Bi and a collection of potential probabili-
ties P (A|Bi) for all measurable events A and the cor-
responding surprises s(A|Bi) = − logP (A|Bi). Let
bi = b(Bi) the collection of apriori surprises if the
Bi were declared to be true. The bi may be a con-
stant, or may be determined by a (subjective or ob-
jective) Bayesian apriori distribution, a likelihood, a
belief function, or some other measure of the apriori
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“plausibility” of the Bi. Given an observation A, the
aposteriori surprise of Bi|A is si := s(A|Bi) + b(Bi).
All “small” values of si are entirely plausible, and
we may just for convenience pick out the minimum
or some similar quantity (perhaps depending also on
“neighboring” Bi’s, doing some local “smoothing”).
But all “too large” si are ruled out as “practically
impossible” (until perhaps – rarely – a very surpris-
ing future observation A2 forces us to either scrutinize
A and A2 more closely or to revolutionize the order
of the Bi, digging out hypothetical models not yet
considered in practice so far).

For a qualitative and semi-quantitative description of
such a set-up, with many practical examples, cf. [28]
and [29].

3 Additional aspects

3.1 Cautious surprises and successful bets

This subsection is for the readers who either know the
two concepts mentioned, or who may want to study
the pertaining literature, and want to see its relation
to the present paper. (Obviously, there is no space
here to repeat the old theories.) The last three para-
graphs contain sketches of related possible future re-
search problems.

In [21] a function m between 0 and 1 (a kind of upper
probability describing our lack of surprise about some
event A) and two definitions are introduced, namely
“cautious surprises” and “successful bets”. Now we
can put s = − logm, and the property of cautious sur-
prises is nothing but the minimization of the average
surprise mentioned above.

When we linearize the logarithm of m, we obtain a lin-
ear theory with close relationships to other statistical
concepts, especially bets, and the concept of success-
ful bets has been worked out to some extent especially
in [23, 24]. A very special case are the (in)famous
fiducial probabilities [21, 26, 27].

Somewhat related may be the linearization of approx-
imately linear theories, such as Choquet capacities in
a local neighborhood (described, e.g., by the gross-
error model or the total-variation model).

Another aspect may be the robustification of the po-
tential surprises, by putting an upper bound on them.
The need for this may be only moderate, sincem logm
is bounded on the unit interval; but the two factors
may not be always so closely related.

The approximate or exact requirements of cautious
surprises or successful bets may also help in the ro-
bustification of the Bayes theory, as in the “weighted

Bayes’ theorem” [25, Ch. 5.3], in which basically ran-
dom weights are treated like fixed weights.

3.2 Ted and Fred: different background
information

We now leave Ted considered in isolation and discuss
informally some situations where more than one per-
son is involved.

An important practical problem is that two (or more)
persons – say, Ted and Fred – may have different
background knowledge or beliefs, while some common
ground, resulting in common or at least similar sur-
prises, should be achieved, otherwise no general opin-
ion, including no general scientific theory, would be
possible.

A first step is to openly discuss the different back-
ground opinions of Ted and Fred, until (hopefully)
some common agreement can be found.

But a frequent obstacle is that many opinions, or even
many reasons for such opinions, are not conscious for
either Ted or Fred. They may be subconscious preju-
dices, which perhaps only by some kind of hard detec-
tive work can be elucidated, for example, by auxiliary
information given by Ted or Fred, or by their family,
educational, sociological or religious background.

Even if the basic reasons for such disagreements can
be brought out into the open, it may be that on cer-
tain points no agreement is possible. Then Ted and
Fred still can “agree to disagree”. An example is the
technical staff for water, electricity etc. in West and
East Berlin during the height of the Cold War, who
had to cooperate in the divided city, and they did so
productively, agreeing on the political disagreements,
but making sure the city would still function.

4 Examples and further aspects

The last chapter provides some more examples of the
rich variety of real-life situations which can be de-
scribed within the framework given. I don’t know all
the literature, but I am not aware of a theory which,
for example, does describe the zigzag in the exam-
ple of 4.1 in an adequate way. Perhaps it is because
most theories are only deductive, while in real life we
need (also) inductive thinking. The formal framework
may still have to be worked out further and refined,
as the example in 4.2 shows. On the other hand, the
example in 4.3 should be a relatively easy one also
for other theories, as it involves no change of back-
ground; moreover, I found it decidedly useful; it may
and should already exist somewhere, in some form or
other.
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The last paragraph offers many opportunities for fur-
ther work. But at any rate, this paper, together with
the two previous ones, provides a broad conceptual
framework (if one wishes, even a quantitative one, as
shown specifically in this paper) for describing how
we can deal with incomplete knowledge and how we
can learn in real life.

4.1 Updating of the background information

Updating information clearly is an important opera-
tion, which can change potential surprises consider-
ably.

Let us assume Ted is going to visit Fred by train fairly
late in the evening. Fred expects to meet Ted at the
closest major station, perhaps a few minutes late, but
hardly more than half an hour late; any much longer
delay would be a big surprise. But then Ted calls that
he is stuck somewhere, because of a serious accident
on the route, and has no information on how long the
delay will be. It is now conceivable that he cannot
even reach the last local train. Later, he cites the
experience of a fellow traveller that with this type of
accident, the delay is usually around 2 hours. This
would mean still reaching the last local train. Even-
tually, after the train moves again, two official delays
become available, which both are somewhat below 2
hours, but differ by 20 minutes. The true arrival time
is in between.

The consecutive updating of the background informa-
tion changes the potential surprises, first to much less
“knowledge”, then to a more realistic expectation (al-
though, as so often in life, not all discrepancies are
cleared up).

4.2 Unexpected surprises

As mentioned above, some potential surprises are so
unlikely to Ted that he does not even think of them.
Sometimes he would consider them more plausible if
his background information were updated by some ad-
ditional information. Let us consider an example with
various forms of surprises.

A married couple want to celebrate their wedding
anniversary, with the husband secretly organizing it.
First, they arrive at a high-level hotel, a fairly big sur-
prise for the wife, but feasible. Then they get their
room which turns out to be a (“the”) historical room:
almost everything like a hundred years ago: a big un-
expected surprise for both of them. An excursion by
horse-drawn carriage was only a moderate surprise for
the wife, since such carriages exist in the area. But
an excursion by public boat on the nearby lake was
an “impossible” surprise for her, since she knew that

such boats didn’t exist; she needed the updating of
her knowledge that in very recent years public boat
connections had been introduced. But then the hus-
band leads his wife, well-dressed and at a fixed time,
not to the ordinary hotel elevator, but to the remote
staff elevator; they go down and get lost in the sub-
terranean floors; he finds the way again, and they
walk amidst the rooms of the staff and end up in a
little chapel where a priest performs a small private
ceremony for their wedding anniversary. – It seems
hard to formalize such surprises and the lack of any
knowledge on the way there.

4.3 Informative short knowledge
descriptions

Let us close with an example from field ornithology.
There are many books on where to find which birds,
but some of them I find rather unsatisfactory, ei-
ther being not sufficiently informative, or not agree-
ing with my experience (or being even misleading).
However, I discovered one book which, to my own
surprise, I found very useful [2]: in its bird lists (each
for a larger area), the abundance of every species was
coded by just 3 symbols: c (for common), no sym-
bol, or r (for rare). (To be more precise, there are
also symbols for the season (summer, winter, migra-
tion, or year around) and sometimes for the altitude
or other informative features.) Why are just these 3
symbols for abundance so satisfying, according to my
experience?

Clearly, r means rare: not impossible, but each ob-
servation would be a big (pleasant) surprise, unless
one knows and visits the restricted areas (if existing)
where the species is not so rare. But in general it
would be no surprise at all not to find the species,
even after a long search. – And c means common:
the species would be no surprise at all, and with a
decently long search in the right habitat (and per-
haps time of day, weather, etc.), it would be a big
surprise not to find it. – No symbol means neither
c nor r; it would be neither a surprise to find the
species, nor a surprise not to find it. The species
may be sparsely distributed, or regional, or temporal
(e.g., during irregular invasions); a more detailed de-
scription of the “probability of encounter” (“Antreff-
Wahrscheinlichkeit”, cf. [19, 20, 22] would be too com-
plicated on limited space. But two out of three cate-
gories are very informative. – I think we can use this
set-up much more generally to distinguish the things
we are pretty sure to happen, the ones we are pretty
sure not to happen, and the ones we just don’t know.

The method can be easily generalized to situations
with more than two alternatives. We can describe pro-
files of potential surprises – and conditional surprises,
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given various backgrounds – in very complicated sit-
uations. Surprises imply assumed partial knowledge
(that an event is not likely going to happen). Two
very special cases are deterministic knowledge (all
surprises infinite, except one being zero), and perfect
knowledge of a probability space (the sum of the neg-
ative antilogarithms of all surprises of disjoint events
being one), but obviously there are many more forms
of incomplete knowledge.

Acknowledgments: I am grateful to W. Stahel for
his help. – Besides the references given by the editors,
two referees provided a thorough critical reading and
a number of questions and suggestions which gave rise
to a considerable enlargement of the original paper.
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68, 1937. English translation in Kyburg, H. E.,
and Smokler, H. E. (eds.) (1964) Studies in Sub-
jective Probability. Wiley, New York. (2nd, en-
larged ed. 1980).

[12] A. P. Dempster. Upper and lower probabilities
induced by a multivalued mapping. Ann. Math.
Statist., 38:325–339, 1967.

[13] A. P. Dempster. A generalization of Bayesian
inference. J. Roy. Statist. Soc., B 30:205–245,
1968.

[14] D. Dubois and H. Prade. Theory of Possibility.
Plenum, London, UK., 1988. Original Edition in
French (1985) Masson, Paris.

[15] R. A. Fisher. Inverse probability. Proc. of
the Cambridge Philosophical Society, 26:528–535,
1930. Reprinted in Collected Papers of R. A.
Fisher, ed. J. H. Bennett, Volume 2, 428–436,
University of Adelaide 1972.

[16] I. J. Good. The probabilistic explication of in-
formation, evidence, surprise, causality, explana-
tion, and utility. In V. P. Godambe and D. A.
Sprott, editors, Foundations of Statistical Infer-
ence, pages 108–141. Holt, Rinehart, and Win-
ston, Toronto, 1971. Reprinted partly in Good
(1983).

[17] I. J. Good. Good Thinking; The Foundations of
Probability and Its Applications. University of
Minnesota Press, Minneapolis, 1983.

[18] I. Hacking. The Emergence of Probability. A
philosophical study of early ideas about proba-
bility, induction and statistical inference. Cam-
bridge University Press, Cambridge, 1975.

216 Frank Hampel



[19] F. Hampel. Artenliste vom Seeburger See
1955-1964 (unter knapper Berücksichtigung
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Abstract

We generalise de Cooman and Troffaes’s sufficient
condition for dynamic programming to work for deter-
ministic discrete-time systems. To do so, we use the
general framework developed by Huntley and Trof-
faes, for decision trees with arbitrary rewards and ar-
bitrary choice functions. Whence, we allow determin-
istic discrete-time systems with arbitrary rewards and
an arbitrary composition operator on rewards. We
show that the principle of optimality reduces to two
much simpler conditions on the choice function. We
establish necessary and sufficient conditions on choice
functions for deterministic discrete-time systems to
be solvable by backward induction, that is, for dy-
namic programming to work. Finally, we also discuss
subtree perfectness—which is a stronger form of dy-
namic consistency—for these systems, and show that,
in general, decision criteria from imprecise probability
theory violate it, even though dynamic programming
may work.

Keywords. Optimal control, dynamic programming,
deterministic discrete-time systems, backward induc-
tion, subtree perfectness, choice function

1 Introduction

In this paper we formalize and extend the results of
de Cooman and Troffaes [4] for deterministic discrete-
time systems with uncertain gains. Such systems are
typical in control theory (see for instance [2, 9]), which
more generally covers the behaviour and control of
dynamic systems. The particular class of systems we
investigate is best illustrated by example: Fig. 1 de-
picts a system that starts at N1, and can reach N4 by
multiple paths. The subject, who controls the system,
can choose the path the system will take. Travelling
down a particular arc gives the subject an associated
reward. For instance, choosing the arc from N1 to N2

will give the subject X. The subject’s task is to find
an optimal path for the system to take.

N1

N2

N3

N4

X

Y

Z

W

V

U

Figure 1: A simple deterministic system.

This is an example of a deterministic discrete-time
system. If all rewards U , . . . , Z are certain, so the sub-
ject knows exactly what she will receive when choos-
ing a particular route, then this is a system with cer-
tain gains. Such systems are easily solved: find a
path with the highest total reward. We instead con-
sider systems with uncertain gains, so U , . . . , Z give
rewards determined by the as yet unknown state of
nature. Such uncertain gains are called gambles. The
overall reward for a particular path is then determined
by the sum of the gambles for all arcs in the path.

This paper deals with normal form decision making.
In general, normal form decisions involve the sub-
ject specifying her decisions in all eventualities, and
then acting upon this specification. For deterministic
discrete-time systems with certain rewards, a normal
form decision is simply a path through the system.
In contrast, the extensive form involves making deci-
sions only when the relevant decision point is reached,
and is expressed differently. We do not investigate the
extensive form in this paper, but caution that the two
forms do not always lead to the same answer.

With uncertain rewards, there are two possible ways
the system can evolve. If the subject receives the re-
ward from a gamble as soon as that arc is chosen, then
she can use this information to choose her next arc.
For example, an informal strategy for Fig. 1 could be
“choose Y , and then choose W if Y has given a large
reward, but choose V otherwise”. Alternatively, the
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N1

N2 X + Z
dZ

dX

N3

Y +W

dW

Y + V
dV

Y + U

d
U

d
Y

Figure 2: The decision tree for Fig. 1.

subject may only learn about her actual rewards at
the end of the process, and so could have no strat-
egy more complicated than, say “choose Y , then W”,
because she does not learn of the outcome of Y until
later. The latter set-up, where the true state of nature
is only revealed at the end of the process, is followed
by de Cooman and Troffaes, and so we follow it too.

Normal form decisions are thus very simple (indeed,
exactly the same as for certain rewards), and no con-
cept of conditioning is required. Also, since in this
case everything is completely deterministic until the
final decision has been made, it seems natural to use
the normal form. Note that the concept of normal
form decision making can be criticized [14], however
we do not aim to address these issues in this paper.

We aim to apply known results by Huntley and Trof-
faes [6] on backward induction and subtree perfectness
for decision trees to these deterministic discrete-time
systems, thereby generalizing the work of de Cooman
and Troffaes [4]. Whence, as a first step, we represent
these systems as decision trees [8, 7, 3]. An example
is given in Fig. 2. In such a tree, square nodes, called
decision nodes, represent points at which the subject
must choose an arc. The circular nodes, called chance
nodes represent points at which the consequence is
determined by the state of nature. For completeness,
Fig. 3 ought to have arcs leading from the chance
nodes to terminal reward nodes, representing the re-
wards given by the gambles for particular states of
nature. Since we have not explicitly defined the gam-
bles, this final layer of nodes has been omitted.

This representation can be simplified to a form of de-
cision tree more suited for the special structure of the
problem at hand. In this representation, which we
call a deterministic system tree, there are only two
types of nodes: decision nodes and terminal nodes.
All branches end with a terminal node, and all ter-
minal nodes appear at the end of branches. Every

N1

N2

Z

X

N3

W

V

U

Y

Figure 3: The deterministic system tree for Fig. 1.

arc corresponds to a decision, and each arc has an
associated gamble. The deterministic system tree for
Fig. 1 is shown in Fig. 3. It must be emphasised that,
although gambles are acquired upon choosing a deci-
sion arc, their value is not discovered until the termi-
nal node is reached. Therefore there is no learning or
conditioning involved in this model.

This tree is clearly much more similar to the descrip-
tion of the system. Indeed, normal form decisions
for deterministic system trees are again just paths
through the tree. How do we find the optimal paths?
Following [4], we will use choice functions on gambles.
Such choice function returns, for every set of gambles,
a subset of gambles which are deemed optimal in some
sense (which depends on your choice of choice func-
tion). For example, maximizing expected utility is
one such choice function, but many more exist.

Now, as we saw, each path through the tree has a cor-
responding gamble. Whence, given a choice function,
we can say that a path is optimal whenever its gamble
is optimal in the set of gambles induced by all paths.
Effectively, we end up with a set of optimal paths.

Two questions arise from this form of solution.
The first, addressed by de Cooman and Troffaes, is
whether backward induction (more commonly called
dynamic programming in this field, following Bell-
man [2]) can be used to reach the normal form so-
lution for a given choice function.

The idea of backward induction is simple. We infor-
mally illustrate it on Fig. 3. First, we find which of
W , V , and U are optimal. Suppose this is {V,W}.
Then, we determine which of X+Z, Y +W , and Y +V
is optimal. We end up with the backward induction
solution, say for instance {X + Z, Y + V }.
Backward induction thus returns a set of paths, but
for many choice functions it can give a different set
of paths from the standard normal form solution. In
other words, applying the choice function recursively
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stage-by-stage may not give the same result as ap-
plying the choice function on all gambles at once.
De Cooman and Troffaes [4] show that backward in-
duction works if the choice function satisfy Bellman’s
principle of optimality [2] and another property, insen-
sitivity to the omission of non-optimal elements. This
paper contributes a reformulation of these results into
a theorem about trees and paths in the same fashion
as our method for decision trees [6], a proof of neces-
sity as well as sufficiency, and a decomposition of the
principle of optimality into two more basic properties.

The second question is whether the normal form solu-
tion is equivalent to the combination of local solutions.
For instance, in Fig. 3, if W and V are both optimal
at N3, then both Y + W and Y + V should be opti-
mal at N1, or neither should—this was violated in our
earlier example demonstrating backward induction.

This property has been studied extensively for prob-
lems modelled by standard decision trees (see for in-
stance [5, 10, 11, 6]). We call a solution with such a
property subtree perfect (following Selten’s analogous
concept of subgame perfectness [15]). We show that
subtree perfectness for deterministic system trees cor-
responds to a stricter version of Bellman’s principle of
optimality obtained by strengthening set inclusions of
all properties involved to equalities.

The paper is structured as follow. Section 2 intro-
duces necessary notation. Section 3 presents the re-
sults on dynamic programming. Section 4 presents
the results on subtree perfectness. Section 5 provides
a brief summary of the consequences of the results
for the theory of coherent lower previsions. Section 6
concludes the paper.

2 Definitions and Notation

Let Ω be a possibility space, i.e. the set of all possible
states of nature. Elements ω of Ω are called outcomes.
Let R be a set of rewards (results the subject can re-
ceive; they do not have to be desirable rewards). We
assume a binary operator + on R, which we call ad-
dition.1 We assume that R has a left identity element
0, so 0 + r = r for all r ∈ R. We also assume that
r1+r2 = r1+r3 implies r2 = r3; this holds for instance
if every reward r ∈ R has a left inverse −r ∈ R, so
(−r) + r equals the left identity element 0. No other
assumptions about R are required.

A gamble is a function X : Ω → R, with the inter-
pretation that, should ω be the true state of nature,
the gamble X gives the subject the reward X(ω).

1If R = R, then the operator + does not need to have any
resemblance with the usual addition of real numbers, although
it is a convenient and popular choice.

Addition of gambles is defined in the obvious way:
(X + Y )(ω) = X(ω) + Y (ω).

Given a set of gambles X (in this paper, all sets are
assumed to be finite, and non-empty unless otherwise
noted) from which our subject must pick one, how
should she decide? Ideally, she would like to select a
single optimal gamble for every set X , but this may
not always be possible, for instance, because she lacks
information about ω, or because she has no precise
utility over her rewards. She might, at least, be able
to specify a (possibly empty) set of gambles in X she
considers unacceptable. Any gamble not so judged
remains a plausible candidate, and these could be re-
ported as an optimal set. This procedure is repre-
sented by a choice function: a function that maps
sets of options to non-empty subsets.

Definition 1. A choice function on gambles, opt, is
a function that maps each set X of gambles to a non-
empty subset of that set:

∅ 6= opt(X ) ⊆ X .

How do we use the concepts of gambles and choice
functions to solve deterministic system trees? First,
we introduce the concept of normal form decisions,
solutions, and operators.

Definition 2. A normal form decision of a determin-
istic system tree T is a path through T .

Definition 3. The set of all normal form decisions
for a deterministic system tree T is denoted by nfd(T ).

Definition 4. A normal form solution of a determin-
istic system tree T is a non-empty subset of nfd(T ).

The interpretation of a normal form solution is that
the subject may pick any path in this subset and fol-
low it.

Definition 5. A normal form operator norm is a
function that maps each deterministic system tree T
to a normal form solution of T :

∅ 6= norm(T ) ⊆ nfd(T ).

Using these definitions, we can define the set of all
gambles associated with a deterministic system tree.
Recall that any path through a tree has its own gam-
ble, so given the set of all normal form decisions we
can find the set of all gambles for that tree.

Definition 6. The function gamb maps deterministic
system trees to their set of associated gambles (called
normal form gambles):

gamb(T ) =
⋃

U∈nfd(T )

gamb(U).
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This gives us a set of gambles to which to apply the
choice function opt. The procedure is as follows: find
the set of normal form gambles, apply the choice func-
tion to find an optimal subset of normal form gambles,
and then list all normal form decisions with gambles
in this optimal subset. This defines a normal form
operator, normopt.
Definition 7. For a choice function opt, the normal
form operator induced by opt is defined for any de-
terministic system tree T by

normopt(T ) = {U ∈ nfd(T ) :
gamb(U) ⊆ opt(gamb(T ))}.

Of course, since U is always a normal form decision,
gamb(U) is always a singleton in this definition. In
particular, the following equality holds:

gamb(normopt(T )) = opt(gamb(T )).

In the above equation, we have used the following
notation: for any set of deterministic system trees T ,

gamb(T ) =
⋃

T∈T
gamb(T ).

To express backward induction in terms of trees, and
to help with many proofs, we introduce a notation for
representing a deterministic system tree as a combi-
nation of smaller deterministic system trees. For any
trees T1, . . . , Tn, we can join them at a decision node,
with the arc from this decision node to Ti correspond-
ing to a gamble Xi, and write this as

n⊔

i=1

XiTi.

Sometimes we need to work with all the possible ways
to join sets of trees T1, . . . , Tn in a similar way. This
is written as

n⊔

i=1

XiTi =

{
n⊔

i=1

XiTi : Ti ∈ Ti

}
.

This allows gamb to be defined recursively:

gamb

(
n⊔

i=1

XiTi

)
=

n⋃

i=1

(Xi + gamb(Ti)),

where we use the notation

X + Y = {X + Y : Y ∈ Y}.

Similarly,

gamb

(
n⊔

i=1

XiTi

)
=

n⋃

i=1

(Xi + gamb(Ti)).

Finally, we sometimes need to restrict deterministic
system trees to particular subtrees, obtained by re-
moving everything before a certain node.

Definition 8. A subtree of a deterministic system
tree T obtained by removal of all non-descendants of
a particular node N , but retaining N , is called the
subtree of T at N and is denoted by stN (T ).

This extends to sets of trees in the usual way:

stN (T ) = {stN (T ) : T ∈ T and N in T}.

Usually, the subtrees we need to use are those whose
roots are immediate successors of T . Therefore we
define ch(T ) to be the set of immediate successors
(i.e. children) of the root node of T .

3 Backward Induction Theorem

We introduce a new normal form operator based on
backward induction, defined recursively. The opera-
tor works by eliminating non-optimal paths in sub-
trees, then bringing all optimal paths to the next
largest subtree, and so on until the root node is
reached. To do so elegantly, we extend normopt to
act upon sets of trees:

normopt(T ) = {U ∈ nfd(T ) :
gamb(U) ⊆ opt(gamb(T ))}.

Definition 9. The normal form operator backopt is
defined for any deterministic system tree T that con-
sists only of a terminal node by

backopt(T ) = T

and for any other deterministic system tree T =⊔n
i=1XiTi by

backopt(T ) = normopt

(
n⊔

i=1

Xi backopt(Ti)

)
.

We are interested in determining when backopt and
normopt coincide. This happens if and only if the
following two properties hold.

Property 1 (Insensitivity of optimality to the omis-
sion of non-optimal elements). For any sets of gam-
bles X and Y,

opt(X ) ⊆ Y ⊆ X ⇒ opt(Y) = opt(X ).

De Cooman and Troffaes [4] explain that this prop-
erty is crucial for backward induction to work. It also
appears in the work of Sen [16], who shows it to be
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one “half” of the property of path independence (see
for instance Plott [12]).

The second property was introduced by Bellman [2]
with the following explanation:

An optimal policy has the property that,
whatever the initial state and initial decision
are, the remaining decisions must constitute
an optimal policy with regard to the state
resulting from the first decision.

Note that, in the context of deterministic system
trees, states are simply decision nodes.

Although Bellman states the principle in terms of the
first decision only, it implies that the restriction of an
optimal policy to any subtree must be optimal. We
formalize the principle into the following property.

Property 2 (Principle of Optimality). A normal
form operator norm satisfies the principle of optimal-
ity if, for any deterministic system tree T , and any
node N in at least one element of norm(T ),

stN (norm(T )) ⊆ norm(stN (T )).

Equivalently, for any normal form decision U ∈
norm(T ) and any node N in U ,

stN (U) ∈ norm(stN (T )).

For the particular case of normopt, the above defini-
tion is easily seen to be equivalent to the inclusion for-
mula of de Cooman and Troffaes [4, Definition 13]—
but our notation is far more efficient at expressing it.

Interestingly, we can decompose Property 2, the prin-
ciple of optimality, into two far more basic properties.

Property 3 (Preservation of non-optimality under
the addition of elements). For any sets of gambles X
and Y,

Y ⊆ X ⇒ opt(Y) ⊇ opt(X ) ∩ Y.

This is a type of independence of irrelevant alterna-
tives (see [1, 13]), called property α by Sen [16]. It
is the other “half” of path independence (so we show
that path independence is necessary for dynamic pro-
gramming). Property 3 is not explicitly invoked by
de Cooman and Troffaes, but it is used in a proof for
a particular choice function [4, Proposition 16].

Property 4 (Backward Addition Property). For any
gamble X and any non-empty finite set of gambles Y,

opt(X + Y) ⊆ X + opt(Y).

This property was informally foreseen by de Cooman
and Troffaes (see the discussion of “additivity” [4,
§3.4]). It is similar to properties relating to backward
induction for other decision processes [6, 17].

The proof of equivalence relies on the next lemma.

Lemma 10. Let norm be any normal form operator.
Let T be a consistent decision tree. If,

(i) for all nodes K ∈ ch(T ) such that K is in at least
one element of norm(T ),

stK(norm(T )) ⊆ norm(stK(T )),

(ii) and, for all nodes K ∈ ch(T ), and all nodes L ∈
stK(T ) such that L is in at least one element of
norm(stK(T )),

stL(norm(stK(T ))) ⊆ norm(stL(stK(T ))),

then, for all nodes N in T such that N is in at least
one element of norm(T ),

stN (norm(T )) ⊆ norm(stN (T )).

Proof. If N is the root of T , then the result is imme-
diate. If N ∈ ch(T ), then the result follows from (i).
Otherwise, N must be in stK(T ) for one K ∈ ch(T ).

By assumption, there is a U ∈ norm(T ) that con-
tains N (and of course also K). Therefore, U ∈
stK(norm(T )), and by (i), stK(U) ∈ norm(stK(T )),
and so N is also in at least one element of
norm(stK(T )).

We use the fact that, if U and V are sets of normal
form decisions such that U ⊆ V, then for any node N ,
stN (U) ⊆ stN (V). Combining everything, by (i),

stN (stK(norm(T ))) ⊆ stN (norm(stK(T )))

hence, since N is in at least one element of
norm(stK(T )), by (ii) we have

⊆ norm(stN (stK(T ))),

whence the desired result follows, since
stN (stK(T )) = stN (T ).

Theorem 11. normopt satisfies Property 2 if and
only if opt satisfies Properties 3 and 4.

Proof. “only if”. Let X be a gamble and Y =
{Y1, . . . , Yn} be a set of gambles. Consider the up-
per tree in Fig. 4. If X + Yk ∈ opt(X + Y), then by
Property 2 it follows that Y ∈ opt(Y), hence Prop-
erty 4 holds. Next, consider the lower tree. Let
Y = {Y1 . . . , Ym}, Z = {Z1, . . . , Zn} and suppose
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Figure 4: Decision trees for Theorem 11.

Y ∩ Z = ∅. Now let X = Y ∪ Z. By Property 2
we know that if Y ∈ Y ∩ opt(X ), then Y ∈ opt(Y),
hence Property 3 holds.

“if”. We proceed by structural induction. Let T be a
deterministic system tree. The base step, to show the
result when T consists of a terminal node only, is triv-
ial. The inductive step is to suppose that Property 2
holds for every stK(T ) where K ∈ ch(T ), and then
show that Property 2 holds for T . By Lemma 10, we
need only show that for every K ∈ ch(T ) that is in at
least one element of normopt(T ),

stK(normopt(T )) ⊆ normopt(stK(T )).

So, the proof is established if we can show that, for
every U ∈ normopt(T ) passing through K ∈ ch(T ),

stK(U) ∈ normopt(stK(T )). (1)

We now express this in terms of gambles—but first
we introduce some notation.

Let ch(T ) = {K1, . . . ,Kn}, and K = Kk. Let
gamb(stKi

(T )) = Yi, and let Xi be the gamble corre-
sponding to the arc to Ki. That is,

T =
n⊔

i=1

Xi stKi
(T ).

Recall, U contains the node Kk, so gamb(U) = Xk +
Yk for some Yk ∈ Yk.

Now, because U ∈ normopt(T ), we know that

Xk +Yk ∈ opt(gamb(T )) = opt

(
n⋃

i=1

(Xi +Yi)

)
. (2)

To establish Eq. (1), we must simply show that Yk ∈
opt(Yk).

Indeed. Obviously,

Xk + Yk ⊆
n⋃

i=1

(Xi + Yi).

Applying Property 3,

opt(Xk + Yk) ⊇ opt

(
n⋃

i=1

(Xi + Yi)

)
∩ (Xk + Yk).

However, by Eq. (2), Xk + Yk belongs to the right
hand side, whence, it must also belong to the left hand
side. Now, apply Property 4, to see that indeed Yk ∈
opt(Yk). This completes the inductive step.

We are now in a position to prove a backward induc-
tion theorem. It turns out that we can incorporate an-
other simple concept into this theorem, namely that
of strategic equivalence. Two trees are strategically
equivalent if their set of gambles is the same. We
can show easily that backopt and normopt agreeing is
equivalent to backopt preserving strategic equivalence.
Theorem 12. Let opt be any choice function. The
following conditions are equivalent.

(A) For any deterministic system tree T , it holds that
backopt(T ) = normopt(T ).

(B) For any strategically equivalent deterministic sys-
tem trees, T1 and T2, it holds that

gamb(backopt(T1)) = gamb(backopt(T2)).

(C) opt satisfies Properties 1 and 2.

Lemma 13. If, for all strategically equivalent deter-
ministic system trees T1 and T2, it holds that

gamb(backopt(T1)) = gamb(backopt(T2)),

then opt satisfies Property 1.

Proof. Let X and Y = {Y1, . . . , Yn} be sets of gam-
bles such that opt(X ) ⊆ Y ⊆ X . Let T1 be a deter-
ministic system tree with just one decision node and
gamb(T1) = X . Let T2 be a deterministic system tree
constructed as follows: there is one decision arc with
gamble 0 that leads to T1, and n other decision arcs,
each leading immediately to a terminal node, with
gambles Y1 to Yn. Clearly, gamb(T2) = X . We have

gamb(backopt(T2)) = opt(opt(X ) ∪ Y) = opt(Y).

because opt(X ) ⊆ Y. Since backopt is assumed to pre-
serve strategic equivalence, and T1 and T2 are strate-
gically equivalent by construction, it follows that
opt(Y) = opt(X ), as required.
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Lemma 14. If, for all strategically equivalent deter-
ministic system trees T1 and T2, it holds that

gamb(backopt(T1)) = gamb(backopt(T2)),

then normopt satisfies Property 2.

Proof. We show that opt must satisfy Properties 3
and 4 and invoke Theorem 11. We can again use the
two trees from Fig. 4. Let the upper tree be called
T1, and let T2 be a tree with only one decision node
and gamb(T2) = X + Y. Then,

opt(X + Y) = gamb(backopt(T2))
= gamb(backopt(T1))
= opt(X + opt(Y)) ⊆ X + opt(Y),

so Property 4 holds.

Let T1 be the lower tree in Fig. 4, with {Y,Z} a
partition of X . Let T2 have one decision node and
gamb(T2) = X . As assumed, gamb(backopt(T1)) =
opt(opt(Y) ∪ opt(Z)) = opt(X ). So,

opt(X ) ∩ Y = opt(opt(Y) ∪ opt(Z)) ∩ Y
⊆ (opt(Y) ∪ opt(Z)) ∩ Y
= opt(Y) ∩ Y = opt(Y),

so Property 3 holds.

Lemma 15. If T ⊆ U ⊆ V are sets of de-
terministic system trees, opt satisfies Property 1,
and normopt(T ) = normopt(V), then normopt(U) =
normopt(V).

Proof. By assumption, we have that

opt(gamb(V)) = opt(gamb(T )) ⊆ gamb(T )
⊆ gamb(U) ⊆ gamb(V).

Hence, by Property 1,

opt(gamb(T )) = opt(gamb(U)) = opt(gamb(V)).

So,

normopt(U) = {U ∈ U : gamb(U) ⊆ opt(gamb(T ))}
⊇ {U ∈ T : gamb(U) ⊆ opt(gamb(T ))}
= normopt(T )

because U ⊇ T , and

normopt(U) = {U ∈ U : gamb(U) ⊆ opt(gamb(V))}
⊆ {U ∈ V : gamb(U) ⊆ opt(gamb(V))}
= normopt(V)

because U ⊆ V. We conclude that

normopt(T ) ⊆ normopt(U) ⊆ normopt(V).

Now use normopt(T ) = normopt(V).

Proof of Theorem 12. (A) =⇒ (B). Immediate, since
for strategically equivalent trees, normopt(T1) =
normopt(T2) by definition.

(B) =⇒ (C). See Lemmas 13 and 14.

(C) =⇒ (A). We proceed by structural induction.
The base step is trivial. The induction hypothesis is
that, for a T =

⊔n
i=1XiTi, we have normopt(Ti) =

backopt(Ti) for all i. The induction step is to show
that this implies normopt(T ) = backopt(T ).

Let Ki be the root node of Ti. For any i such that Ki

is in at least one element of normopt(T ), we know from
Property 2 that stKi

(normopt(T )) ⊆ normopt(Ti) =
backopt(Ti). If instead Ki is not in at least one ele-
ment of normopt(T ), then nothing from backopt(Ti) is
involved in normopt(T ). Therefore,

normopt(T ) ⊆
n⊔

i=1

Xi backopt(Ti) ⊆ nfd(T ).

Since normopt(nfd(T )) = normopt(T ) and it fol-
lows from Property 1 that normopt(normopt(T )) =
normopt(T ),2 we can use Lemma 15 to conclude that

backopt(T ) = normopt

(
n⊔

i=1

Xi backopt(Ti)

)

= normopt(T ).

4 Subtree Perfectness

Subtree perfectness means that, when a normal form
solution is restricted to a subtree of a deterministic
system tree, it is equal to the solution of the subtree.

Definition 16. A normal form operator norm is sub-
tree perfect if, for any deterministic system tree T ,
and any node N in at least one element of norm(T ),

stN (norm(T )) = norm(stN (T )).

This is just a stronger form of Property 2, and so it is
unsurprising that the necessary and sufficient condi-
tions on opt turn out to be identical apart from having
equalities instead of inclusions.

Property 5 (Intersection property). For any sets of
gambles X and Y such that Y ⊆ X and opt(X )∩Y 6=
∅,

opt(Y) = opt(X ) ∩ Y.
Property 6 (Addition Property). For any gamble X
and any non-empty finite set of gambles Y,

opt(X + Y) = X + opt(Y).
2Use Y = opt(X ) in Property 1.
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Note that Property 1 is actually included within Prop-
erty 5 (which is in fact equivalent to saying that opt
defines a total preorder [1]). Another useful reformu-
lation of Property 5 is [16, 6]:
Property 7 (Very strong path independence). For
any sets of gambles X1, . . . ,Xn, let I = {i : Xi ∩
opt(∪n

i=1Xi) 6= ∅}. Then,

opt

(
n⋃

i=1

Xi

)
=

n⋃

i∈I
opt(Xi).

Theorem 17. The normal form operator normopt is
subtree perfect for deterministic system trees if and
only if opt satisfies Properties 5 and 6.
Lemma 18. Consider a deterministic system tree
T =

⊔n
i=1XiTi, and any choice function opt. For

each tree Ti, let Ki be its root. Then, Ki is in at least
one element of normopt(T ) if and only if

(Xi + gamb(Ti)) ∩ opt(gamb(T )) 6= ∅. (3)

Proof. Eq. (3) holds if and only if there is a normal
form decision U ∈ nfd(Ti) such that Xi + gamb(U) ⊆
opt(gamb(T )). This is equivalent to there being a
U such that gamb(tXiU) ⊆ opt(gamb(T )). Clearly,
tXiU is a normal form decision of T , and so by def-
inition of normopt, Eq. (3) holds if and only if tXiU
is in normopt(T ), which holds if and only if Ki is in
at least one element of normopt(T ).

Lemma 19. If T =
⊔n

i=1XiTi, and opt is a choice
function satisfying Properties 5 and 6, then

gamb(normopt(T )) =
⋃

i∈I
(Xi + gamb(normopt(Ti)))

(4)
implies

normopt(T ) = nfd

(⊔

i∈I
Xi normopt(Ti)

)
,

where I = {i ∈ {1, . . . , n} : (Xi + gamb(Ti)) ∩
opt(gamb(T )) 6= ∅}.

Proof. We first show that

normopt(T ) ⊇ nfd

(⊔

i∈I
Xi normopt(Ti)

)
.

Consider a normal form decision U ∈
nfd
(⊔

i∈I Xi normopt(Ti)
)
. To show that

U ∈ normopt(T ), we must show that U ∈ nfd(T )
and gamb(U) ⊆ gamb(normopt(T )). The former is
obvious, and the latter is established by Eq. (4):

gamb(U) ⊆
⋃

i∈I
(Xi + gamb(normopt(Ti)))

= gamb(normopt(T )).

Next we show that

normopt(T ) ⊆ nfd

(⊔

i∈I
Xi normopt(Ti)

)
.

Let U ∈ normopt(T ). Let V be U with the root node
removed, that is, U = tXkV for some k. Clearly, V ∈
nfd(Tk). It suffices to show that V ∈ normopt(Tk).
Let {Y } = gamb(V ) and let Y = gamb(Tk). We know
that Xk + Y ∈ gamb(T ), and Y ∈ gamb(Tk). Also,
Xk + Y ⊆ gamb(T ). By Property 5 and Lemma 18,

opt(Xk + Y) = opt(gamb(T )) ∩ (Xk + Y).

By Property 6,

Xk + opt(Y) = opt(Xk + Y),

whence

Xk + opt(Y) = opt(gamb(T )) ∩ (Xk + Y).

We know Xk +Y is in the right hand side, so Xk +Y
is in the left hand side. Therefore Y ∈ opt(Y) and
V ∈ normopt(Tk).

Lemma 20 (Huntley and Troffaes [6, Lemma 17]).
Let norm be a normal form operator. Let T be a de-
terministic system tree. If,

(i) for all nodes K ∈ ch(T ) such that K is in at least
one element of norm(T ),

stK(norm(T )) = norm(stK(T )),

(ii) and, for all nodes K ∈ ch(T ), and all nodes L ∈
stK(T ) such that L is in at least one element of
norm(stK(T )),

stL(norm(stK(T ))) = norm(stL(stK(T ))),

then, for all nodes N in T such that N is in at least
one element of norm(T ),

stN (norm(T )) = norm(stN (T )).

Lemma 21. If normopt is subtree perfect then opt
satisfies Property 5.

Proof. Let X and Y be sets of gambles such that
Y ⊆ X . Let T1 and T2 be deterministic system trees
with exactly one decision node, and gamb(T1) = X ,
gamb(T2) = Y. Let T = T1 t T2 (so the arcs to T1

and T2 have reward 0), and N be the node at the root
of T2. So, gamb(T ) = X . Now, gamb(normopt(T )) =
opt(X ), and gamb(stN (normopt(T ))) = gamb(Y) ∩
opt(X ). By subtree perfectness, Property 5 fol-
lows.
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Lemma 22. If normopt is subtree perfect, then opt
satisfies Property 6.

Proof. Let X be a gamble and let Y be a non-empty
finite set of gambles. Let T1 be a deterministic system
tree with exactly one decision node and gamb(T1) =
Y. Let T = tXT1, so gamb(T ) = X + Y. Now,

gamb(normopt(T )) = opt(X + Y)

and
gamb(normopt(T1)) = opt(Y).

By subtree perfectness and the definition of normopt,
we must have that, first, any gamble X + Y ∈
opt(X+Y) must have Y ∈ opt(Y) (else there is a U ∈
normopt(T ) that is non-optimal in T1), and second,
any Y ∈ opt(Y) must have X +Y ∈ opt(X +Y) (else
there is a U ∈ normopt(T1) with tXU non-optimal in
T ). Therefore opt(X + Y) = X + opt(Y).

Proof of Theorem 17. “only if”. Follows from Lem-
mas 21 and 22.

“if”. We proceed by structural induction as usual.
The base step is trivial. The induction hypothesis is
that, for a T =

⊔n
i=1XiTi, we have subtree perfect-

ness at all Ti. If we can show that

gamb(normopt(T )) =
⋃

i∈I
(Xi + gamb(normopt(Ti)))

for I = {i ∈ {1, . . . , n} : (Xi + gamb(Ti)) ∩
opt(gamb(T )) 6= ∅}, then by Lemma 19 and
Lemma 20, subtree perfectness holds for T .

We have

gamb(normopt(T )) = opt

(
n⋃

i=1

(Xi + gamb(Ti))

)

whence by Property 7

=
⋃

i∈I
opt(Xi + gamb(Ti))

whence by Property 6

=
⋃

i∈I
(Xi + opt(gamb(Ti)))

=
⋃

i∈I
(Xi + gamb(normopt(Ti)))

as required.

Property
1 3 4 5 6

E-admissibility X X X X
Maximality X X X X
Γ-maximin X X X

Interval Dominance X X

Table 1: Properties of various choice functions.

5 Imprecise Probability

De Cooman and Troffaes [4, §3.2–3.5] investigate
whether dynamic programming works for four com-
mon choice functions in imprecise probability [18],
namely maximality, E-admissibility, Γ-maximin, and
interval dominance. The first two satisfy all proper-
ties, and the latter two fail Property 4. Γ-maximin
and interval dominance fail because of the non-
additivity of a coherent lower prevision.

For subtree perfectness, none of the choice functions
satisfies all the necessary properties. Property 5 re-
quires a total preorder, and, of the four, only Γ-
maximin is. Since Γ-maximin fails Property 4, it auto-
matically fails Property 6. These results mirror those
for standard decision trees [6]: only maximality and
E-admissibility allow backward induction, and noth-
ing is subtree perfect. A table showing the properties
satisfied by each choice function is shown in Table 1.

As mentioned by de Cooman and Troffaes, Γ-maximin
could satisfy Property 6 for certain lower previsions.
Suppose that Ω is a product of possibility spaces
Ω1, . . . ,Ωm, and the gambles on the ith decision arc in
any path is a gamble on Ωi. If the overall lower previ-
sion P is a suitable independent product of lower pre-
visions P i on the Ωi, then additivity will be satisfied.
We refer to [4, §3.4] for more details and references.

6 Conclusion

In this paper we have investigated dynamic program-
ming for deterministic discrete-time systems with un-
certain gain using normal form operators induced
by choice functions. We have brought the work of
de Cooman and Troffaes into the decision tree setting
of [6]. In doing so, we have extended their Bellman
Equation Theorem [4, Theorem 14] by adding neces-
sity to their sufficiency, allowing arbitrary rewards
(so a utility function over rewards is no longer as-
sumed), and fairly arbitrary addition operators. Also,
we have decomposed Bellman’s principle of optimality
into two much simpler properties.

Further, we have found simple necessary and sufficient
conditions for subtree perfectness, which is a stronger
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form of Bellman’s principle. The distinction between
dynamic programming and subtree perfectness is not
often made (see for instance the informal description
of Property 2 by Luenberger [9, p. 419]: this is clearly
subtree perfectness being described).

A likely reason for this lack of distinction is that, un-
der the assumption of a total preorder (a very popular
assumption in decision theory literature) the two con-
cepts become almost identical. We cannot think of a
well-known choice function for any uncertainty model
that satisfies Properties 4 and 5 but not Property 6.
The distinction is much more important with impre-
cise methods, where a major attraction is the ability
to model indecision and incomparability of options.
In such cases, subtree perfectness will always fail.

The key observations are that lack of subtree perfect-
ness is not necessarily a barrier to dynamic program-
ming, but nor is success of dynamic programming
enough to guarantee that one’s normal form solution
is completely well-behaved.
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Abstract

When applying any technique of multidimensional
models to problems of practice, one always has to
cope with two problems: it is necessary to have a
possibility to represent the models with a “reason-
able” number of parameters and to have sufficiently
efficient computational procedures at one’s disposal.
When considering graphical Markov models in prob-
ability theory, both of these conditions are fulfilled;
various computational procedures for decomposable
models are based on the ideas of local computations,
whose theoretical foundations were laid by Lauritzen
and Spiegelhalter.

The presented contribution studies a possibility of
transferring these ideas from probability theory into
Dempster-Shafer theory of evidence. The paper re-
calls decomposable models, discusses connection of
the model structure with the corresponding system
of conditional independence relations, and shows that
under special additional conditions, one can locally
compute specific basic assignments which can be con-
sidered to be conditional.

Keywords. Multidimensional models, graphical
models, conditional independence, factorisation, com-
putations.

1 Introduction

The great advantage of Dempster-Shafer theory [5, 18]
is the fact that it generalises classical probability the-
ory in the way that one can easily describe not only
uncertainty but also vagueness (ignorance). Neverthe-
less, the disadvantage of this approach stems from the
fact that belief functions cannot be represented by a
point function (like density in probability theory); in-
stead, one has to manipulate with set functions, which
leads to exponential increase of algorithmic complex-
ity of all the necessary computational procedures.

With regard to probability theory, substantial de-

crease of computational complexity was achieved with
the help of Graphical Markov Models (GMM), a tech-
nique developed in the last quarter of the last century.
Here we specifically have in mind a technique based on
local computations for which theoretical background
was laid by Lauritzen and Spiegelhalter [17]. Its basic
idea can be expressed in a few words: a multidimen-
sional distribution represented by a Bayesian network
is first converted into a decomposable model, which
allows for efficient computation of conditional proba-
bilities.

Studying properly probabilistic GMM one can realise
that it is a notion of conditional independence (which
is closely connected with a notion of factorisation)
that makes it possible to represent multidimensional
probability distributions efficiently. A goal of this pa-
per is to make a brief survey summarising results
concerning decomposable models within Dempster-
Shafer theory of evidence presented in [10, 11, 12]. In
addition to this we will show that, even in Dempster-
Shafer theory, one can employ the basic ideas of Lau-
ritzen and Spiegelhalter and compute “conditional”
basic assignments locally.

1.1 Notation

In this paper we consider a finite multidimensional
space XN = X1 ×X2 × . . . ×Xn, and its subspaces
(for all K ⊆ N)

XK =×i∈KXi.

For a point x = (x1, x2, . . . , xn) ∈ XN its projection
into subspace XK is denoted x↓K = (xi,i∈K), and for
A ⊆ XN

A↓K = {y ∈ XK : ∃x ∈ A, x↓K = y}.

By a join of two sets A ⊆ XK and B ⊆ XL we un-
derstand a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.
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Let us note that if K and L are disjoint, then A⊗B =
A×B, if K = L then A⊗B = A ∩B.

In view of this paper it is important to realise that if
x ∈ C ⊆ XK∪L, then x↓K ∈ C↓K and x↓L ∈ C↓L,
which means that always C ⊆ C↓K ⊗ C↓L. How-
ever, it does not mean that C = C↓K ⊗ C↓L. For
example, considering two-dimensional frame of dis-
cernment X{1,2} with Xi = {ai, āi} for both i = 1, 2,
and C = {a1a2, ā1a2, a1ā2}, one gets

C↓{1} ⊗ C↓{2} = {a1, ā1} ⊗ {a2, ā2}
= {a1a2, ā1a2, a1ā2, ā1ā2} ! C.

1.2 Basic assignments

The role played by a probability distribution in prob-
ability theory is replaced by that of a set function in
Dempster-Shafer theory: belief function, plausibility
function or basic (probability or belief ) assignment.
Knowing one of them, one can derive the remaining
two. In this paper we will use almost exclusively basic
assignments.

A basic assignment m on XK (K ⊆ N) is a function

m : P(XK) −→ [0, 1],

for which ∑

∅6=A⊆XK

m(A) = 1.

If m(A) > 0, then A is said to be a focal element of
m. Recall that

Bel(A) =
∑

∅6=B⊆A

m(B),

and
Pl(A) =

∑

B⊆XK :B∩A6=∅
m(B).

Having a basic assignment m on XK one can consider
its marginal assignment on XL (for L ⊆ K), which is
defined (for each ∅ 6= B ⊆ XL):

m↓L(B) =
∑

A⊆XK :A↓L=B

m(A).

1.3 Operator of composition

Compositional models were introduced for probability
theory in [8] as an alternative to Bayesian networks
for efficient representation of multidimensional mea-
sures. They were based on recurrent application of
an operator of composition. An analogous operator
within the framework of Dempster-Shafer theory was
introduced in [14]).

Definition 1 Operator of Composition. For
two arbitrary basic assignments m1 on XK and m2

on XL (K 6= ∅ 6= L), a composition m1 . m2 is de-
fined for each C ⊆ XK∪L by one of the following ex-
pressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ⊗C↓L then

(m1 . m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K × XL\K

then
(m1 . m2)(C) = m1(C↓K);

[c] in all other cases (m1 . m2)(C) = 0.

Remark 1 First of all, we want to stress that the
operator of composition is something other than the
famous Dempster’s rule of combination [5], or its non-
normalised version, the so called conjunctive combina-
tion rule [1]

(m1 ∩©m2)(C) =
∑

A⊆XK ,B⊆XL:A⊗B=C

m1(A) ·m2(B).

For example, the operation of composition is (in con-
trast with the above-mentioned conjunctive combina-
tion rule) neither commutative nor associative. While
Dempster’s rule of combination was designed to com-
bine different (independent) sources of information (it
realises fusion of sources), the operator of composition
primarily serves for composing pieces of local informa-
tion (usually coming from one source) into a global
model. The notion of composition is therefore closely
connected with the notion of factorisation. This fact
manifests also in the following difference: while for
computation of (m1 . m2)(C) it is enough to know
only m1 and m2 just for the respective projections of
set C, computing (m1 ∩©m2)(C) requires knowledge
of, roughly speaking, the entire basic assignments m1

and m2.

For further intuitive justification of the operator of
composition the reader is referred to [14], where a
number of its properties were proved. In view of the
forthcoming text, those presented in the following as-
sertion are the most important.

Proposition 1 Basic Properties. Let m1 and m2

be basic assignments defined on XK ,XL, respectively.
Then:

1. m1 . m2 is a basic assignment on XK∪L;

2. (m1 . m2)↓K = m1;

3. m1 . m2 = m2 . m1 ⇐⇒ m↓K∩L
1 = m↓K∩L

2 .
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The reader probably noticed that Property 2 guar-
antees idempotency of the operator and gives a hint
about how to get a counterexample to its com-
mutativity. From point 1, one immediately gets
that for basic assignments m1,m2, . . . ,mr defined on
XK1 ,XK2 , . . . ,XKr , respectively, the formula m1 .
m2 . . . . . mr defines a (possibly multidimensional)
basic assignment defined on XK1∪...∪Kr

.

2 Controlled associativity

As already mentioned above, the operator of composi-
tion is not associative. This means that in fact we do
not know what the formula m1 .m2 . . . . .mr means.
To avoid the necessity of using too many parentheses,
let us make the following convention. In the formulae
like m1 .m2 . . . . . mr, when the order of application
of the operators of composition is not controlled by
parentheses, the operators will be applied from left to
right, i.e.,

m1 .m2 . . . . .mr = (. . . (m1 .m2) . . . . .mr−1) .mr.

Nevertheless, when designing a process of local com-
putations for compositional models in D-S theory
(which is intended to be an analogy to the process
proposed by Lauritzen and Spiegelhalter in [17]), one
needs a type of associativity expressed in the following
assertion.

Proposition 2 Controlled associativity. Let
m1,m2 and m3 be basic assignments on XK1 ,XK2

and XK3 , respectively, such that K2 ⊇ K1 ∩K3, and

m↓K1∩K2
1 (C↓K1∩K2) > 0 =⇒ m↓K1∩K2

2 (C↓K1∩K2) > 0.

Then

(m1 . m2) . m3 = m1 . (m2 . m3) .

Proof. The goal is to prove that for any C ⊆
XK1∪K2∪K3

((m1 . m2) . m3)(C) = (m1 . (m2 . m3))(C). (1)

We have to distinguish five special cases.

A. C 6= C↓K1 ⊗ C↓K2 ⊗ C↓K3 .
This is the simplest situation because, due to associa-
tivity of join,

(C↓K1 ⊗ C↓K2)⊗ C↓K3 = C↓K1 ⊗ (C↓K2 ⊗ C↓K3)

and therefore in this case both sides of formula (1)
equal 0, which follows from Definition 1 (case [c]).

B. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3

& m↓K1∩K2
2 (C↓K1∩K2) > 0,m↓K2∩K3

3 (C↓K2∩K3) > 0.

In this case, under the given assumptions,

K3 ∩ (K1 ∪K2) = K3 ∩K2

and therefore

((m1 . m2) . m3)(C)

=
m1(C↓K1) ·m2(C↓K2)

m↓K2∩K1
2 (C↓K2∩K1)

· m3(C↓K3)

m↓K3∩K2
3 (C↓K3∩K2)

.

Analogously, we can make the following computations
(in the last modification we use the fact that in the
considered case K1 ∩K2 ∩K3 = K1 ∩K3):

(m1 . (m2 . m3))(C)

=
m1(C↓K1) · (m2 . m3)(C↓K2∪K3)

(m2 . m3)↓K1∩(K2∪K3)(C↓K1∩(K2∪K3))

=
m1(C↓K1)

(m2 . m3)↓K1∩(K2∪K3)(C↓K1∩(K2∪K3))

·m2(C↓K2) ·m3(C↓K3)

m↓K2∩K3
3 (C↓K2∩K3)

=
m1(C↓K1) ·m↓K1∩K2∩K3

3 (C↓K1∩K2∩K3)

m↓K1∩K2
2 (C↓K1∩K2) ·m↓K1∩K3

3 (C↓K1∩K3)

·m2(C↓K2) ·m3(C↓K3)

m↓K2∩K3
3 (C↓K2∩K3)

=
m1(C↓K1) ·m2(C↓K2) ·m3(C↓K3)

m↓K1∩K2
2 (C↓K1∩K2) ·m↓K2∩K3

3 (C↓K2∩K3)
,

which proves that the equality (1) holds.

C. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3

& m↓K1∩K2
2 (C↓K1∩K2) > 0,m↓K2∩K3

3 (C↓K2∩K3) = 0.
In this case, if C↓K3\K2 6= XK3\K2 then both sides
of formula (1) equal 0. This is because, due to Defi-
nition 1, both composed assignments (m1 . m2) . m3

and m2 . m3 equal 0 for this C, and therefore also
(m1 . (m2 . m3))(C) = 0.

Therefore, consider C = C↓K1 ⊗C↓K2 ⊗XK3\K2 . For
this we get from Definition 1

((m1 . m2) . m3)(C) = (m1 . m2)(C↓K1∪K2).

For the right-hand side of formula (1) we get

(m2 . m3)(C↓K2∪K3) = m2(C↓K2)

and therefore

(m1 . (m2 . m3))(C) = (m1 . m2)(C↓K1∪K2).

D. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3

& m↓K1∩K2
2 (C↓K1∩K2) = 0,m↓K2∩K3

3 (C↓K2∩K3) > 0.
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focal elements (m1 . m2) . m3

{a1a2} 1
3

{a1ā2} 1
3

{a1a2, a1ā2} 1
3

Table 1: Composed basic assignment (m1 . m2) . m3

Since we assume that m↓K1∩K2
1 (C↓K1∩K2) > 0

implies m↓K1∩K2
2 (C↓K1∩K2) > 0, we know that

for the considered C, m↓K1∩K2
1 (C↓K1∩K2) = 0, and

therefore both sides of formula (1) equal 0 because m1

is marginal to both (m1.m2).m3 and m1.(m2.m3).

E. C = C↓K1 ⊗ C↓K2 ⊗ C↓K3

& m↓K1∩K2
2 (C↓K1∩K2) = 0,m↓K2∩K3

3 (C↓K2∩K3) = 0.
It is obvious from Definition 1 that both sides of
formula (1) equal 0 for all C but for C = C↓K1 ⊗
XK2\K1 ⊗XK3\K1 . For this special case, however,

((m1 . m2) . m3)(C) = m1(C↓K1),
(m1 . (m2 . m3))(C) = m1(C↓K1). �

Example: Let us illustrate the necessity of the as-
sumption

m↓K1∩K2
1 (C↓K1∩K2) > 0 =⇒ m↓K1∩K2

2 (C↓K1∩K2) > 0

required in Lemma 2 by (for the sake of simplicity
a rather degenerated) example. Consider three basic
assignments m1, m2 and m3. Assume that in this case
K1 = K2 = {1} and K3 = {1, 2}, Xi = {ai, āi} for
both i = 1, 2. Define m1({a1}) = 1 and m2({ā1}) =
1, which means that both m1,m2 have only one focal
element, and m3(A) = 1

15 for all nonempty subsets of
X1 ×X2.

For these basic assignments we immediately get m1 =
m1 .m2 (when applying Definition 1, one has to take
C↓K1×X∅ = C↓K1), and therefore one gets m1 .m2 .
m3 as indicated in Table 1. Analogously, one gets
m2 . m3 which is depicted in Table 2. Computing

focal elements m2 . m3

{ā1a2} 1
3

{ā1ā2} 1
3

{ā1a2, a1ā2} 1
3

Table 2: Composed basic assignment m2 . m3

now the basic assignment m1 . (m2 . m3), one gets a

basic assignment with only one focal element

(m1 . (m2 . m3))({a1} ×X2) = 1.

Thus we have shown that in this case

(m1 . m2) . m3 6= m1 . (m2 . m3) .

3 Decomposable models

3.1 Independence and factorisation

What makes the representation and local compu-
tations with multidimensional probability distribu-
tions feasible is the property of factorisation [17].
Therefore, in [10] we also introduced this notion into
Dempster-Shafer theory of evidence.

Definition 2 Simple Factorisation. Consider
two nonempty sets K ∪L = N . We say that basic as-
signment m factorises with respect to (K,L) if there
exist two nonnegative set functions

φ : P(XK) −→ [0,+∞), ψ : P(XL) −→ [0,+∞),

such that for all A ⊆ XK∪L

m(A) =

{
φ(A↓K) · ψ(A↓L) if A = A↓K ⊗A↓L

0 otherwise.

Example: Consider X{1,2,3} = X1 × X2 × X3 with
all three Xi = {ai, āi} as in the preceding example,
and consider basic assignment m factorising with re-
spect to ({1, 2}, {2, 3}). This means that it can be
represented with the help of two functions

φ : P(X{1,2})→ [0,+∞), ψ : P(X{2,3})→ [0,+∞).

Since both subspaces X{1,2} and X{2,3} have 15
nonempty subsets, each of these functions is defined
with the help of maximally 15 numbers, which means
that the considered basic assignment can be repre-
sented with 30 parameters. Generally, a basic as-
signment on X{1,2,3} can have up to 255 focal ele-
ments, and the number of sets A ⊆ X{1,2,3} for which
A 6= A↓{1,2} ⊗A↓{2,3} is 156.

Remark 2 Notice that the importance of the factori-
sation does not follow only from the fact that the ba-
sic assignment m in the preceding example can be
represented by two functions φ and ψ, i.e., just with
30 parameters, but especially in the fact that the
value m(A) can be computed just from two values:
φ(A↓{1,2}) and ψ(A↓{2,3}). Value m(A) does not de-
pend on values of functions φ and ψ in other points
of their domains of definition.
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In probability theory, the notion of factorisation is
closely connected with the notion of conditional inde-
pendence. The same holds in Dempster-Shafer theory
under the assumption that one accepts the notion of
conditional independence as it appears in the follow-
ing Definition 3, introduced originally in [13]. Never-
theless, based on the recommendation of the anony-
mous referee, let us first repeat some intuitive reason-
ing published in [13] that led us to this definition.

There are at least three ways to introduce a gener-
ally accepted concept of unconditional (some authors
call it marginal) independence (non-interactivity) for
two disjoint groups of variables XK and XL. Here we
will mention two of them, neither of which requires
Dempster’s rule of combination. The older one, used
for example by Ben Yaghlane et al. [1], Shenoy [19]
and Studený [21], is based on the properties of a com-
monality function defined for basic assignment m by
the formula

Q(A) =
∑

B⊆XN :A⊆B

m(B).

According to this older definition, we say that disjoint
groups of variables XK and XL are (unconditionally)
independent with respect to basic assignment m if

Q↓K∪L(A) = Q↓K(A↓K) ·Q↓L(A↓L)

for any A ⊆ XK∪L. The other (equivalent) definition
says that XK and XL are independent if for all A ⊆
XK∪L for which A = A↓K ×A↓L

m↓K∪L(A) = m↓K(A↓K) ·m↓L(A↓L),

and m↓K∪L(A) = 0 for all the remaining A ⊆ XK∪L

for which A 6= A↓K × A↓L. Both of these defini-
tions invite generalisation for the case of overlapping
groups of variables, both these generalisations sat-
isfy the so-called semigraphoid properties, and yet
these generalisations do not coincide. As it is dis-
cussed in [2], Studený showed that the generalisation
based on the commonality functions is not consistent
with marginalisation (for details the reader is referred
to [2]), and this is one of the reasons why we pre-
fer the following definition (another reason is that for
the concept of conditional independence from Defini-
tion 3, one can prove the Factorisation Lemma - see
Proposition 3 below).

Definition 3 Conditional Independence. Let m
be a basic

assignment on XN and K,L,M ⊂ N be disjoint, both
K,L 6= ∅. We say that groups of variables XK and XL

are conditionally independent given XM with respect

to m (and denote it by K⊥⊥L|M [m]), if for any A ⊆
XK∪L∪M such that A = A↓K∪M⊗A↓L∪M the equality

m↓K∪L∪M (A) ·m↓M (A↓M )
= m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )

holds true, and m↓K∪L∪M (A) = 0 for all the remain-
ing A ⊆ XK∪L∪M , for which A 6= A↓K∪M ⊗A↓L∪M .

Remark 3 As already mentioned above, it was
shown in [13] that this definition meets all the semi-
graphoid axioms [21] and that for M = ∅ it reduces
to the generally accepted definition of (unconditional,
or marginal) independence (see, e.g., [1]).

Important relationships between this type of condi-
tional independence and factorisation (operator of
composition) are presented in the following two as-
sertions proved in [14] and [23], respectively.

Proposition 3 Factorisation Lemma. Let
K,L ⊆ N be nonempty, K ∪ L = N . m factorises
with respect to (K,L) if and only if

K \ L⊥⊥L \K |K ∩ L [m].

Proposition 4 Factorisation of Composition.
Let K,L ⊆ N be nonempty, K ∪L = N . m factorises
with respect to (K,L) if and only if

m = m↓K . m↓L.

3.2 Graphical models

In probability theory, graphical models were de-
fined as probability distributions (measures) factoris-
ing with respect to a system of subsets forming cliques
of a graph (Daroch, Lauritzen and Speed 1980, Ed-
wards and Havránek 1985). For the sake of this pa-
per we will just define a subclass of graphical models,
so-called decomposable models, which factorise with
respect to decomposable graphs, i.e., with respect to
the graphs whose cliques (maximal complete subsets
of nodes) can be ordered to meet the so-called Run-
ning Intersection Property (RIP): for all i = 2, . . . , r
there exists j, 1 ≤ j < i, such that

Ki ∩ (K1 ∪ . . . ∪Ki−1) ⊆ Kj .

This offers us a possibility to define decomposable
models using Definition 2 recursively.

Definition 4 Decomposable Basic Assign-
ments. We say that a basic assignment m is
decomposable if it factorises with respect to a
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decomposable graph in the following sense (let
K1,K2, . . . ,Kr be cliques of the considered de-
composable graph ordered so that they meet RIP):
for all i = 2, . . . , r the marginal m↓K1∪...∪Ki fac-
torises (in the sense of Definition 2) with respect to
(K1 ∪ . . . ∪Ki−1,Ki).

By repeated application of Proposition 4 one can see
that a decomposable model can easily be represented
by a system of its marginals.

Proposition 5 Composition of Decomposable
Models. Consider a decomposable graph with cliques
K1, . . . ,Kr. If this ordering meets RIP then m is de-
composable with respect to the graph in question if and
only if

m = m↓K1 . m↓K2 . . . . . m↓Kr−1 . m↓Kr .

This assertion says that a basic assignment is de-
composable if it can be composed from a system of
its marginals (the structure of the system must cor-
respond to cliques of a decomposable graph). We
can also ask the opposite question: having a sys-
tem of low-dimensional marginal basic assignment
m1,m2, . . . ,mr defined on XK1 ,XK2 , . . . ,XKr

, re-
spectively, what are the properties of the multidimen-
sional basic assignment m1.m2.. . ..mr? The answer
to this question, which follows from the following as-
sertion proved in [13], is that if K1,K2, . . . ,Kr meet
RIP then m1 . m2 . . . . . mr is decomposable.

Proposition 6 For any sequence m1,m2, . . . ,mr of
basic assignments defined on XK1 ,XK2 , . . . ,XKr

, re-
spectively, the sequence m̄1, m̄2, . . . , m̄r computed by
the following process

m̄1 = m1,

m̄2 = m̄↓K2∩K1
1 . m2,

m̄3 = (m̄1 . m̄2)↓K3∩(K1∪K2) . m3,

...
m̄r = (m̄1 . . . . . m̄r−1)↓Kr∩(K1∪...Kr−1) . mr,

has the following properties: m1 . . . . . mr = m̄1 .
. . . . m̄r; each m̄i is defined on XKi

and is marginal
to m1 . . . . . mr.

Remark 4 It is important to realise that if
K1,K2, . . . ,Kr meet RIP, then each Ki ∩ (K1 ∪
. . .Ki−1) is a subset of some Kj (j < i) and therefore

(m̄1 . . . . . m̄i−1)↓Ki∩(K1∪...Ki−1) = m̄
↓Ki∩Kj

j .

Therefore, from the computational point of view, the
process described in Proposition 6 is simple for sys-
tems of low-dimensional assignments corresponding to
decomposable graphs, and can be performed locally
(see the next section).

Remark 5 Notice that, thanks to Proposition 3, one
can deduce that for a decomposable basic assignment
m it is possible to read the system of conditional in-
dependence relations valid for m exactly in the same
way as it is done for decomposable probabilistic mea-
sures: If G = (N,E) is a decomposable graph with
respect to which decomposable basic assignment m
factorises, and if nodes i and j are separated in G by
set M then

i⊥⊥j |M [m].

However, let us stress once more: this possibility holds
only if one accepts Definition 3.

4 Local computations

By local computations we understand a process based
on the ideas published in the famous paper by Lau-
ritzen and Spiegelhalter [17]: the considered proba-
bilistic model (Bayesian network) was first converted
into a decomposable model which was subsequently
used to compute the required conditional probabili-
ties. What is important in the latter part of the pro-
cess is the fact that when computing the required con-
ditional probability, one performs computations only
on the system of marginal distributions defining the
decomposable model. During the computational pro-
cess one does not need to store more data than what
is necessary to store for the decomposable model.

In this section we assume that the considered basic
assignment is decomposable, i.e.,

m = m↓K1 . m↓K2 . . . . . m↓Kr ,

and K1,K2, . . . ,Kr meet RIP. So let us turn our at-
tention to answering a question: What type of compu-
tation will correspond to determination of conditional
probability?

Consider the simplest possible case. Assume the
goal is to compute a one-dimensional marginal
basic assignment for variable Xd in a case where
we know that the value of variable Xe equals a

(d, e ∈ K1 ∪ . . . ∪ Kr). If we denote by a
em the

basic assignment on Xe with just one focal element
a
em({a}) = 1, then composition a

em . m is a basic
assignment describing the situation when one knows
that Xe = a. Therefore, the goal mentioned above is
achieved by computation of ( a

em .m)↓{d}.
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Now, we are going to study the possibility of comput-
ing

( a
em.m)↓{d} = ( a

em. (m↓K1 .m↓K2 . . . ..m↓Kr ))↓{d}

locally. When evaluating ( a
em . m)↓{d} we take full

advantage of the assumption that m is decomposable,
but, unfortunately, we also have to assume that {a}
is a focal element of (m)↓{e}, i.e., (m)↓{e}({a}) > 0.

Namely, under these assumptions we can make the
following consideration:

Having a decomposable model, we can find a permuta-
tion of the considered index sets K1,K2, . . . ,Kr such
that it meets RIP and the sequence starts with any
of the sets containing the index e. Without loss of
generality, let it be the sequence K1,K2, . . . ,Kr (so,
K1,K2, . . . ,Kr meet RIP and e ∈ K1). Then we can
apply Proposition 2 because {e}∩Kr ⊆ K1∪. . .∪Kr−1

(recall that we selected the ordering such that e ∈ K1)
and

(m)↓{e}({a}) > 0,

from which we get

a
em .m

= a
em . ((m↓K1 . m↓K2 . . . . . m↓Kr−1) . m↓Kr )

= ( a
em . (m↓K1 . m↓K2 . . . . . m↓Kr−1)) . m↓Kr .

However, in the same way we also get

a
em . (m↓K1 . m↓K2 . . . . . m↓Kr−1)

= ( a
em . (m↓K1 . m↓K2 . . . . . m↓Kr−2)) . m↓Kr−1 ,

and after applying Proposition 2 r − 1 times we get

a
em .m = a

em .m↓K1 . m↓K2 . . . . . m↓Kr−1 . m↓Kr .

So we have shown that if m is a decomposable basic
assignment and (m)↓{e}({a}) > 0, then ( a

em.m)↓{d}

can always be computed locally in two steps:

• first order the respective Ki’s in the way that
they meet RIP and the first K1 contains index e,
and then

• apply Proposition 6 to the decomposable model

( a
em .m↓K1) . m↓K2 . . . . . m↓Kr

receiving

m̄1 = a
em .m↓K1 ,

m̄2 = m̄↓K2∩K1
1 . m↓K2 ,

focal elements m1(X1, X2)

{a1a2, a1ā2} 1
4

{a1ā2, ā1ā2} 1
4

{a1a2, a1ā2, ā1a2} 1
2

m2(X2, X3)

{a2a3} 1
4

{ā2, a3} 1
4

{a2ā3, ā2ā3} 1
4

{a2ā3, ā2a3} 1
4

m3(X3, X4)

{a3a4} 1
2

{a3a4, ā3ā4} 1
4

{ā3a4, ā3ā4} 1
4

Table 3: Basic assignments m1,m2,m3

m̄3 = (m̄1 . m̄2)↓K3∩(K1∪K2) . m↓K3 ,

...
m̄r = (m̄1 . . . . . m̄n−1)↓Kn∩(K1∪...Kn−1) . m↓Kr .

Now we know that

a
em .m = m̄1 . m̄2 . . . . . m̄r,

each m̄i is marginal to a
em . m, and therefore the

required marginal basic assignment ( a
em.m)↓{d} can

be obtained by marginalisation of any mi for which
d ∈ Ki. Recall that, due to RIP, all the computations
can be performed locally (see also Remark 4).

Example: Consider a 4-dimensional binary space
X1 × X2 × X3 × X4 with Xi = {ai, āi}, and three
two-dimensional basic assignments whose all focal el-
ements are given in Table 3. Let the goal be to com-
pute (m1 . m2 . m3)↓{4} under the assumption that
X1 = a1, i.e., we want to evaluate

( a1
1 m . (m1 . m2 . m3))↓{4}.

Since X1 is among the arguments of m1, and {a1} is
a focal element of (m1.m2.m3)↓{4}, we can apply the
above-introduced procedure (repeated application of
Proposition 2) getting that

( a1
1 m.(m1.m2.m3))↓{4} = ( a1

1 m.m1.m2.m3)↓{4}.

So, it remains to apply the process described in Propo-
sition 6. We get that a1

1 m . m1 has only one focal
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element ({a1a2, a1ā2}), and therefore the same holds
also for ( a1

1 m .m1)↓{2}: ( a1
1 m .m1)↓{2}(X2) = 1.

From this we immediately get ( a1
1 m . m1)↓{2} . m2

with two focal elements

(( a1
1 m .m1)↓{2} . m2)(X2 × {ā3}) =

1
2

(( a1
1 m .m1)↓{2} . m2)(X2 ×X3) =

1
2
,

and therefore also its marginal (( a1
1 m . m1)↓{2} .

m2)↓{3}, which is necessary for the computation of
the next (already the last) composition, has two fo-
cal elements: {ā3} and X3. Evaluating this third
composition we get that (( a1

1 m .m1)↓{2} . m2)↓{3} .
m3 has again two focal elements {a3a4, ā3ā4} and
{ā3a4, ā3ā4}; for each of them the computed com-
posed basic assignment equals 1

2 . Marginalising the
last two-dimensional basic assignment we get the de-
sired result:

( a1
1 m . (m1 . m2 . m3))↓{4}

= ((( a1
1 m .m1)↓{2} . m2)↓{3} . m3)↓{4}

has only one focal element, namely

( a1
1 m . (m1 . m2 . m3))↓{4})(ā4) = 1.

Remark 6 If the goal is to compute a basic as-
signment for variable Xd under the condition that
Xe = a and simultaneously Xf = b, then one can
first compute the decomposable model a

em . m =
m̄1 . m̄2 . . . . . m̄r by the process described above,
and afterwards

b
fm . ( a

em .m) = b
fm . (m̄1 . m̄2 . . . . . m̄r)

in an analogous way finding a new permutation of
K1,K2, . . . ,Kr meeting RIP such that the first index
set contains f . This time, naturally, we have to as-
sume that m↓{f}({b}) > 0, too.

5 Conclusions

Inspired by Graphical Markov Models in probabil-
ity theory, we introduced decomposable models in
Dempster-Shafer theory of evidence. For this we used
two recently introduced concepts: operator of compo-
sition and factorisation.

Based on a factorisation lemma it is possible to de-
duce the fact that the introduced decomposable mod-
els possess the same conditional independence struc-
ture as their probabilistic counterparts; it can be read

from the respective graphs following exactly the same
rules as in the probabilistic case. This, however, holds
only under the assumption that we accept the defini-
tion of conditional independence as presented here in
Definition 3. Recall that our papers are not the only
ones showing evidence in favour of this definition. As
it was already presented in [2], Studený showed that
the concept of conditional independence based on ap-
plication of the conjunctive combination rule is not
consistent with marginalisation. He found two consis-
tent basic assignments for which there does not exist
a common extension manifesting the respective con-
ditional independence (for more details and Studený’s
example see [2]). Let us stress here once more that
Definition 3 does not suffer from this insufficiency.

Nevertheless, it was not the main goal of this paper to
support the new concept of conditional independence.
Here we dealt with the question of whether the ideas
of local computations can also be applied to computa-
tions in Dempster-Shafer theory of evidence. At this
time we have, unfortunately, obtained only a partial
answer. The results presented in the last section show
that we are able to theoretically support local com-
putations in the cases when the associativity of the
operator of composition holds. We did it under the
additional assumption that m↓e({a}) > 0, i.e., under
the assumption that

Bel(Xe = a) = m↓e({a}) > 0.

From the point of view of real-world application, we
would prefer if the designed computational process
were applicable under a weaker condition, for exam-
ple, in a case where

Pl(Xe = a) =
∑

A⊆Xe:a∈A

m↓e(A) > 0.

However, as we showed in Example in Section 2, this
condition does not guarantee the associativity of the
operator of composition. Therefore, there remains
an open problem for the further research: either to
show that the proposed (or similar) computational
process corresponding to local computations can be
performed without the assumption of associativity, or
to modify the definition of the operator of composi-
tion (here we have in mind modification of case [b]
of Definition 1) so that associativity would be valid
under weaker conditions.
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[22] M. Studený, “On stochastic conditional indepen-
dence: the problems of characterization and de-
scription,” Annals of Mathematics and Artificial
Intelligence, vol. 35, p. 323-341, 2002.

[23] J. Vejnarová, “On conditional independence in
evidence theory,” in Proc. of the 6th Symposium
on Imprecise Probability: Theories and Applica-
tions, Durham, UK, 2009, pp. 431–440.

ISIPTA ’11: A Note on Local Computations in Dempster-Shafer Theory of Evidence 237





7th  International  Symposium  on  Imprecise  Probability:  Theories  and  Applications,  Innsbruck, Austria, 2011

Overcoming some limitations of imprecise reliability models

Igor Kozine

Technical University of Denmark

Kongens Lyngby

igko@man.dtu.dk

Victor Krymsky

State Academy of Economics and Service

Ufa; Russia

vikrymsky@mail.ru

Abstract

The application of imprecise reliability models is often 

hindered by the rapid growth in imprecision that occurs 

when many components constitute a system and by the 

fact that time to failure is bounded from above. The latter 

results in the necessity to explicitly introduce an upper 

bound on time to failure which is in reality a rather 

arbitrary value. The practical meaning of the models of 

this kind is brought to question. We suggest an approach 

that overcomes the issue of having to impose an upper 

bound on time to failure and makes the calculated lower 

and upper reliability measures more precise. The main 

assumption consists in that failure rate is bounded. 

Lagrange method is used to solve the non-linear 

program. Finally, an example is provided.

Keywords. Imprecise reliability, variational calculus, 

bounded failure rate.

1   Introduction

The appropriate incorporation of uncertainty into 

reliability and risk analyses is a topic of importance and 

widespread interest. Perhaps the most widely recognised 

distinction in uncertainty types is between aleatory and 

epistemic uncertainty and the presence of these two in 

the analyses of complex systems is a challenge systems 

analysts face. To address it, a number of mathematical 

structures able to capture the both types have been 

developed. The reader can find good overviews of the 

methods of uncertainty representation in different 

sources, for example, in [1] – [4]. Some of the 

mathematical structures are based on the two simple 

notions: interval-valued probabilities and imprecisely 

specified probability distributions. These structures are 

interval probability, probability bound analysis, 

Dempster-Shafer theory, robust Bayes methods, and the 

theory of imprecise probabilities that can be considered 

as the most general approach. The theory of imprecise 

probabilities, as it was introduced in [1] and [5], has 

served as the theoretical basis for generalising a large 

number of reliability models to imprecise probabilities. 

For a brief overview see [6]. More specifically, the 

reliability models of non-reparable systems of general 

structures (series, parallel and complex connection) 

generalised to imprecise probabilities are presented in 

[7], generalised discrete Markov chains used to model 

repairable systems are described in [8] and [9], stress-

strength models for structural reliability are reported in

[10] and [11]. The theory of imprecise probabilities has 

been applied to other important issues for reliability and 

risk analyses like aggregation of imprecise data having’

different degrees of confidence to different pieces of 

evidence, expert judgement elicitation procedures, and 

decision making based on imprecise probabilities.

In spite of the seemingly rich arsenal of applied models 

built on imprecise statistical reasoning, they are 

nevertheless hesitantly used in practice and remain firmly 

in the academic realm. Do they lack adequate promotion 

by their practitioners, or are there other primary obstacles 

that prevent them from being widely applied? In [12] the 

authors’ belief was that the main obstacle to the practical 

application of this knowledge is a tangible imprecision in 

lower and upper probability bounds constructed from a 

set of imprecise probabilistic pieces of evidence or/and

the rapid growth in imprecision that occurs when 

intervals are propagated through mathematical models.

The main cause in mathematical terms of the tangible 

imprecision was arguably identified as lying in the main 

mechanism of constructing coherent imprecise 

probability measures, which was originally called by 

Walley natural extension [1], and which in fact is a linear 

program. The crux of this linear program is that the 

solutions obtained are defined on the family of 

degenerate probability distributions
1

13

, which are included 

on equal footing in the set of all admissible probability 

distributions over which the solution is sought. As 

proven in [ ], solving this optimisation problem on the

set of all admissible probability distributions gives the 

same solution as that obtained on only the set of 

degenerate distributions. This would simply be 

1
The probability distribution of a continuous random 

variable is referred to as degenerate if the probability 

masses are concentrated in a finite number of points 

belonging to the continuous set of possible states.
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mathematical subtlety – that is, of little interest to 

practitioners – if it did not give us a clue to deriving 

more precise previsions of interest for continuous 

random variables. For some variables it is often not 

realistic to assume that the probability masses are 

concentrated in a few points as opposed to being 

continuously distributed over the set of possible 

outcomes. In reliability applications probability masses 

of time to failure cannot (except for very special cases) 

concentrate in a very few points of the positive real line. 

Ignoring this fact is one of the causes (we hold it to be 

the root cause) of high imprecision in reliability as well 

as in other applications. Or at least this is where some 

improvements are possible.

Several attempts have been undertaken to introduce some 

extra judgements to the set of constraints of the natural 

extension to limit the set of admissible probability 

distributions on which a solution is sought. That is, the 

desire is to remove from the admissible set the 

distributions that are obviously do not provide a 

reasonable model of the underlying random values like 

time to failure.

An attempt to mitigate the influence of degenerate 

probability distributions on the solutions was undertaken 

in [14]. No significant effect was obtained through the 

introduction of judgements on the skewness and 

unimodality of the distributions as, in this case, the peaks 

of degenerate distributions simply become repositioned 

and probability masses become redistributed among the 

peaks. The nature of the distributions defining the 

solutions remains unchanged.

Another approach was suggested in [15]. It consists in 

employing the calculus of variations to solve the 

optimisation problems instead of attempting to solve 

them with linear programming techniques. As it was 

demonstrated in [15] and then in [12] and [16] this way 

enables us to utilise a broader spectrum of statistical 

judgements, which results in tighter bounds on 

probability measures. The introduction of direct 

constraints on probability distributions like an upper 

bound on a probability density function (pdf) or/and on 

the absolute value of its derivative turned to be especially 

efficient. This type of constraints is not possible to utilise 

if the conventional natural extension in the form of a

linear program is used as a tool for construction of 

imprecise probability measures. Direct constraints on 

pdfs make the problem nonlinear that can be solved with 

variational calculus. The direct constraints result in good 

improvements in precision so that we can see room for 

even better improvements.

Despite the obvious improvements in the precision of the 

constructed measures there is yet one more obstacle on 

the way of applying the theory of imprecise probabilities 

to reliability calculations. This obstacle stems from the 

underlying constraint imposed on the values of random 

variables. The random variables are bounded and this 

feature has a pernicious consequence on imprecise

reliability models. This consequence consists in having 

an upper bound on time to failure explicitly present in the 

reliability models. (The lower bound is present too but 

since it is equal to zero, seemingly it is not part of the 

models.) Why the consequence is so harmful? This is 

because the upper bound on time to failure of any 

systems cannot be known. That is to say, the imposed 

necessity to choose this bound makes the reliability 

measures rather arbitrary values, as the upper bound is 

not known. The only non-arbitrary and true assertion 

about the sample space of time to failure is that it 

stretches from zero to infinity. All conventional 

reliability models reside in this presupposition.

In this paper we continue to use the calculus of variations 

for constructing imprecise probability measures and we 

introduce constraints on failure rate. It has a double 

effect: better precision in the results and avoidance of the 

necessity to have the upper bound on time to failure.

2 Exhibiting imprecise reliability models 

with the troublesome parameter

Let us look at several reliability models generalised to

imprecise probabilities. The notations used are the 

following: !" and !" are a lower and upper m-th moments 

of time to failure of an i-th component for # $ %, & and &
are a lower and upper m-th moments of a system 

compounded of n components, and T is an upper bound 

of time to failure that is assumed the same for all 

components.

For a system with independent components connected in 

series from the reliability point of view the following 

results are valid [7]:

& =
1

('()*)+, !"(
"-* , & = min"-*,…,( !"

If the components are connected in parallel, then [7]

& = max"-*,…,( !" , & = ' . ', /1. !"'0
(
"-*

Consider a couple of more examples. Let K is an upper 

bound of the pdf of time to failure of a component and 

this is the only reliability data available. Then we have 

the following results for the mean time to failure M(t)

[12]: 

1(2) =
1

23  ,       1(2) = ' . 1

23
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If in addition to K a bound on the absolute value of the 

pdf’s derivative L is known, then [16]

1(2) =
1

23 +
3
24 ,       1(2) = ' . 1

23 .
3
24

As seen from the above expressions, one of the bounds of 

the expected values is explicitly dependent on the upper 

bound of time to failure T. Assuming that ' 5 6 gives 

us a very imprecise result that in many cases is 

practically useless. The two interrelated issues - high 

imprecision and dependence on the upper bound of time 

to failure – have motivated us to attempt to find a better 

solution.

The following section suggests a new problem statement 

that - as it will be demonstrated further in this paper -

results in improved solutions.

3 Problem statement

Let us formulate first a rather general problem of 

computing bounds 1 and 1 on the expected value of an 

arbitrary function 7(8) given the upper, 9" = 1:9"(2);,
and lower, 9" = 1:9"(2);, bounds of the expected values 

of other arbitrary functions 9"(2),  # $ %. As a particular 

case, the expected values can be known precisely 

meaning that the bounds are equal to each other. If 9"(2) = 2, the expected value is the first moment. If 9"(2) = 2<, the expected value is the second moment, etc. 

In case 9"(2) = =[>?,>@](2), where =[>?,>@](2) is an indicator 

function equal to 1 when 2 A [2*, 2<], and equal to 0 

otherwise, the expected value is the probability BC(2 A
[2*, 2<]).

The problem is stated as follows:

! "#$
T

x
dxxxggM

0
)(

)()(inf)( %
%

(1)

! "#$
T

x

dxxxggM

0
)(

)()(sup)( %
%

subject to

nifdxxxff

T

iii ,...,2,1,)()(

0

$&& # %

(2)

,0)( 'x% and # $
T

dxx

0

1)(%

where D(8) is the pdf of a random variable x defined on 

[0,T]. Here the inf and sup are taken over the set {D(8)}

of all pdfs matching constraints (2). That is, each 

constraint in (2) is associated with a subset of {D(8)},

and the intersection of those subsets, if not empty, 

defines the solutions of the optimization problems (1)-

(2). If some of the subsets of {D(8)} become disjoint, the 

solution does not exist. It should be noted that problems 

(1)-(2) are linear and the dual optimization problems can 

be written for them. The primal optimisation problems 

(1)-(2) and their duals have served as the key tools to 

derive a number of imprecise reliability models (see, for 

example, [7], [8] and [14]). The results were explicitly 

dependent on the upper bound, T, imposed on the random 

variable time to failure, as it was demonstrated in the 

previous section.

This is namely problems (1)-(2) the solutions to which 

are defined on the family of degenerate probability 

distributions [13]. This finding was a point of departure 

for introducing constraints that rule out the degenerate 

distribution from the set of admissible ones. Being

guided by this finding, tighter bounds for probability 

measures have been derived for several problem 

statements [12], [15], [16]. In this paper we seek to solve 

the more ambitious problem: obtaining tighter bounds for 

a constructed probability measure of interest and getting

rid of the need to impose an upper bound, T, on time to 

failure.

Now we introduce some new constraints and reformulate 

problems (1)-(2). In the following we will think of the 

random variable t as time to failure.

The cumulative distribution function of time to failure 

takes the form

#$
t

dxxtF

0

)()( %

and the reliability function is B(2) = 1 . E(2).

According to its definition (see, for example, [17]) the 

failure rate is

F(2) =
D(2)
B(2) ,

from which B(2) = G8H I.J F(8)K8>
L M.

Denote ),()(

0

tydtt

t

$#( then F(2) =
NO(>)

N> = PQ(2)
Based on the above formulas and introduced notation the 

expression for the pdf, D(2), appears as follows

D(2) = B(2)F(2) = PR(2)G8H(.P(2)).
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Assuming that the failure rate is bounded from below and 

above by F and F, that is F $ F(2) = PR(2) $ F and 

considering the lower, 9", and upper, 9", bound on the 

expected value of random variable 9"(2) known, the 

following optimisation problem can be formulated

! "
) *# +$

T

ty
dttytytggM

0
)(

)(exp)(')(inf)(

(3)

! "
) *# +$

T

ty

dttytytggM

0
)(

)(exp)(')(sup)(

subject to

) * nifdttytytff

T

iii &&+& # ,)(exp)(')(

0

, (4)

) *# $+
T

dttyty

0

1)(exp)(' (5)

F $ PR(2) $ F (6)

Problems (3)-(6) are nonlinear and in order to solve them 

we suggest employing the calculus of variations as it was 

done in [12], [15], and [16].

4 Solving the problem with the calculus of 

variations

Problems similar to (3)-(6) have to be modified slightly 

to make them amenable to the calculus of variations. The 

constraint F $ PQ(2) $ F can be rewritten as follows:

.)()('

,)()('

2

2

(

(

$,

$+

tvty

tuty
(7)

Here u(t), v(t) are unknown real-valued functions.

The solution of problems (3) subject to constraints (4), 

(5) and (7) is based on the following theorem

Theorem. If for any interval S $ 2 $ T, 0 $ S < T $ '
and for any -nhhh ,...,, 10 R it holds that

.
$

,/
n

i

ii tfhhtg
1

0 ),()(

then the failure rate F(2) = PQ(2), on which inf and sup 

are attained in problems (3) subject to constraints (4), 

(5) and (7), is a step-wise function which is equal either 

to F or to F.

The proof of this theorem is given in the Appendix and 

the meaning of it is that  F(2) cannot take any other 

values between U and U but only either U or U. This 

statement has a direct influence on the pdf, D(2), on 

which inf and sup are attained in problems (3). That is, 

the pdf consists of the pieces D(2) = H(2L, … , 2") V F V
G8H:.F(2 . 2");, 2 W 2"  and D(2) = H(2L, … , 2")*) V F V
G8H:.F(2 . 2")*);, 2 W 2")* that switch at some 

instances 2*, 2<, … , 2". The term H(2L, … , 2") is 

interpreted as the probability of being free of failure 

until time instant 2" . The correspondence between 

F, F and optimizing X(t) is shown in Fig. 1.

Noticeable, the distribution of probability masses over 

time tends to zero when time tends to infinity. This in 

fact means that the very strong limiting requirement of 

imprecise probability theory that the random variable 

must be bounded is no longer valid and the “troublesome 

parameter” will not enter the expressions for reliability 

measures. It will be demonstrated in an example below.

As now the optimizing pdf is known (except for 2") we 

can return to optimization problems (1)-(2) where D(2)
explicitly appears in the formulas. That what is not 

known now is the instances 2" when F(2), and 

consequently, D(2) switch from one to the other value. 

Assume that the optimal failure rate F(2) commutes 2m

times between U and U. That is, 

),...,[),...,,[),,[),,0[ 12254321 ,jj ttttttt

are intervals of time in which F(2) = U. Similarly, 

),...,[),...,,[),,[),,[ 2212654321 ,, jj tttttttt are the 

intervals on which F(2) = F, Y $ Z.

Note that if m = 0, we have 2 intervals: one with the 

failure rate equal to  U and other with the failure rate 

equal to F. There may be some cases for which the 

optimizing failure rate for the whole time interval [0, T]

is constant and equal either to  U or F.

 F(2)  

U 

U 

D(2) 

    21                                    22                       23 

Figure 1. Optimizing pdf, [(\), and connected to it ] 

                 and ]
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Finally, the reformulated problem statement is as 

follows:

),...,,(min 2221
,...,, 2221

,
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ttt

tttG
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and

),...,,(max 2221
,...,, 2221
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m
ttt

tttG
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subject to constraints

,,),...,,( 2221 niattta imii &&6& , and 

.1),...,,( 2221 $,mtttR

This is rather an easy optimisation problem with 

algebraic constraints. Once one knows the number of 

intervals m, this optimization problem can be solved by 

using standard numerical techniques such as gradient 

methods, simplex-based search methods, genetic 

algorithms, etc. In simple cases, the solution can be 

obtained in an analytical form as it takes place in the 

example below.

The number of intervals in which the failure rate remains 

constant is a priori unknown. In the following we suggest 

an algorithm, similar to that introduced in [12] and [16], 

which solves this problem. We start with the verification 

if only one of the two ( or ( for the whole time period 

[0, T] satisfies the constraints. If the result is positive we 

can compute the value of the objective function. Then we 

set m = 0, solve the optimization problem and compare 

the obtained value of the objective function with the 

previous result. If it is different, we may continue and 

increase m by 1, and so on. The process will be stopped 

if the expression for the density function D(2) does not 

change (or changes negligibly) and the improvement of 

the objective function also is not observed.

5   Example

Assume we are interested in knowing bounds 88 and on 

the mean time to failure #
9

$
0

)( dttt%8 of a system and the 

following data (constraints) are known:

pdtttIq q $+$ #
9

0

],0[ )()(1)Pr( % and ((( && )(t .

That is, we know precisely the probability )Pr(q , which 

we interpret as system’s reliability at time q, and the 

lower ( and upper bound ( on the failure rate. 

)(],0[ tI q is the indicator function equal to 1 if ],0[ qt-

or equal to 0 otherwise. The consistency relation between 

the reliability and failure rate is expressed by the two 

inequalities ).exp()exp( qpq (( +&&+ If 

pq $+ )exp( ( or )exp( qp (+$ , the solution to the 

problem is simple, as there is only one pdf satisfying the 

either equality. The problem of this kind was described 

in [17]. This problem becomes more complicated if the 

strong inequalities hold )exp()exp( qpq (( +::+ . For 
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this case, there are intervals on which the failure rate 

switches. Hence we start with m = 0. However, 

immediately it becomes clear that for m = 0 the 

expression for )(t% contains only one unknown 

parameter 1t while there are two constraints

pdtttIq q $+$ #
9

0

],0[ )()(1)Pr( % , #
9

$
0

.1)( dtt%

This is why we have to increase m by 1

Determining 8 . The graph of the pdf, )(t% , for which 

#$%&&%'()$'&)$*'('*+*$&%,-)$&.-$/01* as shown in Fig. 2:

Hence ) * ptqtq $++7+$ 11 (exp)exp()Pr( (( .

From this equation we obtain 
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Increasing m by 1 does not lead to any improvement. 

Thus the obtained formula value is optimal one.

Determining 8 . The graph of the pdf, )(t% 2$/01$3.'4.$#$

attains its maximum takes the form as shown in Fig. 3.

Figure 3. 5.-$6-.%7'0+1$0/$&.-$89/$/01$3.'4.$#$%&&%'()$'&)$

maximum

For this case we can perform computations similar to the 

above and arrive at the result

) * ) * ).exp()(exp(1
1

)exp(1
1

111 ttqtp !!
!

!
!

# +7+++,++,$

6 Concluding notes

In spite of the existence of a number of risk/reliability 

and other applied models built on imprecise statistical 

reasoning, only a few of them have ever been used in 

practice – and then only hesitantly –, the rest remaining 

firmly in the academic realm. Perhaps the complexity of 

imprecise statistical reasoning as a whole is such as to 

severely limit the accessibility of this kind of models to 

potential practitioners. We nevertheless believe that the 

main obstacles to the practical application of this 

knowledge are different. One which is thoroughly 

familiar to the group of experts who practise interval 

computations and which we have repeatedly mentioned

[12], [16]: it is namely the rapid growth in imprecision 

that occurs when intervals are propagated through 

mathematical models and when the number of 

components in a system is large. The other one stems

1t qt $2 t

)(t%

 

1t           qt $2                               t 

)(t"
 

Figure 2. 5.-$6-.%7'0+1$0/$&.-$89/$/01$3.'4.$#$%&&%'()$

its minimum
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from the requirement of imprecise probability theory that 

the random value is to be bounded. This requirement 

appears very restrictive for reliability applications, as 

some reliability models explicitly contain an upper bound 

on time to failure which is in reality an arbitrary value.

Our main finding was that bounding the failure rate 

allows deriving reliability measures devoid of an upper 

bound on time to failure. That is, the sample space of 

time to failure is now as it must be from zero to infinity. 

This is the basic assumption on which all conventional 

reliability models rest and deviations from that can 

hardly be practical. Making judgements on the lower and 

upper bounds of failure rates is meaningful and can often 

be substantiated by observed events taking place in the 

system of interest or analogous ones.
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Appendix

Theorem. If for any interval S $ 2 $ T, 0 $ S < T $ '
and for any -nhhh ,...,, 10 R it holds that
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ii tfhhtg
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0 ),()( (8)

then the failure rate F(2), on which inf and sup are 

attained in problems (3) subject to constraints (4), (5) 

and (7), is a step-wise function which is equal either to F
or to F.

Proof. According to the method of Lagrange [18] the 

primal form of optimization problem (3) subject to 

constraints (4), (5) and (7) is to be replaced by the 

equivalent unconstrained optimization problem. To do so 

the following function is introduced
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Where ^, # $ % and ^_(2), ^__(2) are unknown Lagrange 

multipliers.

Then the Euler-Lagrange equations (the necessary 

condition of optimality) take the form:
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In our case these equations become:
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It can be concluded that if `(2) b 0 and a(2) b 0

simultaneously then ^_(2) = ^__(2) = 0. Hence 

) * 0/)( $< dttd = and ) * 0/)( $<< dttd = resulting in
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or after integration
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in which c is arbitrary constant. (9) contradicts to (8). To 

resolve this conflict, one of the functions u(t), v(t) must 

be equal to zero inside the interval  S $ 2 $ T. On the 

other hand, they cannot be both equal to zero because the 

equalities F(2) = F and F(2) = F cannot hold 

simultaneously.

Finally, we conclude that the failure rate alternates 

between F and F within the time period [0,T].
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Abstract 

Probabilistic Risk Assessments (PRA) are used to 
achieve a safe design and operation of Nuclear Power 
Plants. The impact of uncertainties which may affect 
PRA results must thus be taken into account in the 
decision making process. These uncertainties due to the 
lack of data have been recently seen as mainly epistemic 
ones and it has been recommended to characterize them 
by the belief functions of Dempster-Shafer Theory rather 
than a presumed single probability distribution. The 
current construction of these functions is based on the 
data provided by PRA data handbooks using traditional 
statistical tools like Maximum Likelihood Estimation 
(MLE). However, this approach is only appropriate when 
data coming from the operating feedback observations 
are sufficiently large as required in the MLE approach. 
Furthermore, when wishing to incorporate other sources 
of information, such as expert’s opinions, the pooling 
data of MLE has limits to account for these kinds of 
information. Therefore, in order to overcome this 
problem, two alternative perspectives based on the 
Dempster’s rule of combination and the Generalized 
Bayesian Theorem for constructing and updating the 
belief functions in a more effective way will be presented 
in this paper. These two approaches will be studied for 
the use in the context of PRA. The comparison of these 
two approaches with the current method is carried out 
through a practical example. Some conclusions about the 
application of these approaches will be drawn. 

Keywords. Parameter uncertainty, belief functions, 
generalized Bayesian theorem, nuclear risk assessment. 
  

1   Introduction 

Probabilistic Risk Assessment (PRA) [10] is a 
methodology which provides a quantitative assessment 
of the risk of accidents at Nuclear Power Plants (NPP). It 
involves the development of models that delineate the 
response of systems and of operators to initiating events 
that could lead to core damage or a release of 

radioactivity to the environment. The evaluation of the 
frequency of such an accident relies on the assessment of 
the failure probability of systems by means of event/fault 
trees. In PRA, parametric statistical models are used to 
characterize the random occurrence of accidents at 
nuclear power plants [2][10]. Some usual parametric 
models like Poisson model, exponential model…are used 
for this purpose. The parameters associated to these 
models in PRA are reliability parameters such as the 
failure rates of individual components or the probability 
of failure on demand and so on. The values of these 
parameters are generally unknown and estimated with 
statistical tools. These estimated values are therefore 
subjected to uncertainty due to insufficient feedback data 
which can impact the decision making process. As a 
consequence, the results in the nuclear PRA context for 
decision making need to take into account these 
uncertainties.    

In the traditional PRA practice of uncertainty analysis, 
the epistemic parameter uncertainty is generally 
represented by a presumed probability distribution, such 
as the log-normal distribution which is viewed as the 
subjective interpretation of probability (i.e. degree of 
belief) for the possible values of the parameter. 
Nevertheless, the choice of this distribution which is 
made for some practical reasons has been shown to be 
questionable because it could have major impacts on the 
final results of decision making [20]. Recently, a general 
framework of parameter uncertainty quantification within 
the Dempster-Shafer Theory (DST) framework has been 
proposed in the nuclear PRA context [20][21]. In this 
framework, parameter uncertainty is no longer 
characterized by an assumed probability distribution but 
by belief and plausibility functions which represent the 
current state of knowledge about the possible values of 
the parameter. The approach proposed in [20] for the 
construction of these belief functions is based on the 
statistical data provided by EDF PRA data handbooks 
using traditional statistical tools such as Maximum 
Likelihood Estimation (MLE). Therefore, when new data 
become available, statistical tools are first used to 

247



provide estimated values from the pooled data (e.g. 
nominal values and confidence intervals) from which 
belief functions for uncertainty representation are 
constructed. However, this approach is only appropriate 
to the case where data come from the operating feedback 
observations and when the number of observations is 
sufficiently large. Furthermore, if additional sources of 
information are to be incorporated, such as expert’s 
opinions, the pooling data of MLE has limits to account 
for these kinds of information. The expert’s opinions are 
often used in the context of PRA model for the events 
whose the frequency of occurrence is very small i.e. 
rarely or never observed. Therefore, in order to 
incorporate the experts’ opinions with the available 
operating feedback data, two alternative perspectives for 
constructing belief functions in a more effective way are 
studied in this paper. The updated belief functions are 
built by combining the belief functions given each data. 
In doing so, the incorporation of other sources of 
information, such as expert’s opinions will be done in a 
natural manner. The two proposed approaches also allow 
us to deal with the prior ignorance in a more appropriate 
manner than the classical way. In the first approach, we 
still use the MLE but in a different way. For each 
independent serie of observations, the belief functions 
are firstly built from the confidence intervals provided by 
MLE, and then the updated belief functions are obtained 
by using the Dempster’s rule of combination (ROC) to 
aggregate all the belief functions. In the same manner but 
within the perspective of Bayesian theorem, the second 
approach relies on the General Bayesian Theorem (GBT) 
to provide belief functions given each data. The GBT 
introduced by Smets in [13] performs the same task as 
the classical Bayesian theorem but within the context of 
belief functions instead of probability functions. This 
theorem and the pignistic transformation are the essential 
tools of the so-called Transferable Belief Model (TBM) 
which is a subjective interpretation of the DST [14]. The 
main objective of this paper is to study the use of these 
approaches for updating belief functions in the context of 
nuclear PRA data. 

The section 2 of this article presents shortly basic notions 
of the Dempster–Shafer theory of belief functions. In 
section 3, the updating of belief functions with the ROC 
and the GBT is presented. The section 4 studies the 
application of these two approaches in the context of 
PRA. The comparison of these two approaches with the 
currently used method is carried out through a practical 
example in the section 5. In the section 6, some 
conclusions and perspective are finally given. 

2 The Dempster-Shafer Theory of Belief 

Functions 

The Dempster-Shafer Theory of evidence [6], also 
known as the theory of belief functions, is a 
generalization of the Bayesian theory of subjective 
probability in that it allows less restrictive assumptions 

about the likelihood than in the case of probabilistic 
characterization of uncertainty. In literature, this theory 
has been used in risk assessment for industrial 
applications [11][17][18] and recently studied in the 
context of PRA for treating the uncertainty [20][21]. In 
this framework, the epistemic uncertainty associated to 
the input parameters of PRA is no longer characterized 
by a single probability distribution but by so-called belief 
and plausibility functions. In doing so, we can avoid the 
problem of choosing an appropriate probability 
distribution for uncertainty representation in a context of 
lack of data. The definition of these functions is shortly 
outlined now.  

Let �={�1, �2,…,�N} be a finite set of possible values for 

parameter θ called the frame of discernment. Unlike the 
probability distribution which is completely defined by 
the weight of each singleton θi, the belief functions are 
defined on the set of subsets of �, called 2�. In the DST, 
the basic measure is represented by a so-called basic 
belief assignment  

            : 2 [0,1]m
Θ

→       ( ) 1m AA =� ⊆Θ               (1) 

Where ( ) 1m Θ = and 0)Ø( =m . The basic belief 

assignment (BBA) m(A) represents the degree of belief 
that the actual solution is exactly committed to A and due 
to lack of knowledge cannot be attributed any more 
specific event. The state of complete ignorance is 
represented by the so-called vacuous BBA defined by 
m(�)=1 that is no information is available for the more 

likely values among Θ. A Bayesian BBA is a BBA 
whose focal sets are singletons. A BBA is said to be 
consonant if its focal sets are nested.  

The belief function Bel, the plausibility function Pl and 

the commonality function q are defined for all B  ! � as 
follows  

                � ⊆
=

BA
AmBBel )()(                              (2) 

                � ≠∩
=

Ø
)()(

BA
AmBPl                              (3)                                                

                � ⊇
=

BA
AmBq )()(                                   (4) 

The belief Bel(B) obtained by the summation of BBAs 
for all elements A which are fully included in proposition 
B expresses the “total” degree of belief. The degree of 
plausibility Pl(B) is calculated by adding BBAs of 
elements A whose the intersection with proposition B is 
not an empty set. The commonality function q is used for  
mathematical purposes only. In the perspective of Walley 
[16], these belief and plausibility functions consist of 
lower and upper bounding probability functions of the 
true but unknown probability distribution.  

When a decision needs to be made, we use a so-called 
pignistic(1) transformation which induces a pignistic 
probability function from the belief functions. This is the 

                                                
(1)

Pignistic means ‘bet’ in Latin
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result of applying the TBM model introduced by Smets 
[14] which is a subjective interpretation of the DST. The 
TBM is a two-level mental model in which the beliefs 
are represented and quantified at the credal level by 
belief functions, whereas decision making is based on the 
probability distributions and takes place at the pignistic 
level. The use of the TBM model for decision making in 
the context of PRA has been studied in [21].  

In the next sections, the Dempster-Shafer Theory is 
studied for the use of updating the belief functions when 
new evidence is available.  

3  Approaches for updating belief within the 

Theory of Belief functions. 

Combination of different sources of evidence is one of 
the important fields when dealing with uncertainty. The 
Dempster-Shafer Theory of belief functions offers many 
approaches for aggregating belief functions in a natural 
way. Two approaches often studied and used in some 
real applications are outlined hereafter. These two 
approaches allow the belief functions to be updated by 
taking account of the prior sources of information (e.g. 
experts’ opinions or previous data) in addition with new 
available data.  

In the following we consider a random variable X on the 
state space � and characterized by its probability 

distribution Pθ, with the parameter θ  taking its values in 
Θ.  

3.1  Dempster’s Rule of Combination (ROC) 

Suppose that the uncertainty associated to the parameter 
of the model is characterized by belief functions. These 
functions need to be updated when new data on the space 
� become available. If data observations are 
independently collected, the belief functions of the 
parameter given each data can be all combined together 
using the Dempster’s rule of combination (ROC). Let 
BBA m1 and BBA m2 represent respectively the belief 
functions given the first data and the second data over the 
frame �, according to the ROC, then the combined BBA 
is calculated as follows    

))(()( 2112 AmmAm ⊕=

Θ⊆∀
−

= � =∩
AAmAm

K AAA
for   )(.)(

1

1
2211

21

  (5)

Where )(.)( 22Ø 11
21

AmAmK
AA� =∩

=  is a measure 

of the amount of conflict between the two BBAs. 

Therefore, by considering m1 as the prior BBA and m2 as 
the BBA given new available data, the posterior belief 
functions can be obtained using the above ROC. In some 
contexts, the prior information can be simply vacuous 

belief functions i.e. m(�)=1 which express the total 
ignorance.  

As wee can see in equation (5), since the operator ⊕
used in this rule is both associative and commutative, 
thus the order of these functions to combine is not 
relevant. Note that when the belief functions are 
Bayesian functions, Shafer [7] proved that the Bayes’ 
rule of conditioning is a special case of the Dempster’s 
rule of combination.  

3.2  Generalized Bayesian Theorem in TBM 

The previous approach for aggregating the belief 
functions of the uncertain parameter � involved a fairly 
standard application of DST. However, a generalization 
of the Bayes’ rule within the TBM may be used to update 
the belief functions in a manner more closely aligned 
with updating of probability distributions via the classical 
Bayes’ rule. This approach is now outlined.  

3.2.1  Generalized Bayesian Theorem 

As we know, in probability theory, the Bayesian theorem 
allows the computation of the posterior probability 
function of θ given observed realizations of X from the 
likelihood of X given θ and some prior probability 
distribution of θ . The same idea has been extended in the 
TBM context [13] where conditional belief functions of θ
given observations of X is built from the conditional 
belief function of X given each Θ∈

i
θ  and a vacuous 

prior belief of θ. Thus, if we know the conditional 

plausibilites )|( iθxpl
Ψ  of X given each Θ∈iθ  and 

according to the GBT, the conditional belief functions for 

all A ! � given an observation Ψ∈x  are computed as 
follows: 

( | )Am x
Θ =

i i. ( | ) (1 ( | ))
i i

A A

C pl x pl x
θ θ

θ θΨ Ψ

∈ ∈

= −∏ ∏                    (6) 

=Θ )|( xABel

i i(1 ( | ) (1 ( | ))
ii A

C pl x pl x
θθ

θ θΨ Ψ

∈Θ∈

� �
= − − −� �� �

� �
∏ ∏                (7)        

and  

i( | ) 1 (1 ( | ))
i A

pl A x C pl x
θ

θΘ Ψ

∈

� �
= − −� �� �

� �
∏             (8) 

Where  1
i1 (1 ( | ))

i

C pl x
θ

θ− Ψ

∈Θ

= − −∏  is the  

normalized factor which is introduced when the 
assumption of closed-world is made i.e. the BBA 

0)Ø( =m  is assumed. The interesting point in the GBT 

is that the needed prior belief on � is a vacuous belief 
function which is the perfect representation of total 
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ignorance. We can thus avoid one of the delicate 
problems of classical Bayesian approach related to 
choosing an appropriate a priori. In the context of 
updating belief functions, the posterior beliefs can be 
obtained using the Dempster’s rule of combination 
applied to the above conditional belief function given 
new data and the prior belief function built from the 
previous data.   

In the case of having n independent series of 
observations with event counts x1, x2, … xn resulting 
from the same probabilistic model (e.g. Poisson model), 
in order to aggregate belief functions given these 
observations, we can construct n conditional belief 
functions of θ given each event count xi and then 
combine these belief functions by the ROC. The same 
result can be obtained in a different way by considering 
the joint conditional plausibility function 

)|,...,( i1 θnxxpl
Ψ directly obtained from the joint 

observations (x1,x2,…,xn) using the notion of “conditional 
cognitive independence” as proposed in [5][13]. As a 

result, the plausibility function )|,...,( i1 θnxxpl
Ψ  of 

observing the joint observation (x1, x2…xn) given each 

Θ∈
i

θ  is the product of the individual plausibility 

functions of all observations i.e.: 

       ∏
=

ΨΨ =
n

k

kn xplxxpl
1

ii1 )|()|,...( θθ              (9) 

Then, the equations above (6,7,8) can be applied to 
calculate the conditional belief functions on � given the 
joint observation. This above property is essential and in 
fact the core of the axiomatic derivations of the GBT 
[12]. Let us now discuss about the performance of two 
ways for calculating the conditional belief functions 
given the data in GBT. From a computational point of 
view, the way of constructing conditional belief 
functions of � given joint observations (x1, x2…xn) is 
more efficient than calculating the conditional belief 
functions of � given each xi and combing them by ROC.  
This is because the former way is simply involved in the 
“product” operations (9) while the later concern with the 
orthogonal sums of ROC which require practically much 
more computational time. However, if we have some 
other sources of information such as expert’s judgments 
or any source which is distinct from the observations 
resulted from the same random process of probabilistic 
model, the Dempster’s rule would be more appropriate to 
use to construct the overall belief functions. This 
situation is often encountered in the context of PRA 
model.

As can be seen so far, the updating of the belief functions 
of the uncertain parameter � of the probabilistic model 

} : {P Θ∈θθ
 using the GBT just requires to calculate the 

conditional plausibility functions )|( iθxpl
Ψ  given each 

Θ∈
i

θ . In the following paragraph we will discuss about 

the calculation of this conditional plausibility function. 

3.2.2 About the calculation of the conditional 

plausibility functions )|( iθxpl
Ψ

As we know, the probabilistic distribution of a random 
variable X describes the degree of chance (estimated by 
the long run frequency) of its independent realizations x1, 
x2,…,xn. If the probability distribution of the random 
variable X is known then the Hacking’s frequency 
principle [8] claims that the degree of belief of an event 
is equal to its probability i.e. Bel=P�. However, in the 
TBM model, the degrees of chance are not equated with 
the degrees of belief. Thus, if asked about the belief held 
by an agent regarding the future realization of X, as 
argued in [1], this degree of belief should be 
distinguished from the degree of chance which is only 
handled at pignistic level in the TBM model. Hence, 
according to [1], “we replace the Hacking’s principle by 

the weaker requirement that pignistic probability of an 

event is considered as its long run frequency when the 

latter is known”. In other words, the belief functions on 
credal level quantifying the belief regarding the next 
realization of a random variable should be such that its 
pignistic probability distribution is the probabilistic 
model } : {P Θ∈θθ

. In order to be consistent with the 

underlying assumptions of the TBM used in our context, 
we will adopt in this paper this point of view to derive 
the beliefs with regard to the future observations of a 
random variable.    

If the pignistic probability distribution equated with a 
probabilistic distribution is known while the 
corresponding belief and plausibility functions are 
unknown, then we can recover these functions using the 
least commitment principle proposed in [3]. Since the 
pignistic transformation is not bijective, an infinite 
number of BBA, called a set of isopignistic belief 
functions, can induce the same BetP. In the absence of 
additional information, the least commitment principle 
suggests to choose, in the set of all isopignistic BBA, the 
one that maximizes the commonality function q, named 
q-least committed (q-LC). Dubois, Prade and Smets [3] 
demonstrated that the (q-LC) BBA associated with a 
given pignistic probability distribution BetP is unique 
and consonant (i.e. a possibility distribution). Therefore, 
according to the results of [3], the conditional plausibility 

)(xpl
Ψ  of observing x over the discrete space � given 

each Θ∈
i

θ  is calculated from BetP as follows: 

               ))(,)(min()( � Ψ∈

Ψ =
y

ypxpxpl                 (10) 

Where p(x)=BetP(x) which is a unimodal discrete 
probability distribution. In the case where � is 
continuous, the conditional plausibility of a probability 
density is defined in the same way by substituting the 
finite sums by integrals. 
                
After calculating the posterior belief functions, similarly 
to the classical way for updating a probability 
distribution with the Baye’s theorem, it is possible to 
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estimate the parameter by constructing the pignistic 
probability induced by the posterior belief functions.  

In this section, we studied two approaches for updating 
the belief functions when new knowledge is available. 
The first approach is simply based on a standard 
application of the Dempster-Shafer theory while the 
second is based on the generalization of the Bayes’ rule 
within the TBM. Both approaches do not require prior 
belief functions to be set. In literature, theses two 
approaches have been criticized by [16] and recently 
discussed in [4]. In practice, the use of Dempster’s rule 
and GBT has been studied for updating the belief 
functions in some applications [5][11]. In the next 
sections, we will consider these two approaches in the 
context of nuclear PRA data. 

4   Application of belief updating approaches 

to Nuclear PRA context 

The use of belief functions for modeling the uncertainty 
associated to reliability parameters in the PRA context 
has been studied in [20][21]. In these works, the focal 
elements are constructed from the data as the closed 
intervals (focal intervals) and then the belief functions 
are derived. From a computational point of view, this 
construction is helpful to propagate the uncertainty 
through a given model function by simulation code. In 
this section, we will study the use of the approaches 
presented previously for updating belief functions when 
new data are available. But let us start by recalling the 
method currently used in this purpose and based on the 
MLE [20][21].   

4.1  Belief updating from pooled data with Maximum 

Likelihood Estimation 

The MLE is often used to estimate the value of 
parameters of probabilistic models given observations as 
the current practice of EDF’s Nuclear PRA. Basically, 
this method relies on the principle of long run frequency 
to estimate the value of parameters given the number of 
observations over a time period. For example, the failure 
rate (often noted as �) of a component with exponential 
lifetime is estimated by:  

                                   
t

x
=λ̂                                        (11) 

Where x is the number of observed failure events over 
the time period t. Associated with the estimator, the 
confidence interval is provided to represent the range of 
possible values of parameter in which the true value is 
contained “in most cases” (i.e. for a fraction 100(1-�) of 
the samples). In the practice of PRA, a 90% confidence 
interval is often used. When new observations become 
available, they are combined with previous ones using 
the pooled data technique to give an updated estimator 
and a new confidence interval. The new estimator is 
calculated as:  

                                  

�
�

=
i i

i i

t

x
λ̂                                 (12) 

Where �i ix  is the total number of observations and 

�i it is the total exposure time. The confidence 

interval is also recalculated given this new information. 
In the traditional uncertainty analysis of PRA, on the 
basis of this information, a presumed probability 
distribution such as a log-normal distribution is used in 
the sense that the subjective probability will reflect our 
beliefs regarding the values of parameter. However, this 
point of view has been questioned due to the potential 
impact of the choice of probability distribution on the 
results of decision making. An approach using the belief 
functions of DST is proposed to overcome the issue as 
studied in [19]. The construction of these functions is 
based totally on the information given in the form of a 
nominal value (i.e. an estimated value) and a confidence 
interval. Obviously, the updating of belief functions 
when new information is available is not carried out by 
mean of an aggregation of degrees of belief. Such an 
approach may have difficulty to incorporate with other 
sources of information such as those given by expert’s 
opinion. This problem can be addressed using the ROC 
presented in section 3. This approach allows integrating 
the prior information given by experts’ opinions or past 
experiences in a natural way. We will see hereafter how 
this approach is used in the context of PRA data. 

4.2 Belief updating with Dempster’s rule of 

combination   

When the information about the values of uncertain 
parameters comes from experts’ judgments, the belief 
functions of DST are appropriate to represent the degrees 
of beliefs regarding the uncertainty. As independent 
expert’s judgments are given, the combination of these 
sources of information can be done using the ROC. The 
same manner can be applied to the case where operating 
feedback data become available and new belief functions 
are calculated by taking account of this data as well as 
the information given by expert’s judgments. In this case, 
the belief functions given the operating data are obtained 
from the MLE approach and then aggregated with those 
assessed from expert’s judgments. Obviously, one may 
also apply the ROC for statistical independent data 
within the MLE context by constructing the belief 
functions obtained from the confidence intervals of MLE 
given each data and then aggregating all these functions 
to obtain the updated belief functions. However some 
precautions should be taken when using the ROC since 
the belief functions are constructed on the basis of the 
confidence intervals of MLE which are randomly derived 
from a random probabilistic process. This can lead to 
some cases where the BBA is equal to zero because these 
confidence intervals may not overlap each other, i.e. they 
are disjoint intervals each other. This problem can be 
only addressed if we admit that all the confidence 

ISIPTA ’11: A Study on Updating Belief Functions for Parameter Uncertainty Representation 251



intervals contain the true value of parameter although 
this is only true in “most of the cases” (e.g. 90% of 
chance). This is an unavoidable drawback of the 
approaches based on the intervals of confidence of MLE 
to construct belief functions. In [19] some other 
approaches for the combination of sources of evidence 
such as mixing or enveloping approaches can be applied 
for addressing this issue. However, these methods are not 
appropriate in this context because they tend to widen the 
uncertainty while we aim to construct the belief functions 
concentrated around the true value, as new information is 
available. The GBT inspired from the classical Bayes’ 
rule could be more suitable to construct belief functions 
given statistical independent observations since this 
approach does not rely on the use of random confidence 
intervals of MLE. 

4.3 Belief updating with Generalized Bayesian 

Theorem. 

The classical Bayes’ theorem has been studied for the 
parameter estimation and the updating of uncertainty 
probability distributions in the context of nuclear PRA as 
in [2][10]. The major issue of this approach resides in 
choosing an appropriate prior probabilistic distribution 
since results of an uncertainty analysis could be impacted 
by this choice. The GBT approach within the theory of 
belief functions presented in section 3.2 could be the 
solution to this problem and allows us moreover to 
characterize the epistemic uncertainty in a more 
appropriate manner. In general, the probabilistic models 
in PRA are often supposed to be known in order to 
characterize the random occurrence of accidents that may 
occur at nuclear power plants. Therefore, when the belief 
functions are used to represent epistemic uncertainty 
associated to its parameters, the updating of these belief 
functions using GBT can be carried out by considering 
these probabilistic models as pignistic probability 
distributions as discussed in section 3. The conditional 

plausibility )|( iθxpl
Ψ  on the space of data � given 

each Θ∈
i

θ  is calculated using the least commitment 

principle. The probabilistic model in PRA can be divided 
into two principal types: discrete model and continuous 
models. However, since the information provided in PRA 
databook is often given in the form of number of 
observations, it is usually enough to consider the 

conditional plausibility )|( iθxpl
Ψ  on the discrete space 

of data �. Let us study for instance a Poisson model with 
an event rate �(2) over an operational time t, the 
probability of having x accidental events over � given 
the value of event rate Θ∈iλ  is given as follows: 

                         
!

)(
)|( i

x

t
exp

x

iti
λ

λ λ−=                           (13) 

                                                
(2)

we use the notation � instead of � for this example to keep the same 

notation used in PRA practical example of the section 5.

Therefore, when the evidence in form of x failures is 

available, the conditional plausibility )|( iλxpl
Ψ  is 

simply calculated by: 

       ))|(,)|(min()|( iii � Ψ∈

Ψ =
y

ypxpxpl λλλ       (14) 

For example let us consider a frame of data �={x1, x2, x3, 
x4}, the Poisson model given a specified value of �i has 
the probability distribution such that p(x1)=0.3, p(x2)=0.4, 
p(x3)=0.2 and p(x4)=0.1. The conditional plausibility 

)|( i3 λxpl
Ψ  of having x3 failures according to equation 

(14) is  

      pl
�(x3|�i)=min(0.2,0.3)+ min(0.2,0.4)+ min(0.2,0.2)+ 

                  + min(0.2,0.1)=0.7. 

Having calculated the conditional plausibility over space 

�, the conditional belief functions for all subset A ! �
given any observation x ∈ Ψ can be obtained using 
equations (7,8). Nevertheless, as we can see, these belief 
functions from theses equations are computed for the 
subsets of the discrete frame � while it is proposed to 
construct them on the basis of focal elements which are 
closed intervals (i.e. focal intervals) for uncertainty 
propagation in later [21]. Therefore, in order to allow us 
to update the belief functions using the GBT in our 
context, it is necessary to transform the belief functions 
defined on discrete frame to those defined on the real 
line. We propose for this purpose to build the “empirical” 
cumulative belief functions and then get the focal 
intervals from the discretization process. Some additional 
tasks need therefore to be performed. First of all, to get 
the discrete frame � of a continuous variable �, we 
partition the frame � such that we have an increasing 
ordered set of  �1, �2,…, �N . Then we apply the GBT 
approach using above equations (7,8) or (6) to calculate 
the conditional belief and plausibility functions for sets 
{�1}, {�1, �2}, {�1, �2, �3}…{�1, �2, �3,…, �N}. Since 
these are nested sets, we have always for the belief 
function (the same for the plausibility function) that 
Bel({�1}) ≤ Bel({�1,�2}) ≤  …≤ Bel({�})=1. Therefore, 
similarly to the discrete probability theory if we consider 
elements �1, �2,…, �N as order statistics and previous 
belief (plausibility) values as cumulative probabilities 
then we can build the “empirical” cumulative belief 
functions on the frame � of the continuous variable � by 
using a step function. Thus, let note B sets {�1}, {�1, �2}, 
{�1, �2, �3}…{�1, �2, �3,…, �N}, theses functions are 
expressed as follows 
    

( , ](( , ]| ) ( | ).1
B

B

Bel x Bel B x θθΘ Θ
⊆ −∞ ⊆Θ

⊆Θ

−∞ = �           (15) 

and  

( , ] Ø(( , ]| ) ( | ).1
B

B

Pl x Pl B x θθΘ Θ
∩ −∞ ≠

⊆Θ

−∞ = �              (16) 

where A1 (x) equals one if x is in A and zero in the 

opposite.  
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These two functions could be considered as the bounds 
of a p-box because they are both non-decreasing 
functions from the real values into the interval [0,1] and 
the function )|],(( xBel θ−∞Θ  is less than or equal to 

)|],(( xPl θ−∞Θ  for every value of �. By adopting this 

view, the Dempster-Shafer focal intervals can be 
approximately obtained using the discretization methods 
as described in [19]. The principle of discretization is 
illustrated in the Figure 1.  

Figure 1 Principle of the construction of focal intervals 
from a p-box. 

The lower and upper bounding functions are assumed to 
be right and left continuous, respectively. Each rectangle 
Ai in this figure corresponds to a focal interval [ai ,bi] 
with mass ([ai,bi])=di-ci where di and ci are probability 
values. These focal intervals then can be used to 
propagate the parameter uncertainty as done in the 
framework proposed in [21]. In summary, in order to use 
the GBT for updating the belief functions of an uncertain 
parameter � of a PRA probabilistic model, we go through 
the following steps: 

Step 1: Define the discrete frame � of possible values of 
uncertain parameter � and then sort them in an increasing 
order for example, �1, �2,…,�N. In practice, the uncertain 
parameter � is often given by a bounded confidence 
interval; the frame � can be obtained by discretizing this 
interval into N possible discrete values.  

Step 2:  When a new observation x0 becomes available, 
compute the plausibilities pl(x0| �i) of observing x0 given 
each �i using the formula of least commitment principle

(14). 

Step 3: Use the Generalized Bayesian Theorem, to 
calculate the cumulative beliefs for �1 , �2,…, �N and then 
construct “empirical” cumulative belief functions of 
equations (15,16) for each semi-closed interval (-�, �i] 
on the frame � given the observation x0 . 

Step 4: Use the discretization methods to obtain focal 
intervals from “empirical” cumulative belief functions. 

Step 5: If the belief functions of some other independent 
observations are available and/or the prior belief 
functions come from other sources (e.g. expert’s 

judgment), the final posterior belief functions can be 
obtained using Dempster’s rule of combination. 

Step 6: When it is required to provide a point estimate 
value of parameter � as in the PRA context, compute the 
mean (or median or mode) of the pignistic probability 
distribution induced from posterior belief functions.  

In this section, we considered the application of updating 
belief functions for parameter uncertainty representation 
in the context of PRA. As we can see, since the 
mechanism of constructing the belief functions given 
new information of each method is quite different, thus 
the results obtained from each one could be different 
from one to another. Since our main goal is to build 
posterior  belief and plausibility functions such that they 
should be concentrated around the true value of the 
parameter, the width between the belief function and the 
plausibility function should be reduced as new 
information are available. In order to measure this width 
of the belief functions obtained from each approach, the 
measure uncertainty as proposed in [12] can be applied. 
This measure is defined as follows 

  �
Θ⊆

−=
iii ba

iiii abbamAW
],[

)]).(,([                        (17)      

This is called a non-specificity measure which quantifies 
the amount of uncertainty represented by belief 
functions. As we can see, it measures the aggregated 
width of all intervals which is the area between the belief 
and the plausibility functions. The smaller non-
specificity measure AW, the more specific is the resulting 
of belief functions. In the following section, this measure 
will be employed to compare results of updating belief 
approaches through a practical example. 

5   Practical example 

In order to illustrate the above approaches through a 
practical example, we propose to take the example that 
has been used in [2]. The following example is addressed 
for the study of an initiating event of PRA but the 
principle can be applied for other types of failure events. 

Problem: Considering a Poisson model with the true but 
unknown value of an initating event rate �= 1.2 events 
per year (13.69E-5/h) over the time period of observation 
t= 6 years. Thus, the event count follows a Poisson 
distribution with mean �t = 7.2.  In PRA, due to lack of 
data, the event rate � is subjected to epistemic parameter 
uncertainty.  

Suppose that we had already prior information about the 
event rate � given by a point estimate and an error factor 
(EF(3)), say, �mean= 5E-5/h and EF=5 which can be 

                                                
(3)

EF is often used in PRA context to indicate the range of possible 

values of an uncertain parameter.
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interpreted as the 90% confidence interval such as 
]525  ,51[ −−∈ EEλ  see [20]. This prior information can 

be viewed as obtained from either expert’s judgment or 
from previous experience. The prior belief functions 
based on this information are constructed by the 
approach studied in [2] by considering the point estimate 
�mean

  as the mean value of the uncertain variable �. These 
belief functions are displayed in the Figure 2.   

Figure 2 Prior belief and plausibility functions 

Now let us suppose that we have new data that are 
observed from nuclear plants. This can be done by 
considering the above Poisson process be repeated in a 
number of times, say, 40 event counts are generated. 
These may be interpreted as counts from 40 identical 
plants, each observed for 6 years, or from 40 possible 
six-year periods at the same plant. Figure 3 shows that 
the first randomly generated event count was 10, the next 
was 5, the next was again 10, and so on. Some of the 
event counts were less than the long-term mean of 7.2, 
and some were greater. The maximum likelihood 
estimates of event rate � are plotted as dots in Figure 3. 
The corresponding 90% confidence intervals for � are 
also plotted. In the Figure 3, the vertical dashed line 
shows the true value of �, 1.2.

Figure 3 Confidence intervals from random data, all 
generated from the Poisson process [2]. 

Given new data, we will next construct the belief 
functions using the studied approaches.  We will consider 
two cases: one observation and multiple independent 
observations. 

Case 1: One observation 

In this case, in order to show the advantage of the GBT 
with regard to the classical Bayes‘ theorem, we will 
distinguish the two following cases. 

a.  No prior information is available (prior ignorance)   

Suppose that we have only the information about the 
initiating event from the first period of observation of  
the Poisson process which gives 10 event counts i.e. 
x=10. In this case, the point estimate value and the 90% 
confidence interval given by the MLE method are 

19.02E-5/h (1.66/year) and [10.32E-5, 32.27E-5] 
respectively. The belief and plausibility functions can be 
constructed from this information as showed in the 
Figure 4. 

Figure 4 Belief and plausibility functions constructed 
from MLE approach and GBT without available prior 
information. 

Since we have only one single data (i.e. the first period of 
observation) while no prior information is available, the 
Dempster’s rule of combination of evidence is not 
necessary. The Figure 4 displays also the belief functions 
obtained from the GBT approach. Unlike the classical 
Baye’s theorem where a prior probability distribution is 
required,  no such requirement is needed in the GBT 
approach. In the absence of prior information, a vacuous 
belief function i.e. m(�)=1 which represents perfectly  
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the total ignorance is sufficient. This allows us to avoid 
any assumption about the choice of an appropriate prior 
probability distribution as in the classical Bayes’ 
theorem. As we can see from the Figure 4, compared to 
the belief functions of the MLE approach, the results of 
GBT in this case are more specific because the non-
specificity measure AW  (12.63E-5) is smaller that of the 
MLE (14.7E-5). The mean pignistic value of the GBT is 
17.7E-5/h compared to true value of event rate (13.69E-
5/h). Note that, the construction of belief functions is 
based on the information of 90% confidence interval 
which is viewed as the upper and lower bounds of the 
parameter. As discussed in [20][21], in some context this 
consideration may be helpful to eliminate the values 
outside the interval which are viewed as unrealistic. 
However, in other contexts, this can lead to loss of 
information. The results of the GBT approach are not 
impacted by this consideration.      

b. A priori information is available   

When prior information is available, the belief functions 
of this information can be combined with the belief 
functions given the new observations. Suppose that we 
have the prior information of event rate as from the 
Figure 2 i.e. �mean= 5E-5 and 90% confidence interval 
[1E-5, 25E-5]. This information is often given by 
experts’ opinions, however, if desired, it can be also 
viewed as obtained from a previous observation. In this 
case, the point estimate �mean= 5E-5 can be considered as 
if the event counts over the time period of 6 year was 3. 
As a consequence, when the first data of the Poisson 
process comes with 10 event counts of the first period of 
observation, the event rate estimated from the pooled 
data  by MLE approach is �= (10+3)/(6+6)=1.083 events
per year (12.36E-5/h) and the 90% confidence interval is 
[7.31E-5, 19.66E-5]. The belief functions constructed 
from the pooled data of MLE are showed in the Figure 5. 
On the other hand, instead of constructing the belief 
functions from the pooled data, we can use the ROC to 
build the belief functions given each data. In this case, it 
is merely sufficient to apply the ROC to prior belief 
functions (Figure 2) and the belief functions given the 
first new data (Figure 4). The same way applied to the 
conditional belief functions with GBT approach. The 
results of these approaches are displayed in the Figure 5. 

Figure 5 Posterior belief and plausibility functions of 
approaches vs. prior belief and plausibility functions. 

As can be seen, the area between the belief and 
plausibility functions of GBT approach is smallest since 
its non-specificity measure (AW=6.37E-5) is smaller than 
that of pooled data MLE approach (8.33E-5) and that of 
ROC approach (8.35E-5). The mean pignistic value of 
GBT approach is 12.48E-5/h compared to this value 
given ROC approach (15.8E-5/h). These values are not 
far from the true value (13.69E-5/h). 

In the first case study, we considered that we had only 
one data from the first period of observation. In the next 
case, we suppose having multiple independent 
observations. 

Case 2: Multiple independent observations

In this case, suppose that we have 10 independent  series 
of observations which are collected either from 10 
identical power plants during the same time period or 
from 10 possible six-year periods at the same plant. Thus 
we have a series of event counts (10,5,10,6,10, 
10,7,10,9,2). In the Figure 3, we use the first ten event 
counts among 40 event counts generated from the 
random Poisson process. 
  
As in case 1b, given these observations in conjunction 
with the prior information, the pooled data MLE 
approach gives the estimated value 14.18E-5/h and 90% 
confidence intervals [11.70E-5, 17.04E-5]. The belief 
functions constructed from the pooled data are showed in 
the Figure 6. In this figure, the results of the ROC 
approach are also displayed. As can be seen, the resulting 
belief and plausibility functions do not contain the true  

Figure 6 Posterior belief and plausibility functions of 
approaches in case of multiple independent observations. 

value of the event rate because the highest value of these 
functions on horizontal axe (the maximum value) is 
smaller than 13.69E-5/h. This is explained by the fact 
that the assumption that all 90% confidence intervals 
must contain the true value of parameter is not verified 
(see the 10th event count).The belief and plausibility 
functions coming from the GBT are slightly less specific 
than those coming from the MLE approach in this case 
but the results allow taking into account possible values 
located outside the 90% confidence interval of MLE.
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6   Conclusions and perspective 

In this paper, we studied different approaches for 
updating belief functions representing parameter 
uncertainty given new available information in the 
context of PRA. Although the method of constructing 
belief functions from pooled data of MLE is intuitive and 
consistent with the current practice of EDF PRA data, it 
has some drawbacks regarding the incorporation with 
other sources of information such experts onions. The 
method of using the ROC to aggregate belief functions 
given data within the MLE context is not recommended 
since its results are too sensitive to random sampling 
process. The GBT approach appears to be the most 
appropriate approach to use in PRA context. This 
approach can address the major issue in the classical 
Baye’s rule about the assumption of prior probability 
distribution and moreover allows us to overcome the 
existing drawbacks associated to the MLE approach. 

The use of DST for uncertainty representation has been 
only recently studied in PRA context. A number of 
challenges of this framework come up for its application 
within the industrial risk analysis. These approaches 
studied in this paper for constructing and updating the 
belief functions need to be reviewed in PRA community 
and studied within industrial contexts to be integrated in 
the formal regulatory process.   
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Abstract
In Harsanyi and Selten’s equilibrium selection theory, the
linear tracing procedure has been used to model the hypo-
thetical reasoning process of expectation formation. This
paper reconsiders the linear tracing procedure from the
perspective of the relationship between priors and Nash
equilibria. A prior belongs to the source set of a Nash
equilibrium if the linear tracing procedure based on this
prior leads to that equilibrium. We show that for any Nash
equilibrium, its source set is always nonempty and closed,
but not generally convex. This paper also constructs an
approach of iterative application of the linear tracing pro-
cedure to the auxiliary games that are used to model the
hypothetical reasoning under the procedure. We present a
notion of robustness of Nash equilibria based on this idea,
by replacing uncertainty modelled by a single probability
measure with uncertainty modelled by sets of probability
measures. This approach attempts to capture the fact that
players may not be sufficiently confident in the available
information in order to single out one probability distri-
bution that represents their initial beliefs about the other
players’ possible strategy choices.

Keywords. Equilibrium refinement, linear tracing pro-
cedure, stability, robustness, sets of probabilities.

1 Introduction

There are a variety of nontrivial games, with impor-
tant applications in economics, which generate (some-
times infinitely) many different Nash equilibria. In
game theory, a strategy profile is a Nash equilibrium
if each player’s choice is an optimal response to other
players’ choices. The fundamental assumption behind
this definition is that one player’s optimal choice max-
imizes her own expected utility given the other play-
ers’ choices. The fact that there are typically multiple
Nash equilibria seems to suggest that the equilibrium
solution concept is too weak a criterion for predicting
the players’ behavior. Therefore, a great deal of effort
has been devoted to refining the concept of Nash equi-

librium by providing more stringent strategy-selection
criteria. Examples of suggested equilibrium refine-
ment concepts are Harsanyi and Selten’s risk dom-
inance ([2]), Kohlberg and Mertens’s stability ([5]),
Kreps and Wilson’s sequentiality ([6]), and Selten’s
perfectness ([8]).

Harsanyi and Selten’s idea of risk dominance cap-
tures the idea that, without knowing which equilib-
rium would be played, the players undergo an in-
trospective process of expectation formation, which
may eventually single out one equilibrium as less risky
than another. This process is fully modelled by the
so-called linear tracing procedure, which is thus the
mathematical foundation of risk dominance. One of
the basic assumptions of this model is that the un-
certainty among all players’ likely strategy choices is
represented by a common prior strategy. However,
it could be the case that the uncertainty among the
Nash equilibria in question cannot be completely re-
solved as the assumed reasoning process proceeds.
Nevertheless, the linear tracing procedure itself is a
mathematical mechanism for modelling the players’
hypothetical deliberation process about uncertainty.
We shall later return to the linear tracing procedure
and describe it in detail.

Moreover, we extend the framework of the linear trac-
ing procedure to accommodate sets of probabilities
as a representation of uncertainty. We then examine
the possibility of iteratively applying the linear trac-
ing procedure to a sequence of auxiliary games. This
may be regarded as a minor generalization of the tra-
ditional game-theoretic framework, by only dropping
the so-called “dogma of precision” ([9]), namely, that
uncertainty should always be represented by a single
probability measure. This enables us to assess the
robustness of Nash equilibria in the traditional game-
theoretic context, where uncertainty is represented in
a more realistic manner.

To explain the basic ideas, consider the two-person co-
ordination game described by Figure 1. In this game,
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player 1 has two pure strategies denoted by s11 and
s12, while player 2 also has two pure strategies de-
noted by s21 and s22.

s21 s22
s11 1, 1 0, 0
s12 0, 0 3, 3

Figure 1: Coordination Game

The game has two Nash equilibria in pure strate-
gies, namely E1 = (s11, s21) and E2 = (s12, s22).
It also has one Nash equilibrium in mixed strategies,
E3 = (( 3

4 ,
1
4 ), ( 3

4 ,
1
4 )), where the first and second pairs

of numbers denote the probabilities assigned to player
1’s and player 2’s two pure strategies respectively. For
convenience, the strategy space of the game can be
described by the square ABCD in Figure 2. Any
point X of this square will represent a mixed strategy
profile δ = ((q11, q12), (q21, q22)). In particular, the
horizontal distances XY and XZ will represent the
probabilities q11 and q12 = 1 − q11 respectively, and
the vertical distances XV and XU will represent the
probabilities q21 and q22 = 1 − q21 respectively. Ac-
cordingly, the three Nash equilibria of the game can
be represented by the corner points A and C, and the
point E, as shown in Figure 2.

AD

BC

X
Y Z

U

V

E

Figure 2: The Strategy Space

A natural question concerning this game is which of
the three equilibria would be played. Harsanyi and
Selten attempt to answer this question by employ-
ing the linear tracing procedure to examine the risk
associated with different Nash equilibria when belief-
uncertainty is represented by a single probability dis-
tribution. Here, we want to investigate the viability of
Nash equilibria under the recursive application of the
linear tracing procedure when uncertainty is modelled
by sets of probabilities. We thereby hope to shed light
on how traditional solution concepts can be informed
by the notion of imprecise probabilities.

The remainder of the paper is structured as follows.
Section 2 provides a formal description of the linear
tracing procedure and some characterization results
concerning source sets. In Section 3 we describe an ap-
proach which involves iterative application of the lin-
ear tracing procedure to a self-generated sequence of
hypothetical games, where uncertainty is represented

by sets of probabilities. On the basis of such a re-
cursively applied linear tracing procedure, we then
formalize and investigate a notion of stability, which
measures the tenability of a prior strategy with re-
spect to a certain Nash equilibrium under this pro-
cedure. The rest of this section extends the analysis
of the linear tracing procedure to allow for represent-
ing uncertainty by sets of probabilities, and proposes
a notion of robustness of Nash equilibria. Section 4
consists of concluding remarks and suggestions for fu-
ture work along these lines.

2 Linear Tracing Procedure and
Source Sets

The linear tracing procedure is a mathematical tool
first introduced by Harsanyi ([3]), which under-
pins the equilibrium refinement concept proposed by
Harsanyi and Selten ([2]). Informally speaking, it
models how the players gradually update their strat-
egy plans in light of what they know about the oppo-
nents’ strategic reactions to their own expectations.
The procedure can be regarded as a rational delib-
eration process of expectation formation, after which
each player comes to choose a particular Nash equi-
librium and to expect the others to make the same
choice. The linear tracing process begins with a com-
mon probability distribution over all players’ strate-
gies, which represents their initial expectations about
the other players’ likely strategy choices. This way
of setting up the initial belief state is often called the
Harsanyi doctrine or, alternatively, the common prior
assumption. Under such an assumption, it would
seem that all players should adopt the best responses
against the assumed common prior. And this typ-
ically gives rise to a different strategy combination
that generally does not constitute a Nash equilibrium.
Throughout the linear tracing procedure, all players
gradually change their own tentative strategy plans,
as well as their expectations about the other players’
possible strategies, until they arrive at a certain Nash
equilibrium. It has been shown ([2]) that the linear
tracing procedure determines a unique Nash equilib-
rium for almost every game. In this section we shall
explore the linear tracing procedure from a different
perspective, focusing on characterizing the set of pri-
ors associated with a certain Nash equilibrium under
the linear tracing procedure.

Let us begin with some basic notations and concepts.
Let G = 〈I, {Si}, {ui}〉i∈I be a finite non-cooperative
strategic form game, where I denotes a finite set of
players, and Si denotes the finite set of pure strate-
gies of player i, and ui : S → R denotes a continuous
payoff function of this player (where S =

∏
i∈I Si).
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As usual, we can extend the strategy space to in-
clude mixed strategies. In general, we let ∆i rep-
resent the set of mixed strategies of player i, and sim-
ilarly ∆ =

∏
i∈I ∆i. Likewise, the payoff function of a

given player i can be extended in the standard way to
the set of all mixed strategy combinations ∆, and we
usually write ui(δ) for the expected payoff of player
i when δ ∈ ∆ is played. Let δ−i denote the strat-
egy combination (δ1, . . . , δi−1, δi+1, . . . , δn). For any
δ−i ∈ ∆−i, the set of player i’s best responses given
δ−i is defined as Bi(δ−i) = {δi ∈ ∆i : ui(δi, δ−i) ≥
ui(δ′i, δ−i) for all δ′i ∈ ∆i}. A strategy profile δ∗ ∈ ∆
is a Nash equilibrium of G if and only if each player’s
strategy is a best response to the other players’ strate-
gies, i.e., δ∗i ∈ Bi(δ∗−i) for every player i ∈ I. Hence-
forth, the set of all Nash equilibria of the game G will
be denoted by NE(G). Also, we shall assume that
some finite non-cooperative game G is already given.

The linear tracing procedure is a mapping ϕ from the
strategy space ∆ into the equilibrium set NE(G). It
transforms each strategy profile into a certain Nash
equilibrium of the game G. In order to define the lin-
ear tracing procedure, consider a one-parameter fam-
ily of auxiliary games Γt,p with t ∈ [0, 1] and p ∈ ∆.
Each game Γt,p is of the same structure as the origi-
nal game G, except for the payoff functions. In Γt,p,
for each δ ∈ ∆, each player i’s payoff function ut,p

i

satisfies

ut,p
i (δi, δ−i) = tui(δi, δ−i) + (1− t)ui(δi, p−i)

where ui is player i’s payoff function in the original
game G. Obviously, u1,p

i (δi, δ−i) = ui(δi, δ−i), which
implies that Γ1 = G. While, for t = 0 the game
Γ0,p decomposes into n independent and separate one-
person maximization problems, one for each player.
Now consider the equilibrium correspondence ψ : t→
NE(Γt,p) for t ∈ [0, 1] and p ∈ ∆:

ψ = {(t, δ) | t ∈ [0, 1], δ ∈ NE(Γt,p)}

Let ϕ = ϕ(G, p) be the graph of the correspondence
ψ. Thus, any point x of graph ϕ has the mathematical
form x = (t, δ), where t is a specific t value whereas δ
is an equilibrium point of the corresponding auxiliary
game Γt. Note that the graph is not always a func-
tion. It can be shown that the graph ϕ contains at
least one distinguished path L, the so-called feasible
path, which connects a starting point x0 = (0, δ0) with
an end point x1 = (1, δ∗). Hence, for a given game G
and for a given prior strategy p ∈ ∆, we call Θ a linear
tracing procedure if it consists in selecting an outcome
q∗ by tracing a feasible path L from its starting point
x0 = (0, δ0) to its end point x1 = (1, δ∗). And δ∗ will
be called the outcome of the linear tracing procedure
Θ. Figure 3 shows the graph of a linear tracing proce-
dure for the game in Figure 1. For this linear tracing

procedure, B′′′B′′C ′′C ′C is the unique feasible path
and the equilibrium E3 (point C) is the outcome.

D′′′ A′′′

C ′′′ B′′′

B′C ′

D′ A′

D A

BC

E

t = 0

t = 1
16

t = 1

D′′

C ′′

B′′

A′′

t = 1
2

p = ((1
2
, 1
2
), (4

5
, 4
5
))

Figure 3: The linear tracing procedure based on p

The linear tracing procedure will always lead to at
least one equilibrium, and select one unique equilib-
rium as the solution for “almost all” games1. The
linear tracing procedure is called feasible if the graph
ϕ = ϕ(G, p) contains at least one feasible path L, and
is called well-defined ifX contains exactly one feasible
path L. It can be shown that, for any possible pair
(G, p), the linear tracing procedure is always feasible
but is not always well-defined. In light of its funda-
mental importance, we state this result as follows.
Proposition 1. ([2]) For any possible choice of game
G and prior vector p, the linear tracing procedure is
always feasible. However, for some choices of G and
p, the linear tracing procedure is not well-defined.2

It is worth noting that the above proposition tells us
nothing about the set of priors associated with a cer-
tain Nash equilibrium. There are several interesting
questions that are worthy of further investigation. For
instance, is the set non-empty, closed or convex? Be-
fore considering these problems, we first define the
concept of source sets as follows.
Definition 2. For a given game G and a strategy
δ∗ ∈ NE(G), the source set for δ∗, denoted by Φ(δ∗),
is defined as the set of all prior strategies, based on
which the linear tracing procedure yields the Nash
equilibrium δ∗ as outcome.

Our next proposition shows that for each Nash equi-
librium δ∗, its source set always includes itself as an

1See Harsanyi and Selten ([2]) for a more detailed explana-
tion of the term “almost all”.

2The proof provided by Harsanyi and Selten is heavily de-
pendent on the result showing that the logarithmic tracing pro-
cedure (also introduced by them) is always well defined. It is
worth pointing out that a mathematical proof of feasibility of
the linear tracing procedure can be easily derived from a the-
orem given in [7]. Using techniques from the field of algebraic
geometry, Schanuel et al. first show that the logarithmic trac-
ing procedure always connects the prior strategy to exactly one
equilibrium point. Based on this result, one can argue that the
feasibility of the linear tracing procedure is exactly a limit case
of the feasibility of the logarithmic tracing procedure. More re-
cently, Herings ([4]) directly shows the feasibility of the linear
tracing procedure without appealing to the logarithmic trac-
ing procedure. The two simple proofs provided by Herings
are based on theorems related to the fixed-point theorems of
Brouwer and Kakutani.
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element, and is thus non-empty.
Proposition 3. Let G be a finite non-cooperative
game. For each Nash equilibrium δ∗ of game G, δ∗
belongs to its own source set, i.e., δ∗ ∈ Φ(δ∗).3

Next, we might ask whether the source sets are closed
under the topology of pointwise convergence. To char-
acterize the closure property of source sets, we must
first introduce the concept of pointwise convergence
on the strategy space of a game G, as well as that of
a limit point of a set. Recall that we are considering
only games with a finite number of pure strategies.
Thus, the topology that we are considering is rela-
tively easy to work with. We now define pointwise
convergence as follows.
Definition 4. Let ∆ be the strategy space of a finite
game G = 〈I, {Si}, {πi}〉. A sequence {δr} converges
pointwise to δ ∈ ∆, denoted by {δr} → δ, if for each
player i ∈ I, all si ∈ Si, and all ε > 0, there exist
some k such that |δj

i (si) − δi(si)| < ε for each j ≥ k.
And δ is called the limit point of the sequence {δr}.

Let us compare pointwise convergence and uniform
convergence defined in the following sense. We say
that a sequence {δr} converges uniformly over play-
ers’ strategies to δ if for all ε > 0, there exists some
k such that for each player i, all si ∈ Si, and all
j ≤ k, it holds that |δj

i (si)− δi(si)| < ε. Clearly, uni-
form convergence is a stronger concept, and always
implies pointwise convergence, but not vice versa. In
our framework, however, pointwise convergence im-
plies uniform convergence, since the set of players is
finite, as well as each player’s set of pure strategies.

In this paper, a point p ∈ ∆ is called a limit point of
the source set Φ(δ∗) if there exists some sequence {pr}
such that each element of {pr} belongs to Φ(δ∗) and
{pr} → p. We shall employ the notion of limit points
to obtain a characterization of closed sets. Loosely
speaking, a set A is closed in a space X if it con-
tains all its limit points. Our main result is that the
source sets of Nash equilibria are always closed. More
formally:
Proposition 5. Let G be a finite non-cooperative
game and δ∗ be a Nash equilibrium of G. If p ∈ ∆ is
a limit point of the source set Φ(δ∗), then p ∈ Φ(δ∗).

We now give some definitions and lemmas that will
be used in the proof of the foregoing proposition.
Definition 6. Let Gr = 〈Nr, (Sr

i ), (πr
i )〉 be a finite

non-cooperative game with r = 1, 2, . . .. A sequence
of games {Gr} converges to a game G if all the games
in question have the same set of players Nr = N and

3Proofs not given in the main text can be found in the Ap-
pendix.

the identical set of pure strategies Sr
i = Si, and the

payoff function πr
i converges uniformly to πi, that is,

for all ε > 0, there exists some k such that for each
player i ∈ I, all s ∈ S and for all j ≥ k, it holds that
|πj

i (s)− πi(s)| < ε.

Obviously, it follows from the definition that the se-
quence {Gr} converges to G if all games under con-
sideration share the same set of players Nr = N and
strategy space ∆r = ∆ and, moreover, the payoff
function ur

i converges uniformly to ui. We say that
a game G is the limit game of a sequence of games
{Gr} if the sequence converges to G. The following
lemma can be regarded as a special version of the well-
known result ([1]) in game theory, which relates the
Nash equilibria of a convergent sequence of games to
the Nash equilibria of the limit game.
Proposition 7. Let {Gr} be a sequence of finite non-
cooperative games converging to G. If the strategy
profiles δr are Nash equilibria of Gr respectively with
{δr} → δ, then δ is a Nash equilibrium of game G.

Now consider a sequence of prior strategies {pr},
which converges to a prior strategy p. It is easy
to verify that for each t ∈ [0, 1] the sequence of
games {Γt

pr} converges to the game Γt
p. In order

to see this, let us recall that in game Γt
pr the pay-

off function ut
i,pr : ∆ → R is given by ut

i,pr (δi, δ−i) =
tui(δi, δ−i) + (1 − t)ui(δi, p

r
−i), where ui denotes the

payoff function of the original game G. Since the pay-
off function ui is assumed to be continuous, it directly
follows from {pr} → p that {ut

i,pr} converges to ut
i,p.

Moreover, if a sequence {tm} converges to t where
tm, t ∈ [0, 1], then it still holds that the sequence of
games {Γtm

pr } converges to the game Γt
p, since the se-

quence {utm,r
i } of payoff functions converges to ut

i.
Thus, it follows from the above lemma that the limit
of Nash equilibria relative to the sequence of games is
the Nash equilibrium of the limit game in both cases.
These noteworthy facts turn out to play a significant
role in the proof of the closure property of source sets.
We now state the foregoing results as follows.
Corollary 8. Suppose that {pr} → p and t ∈ [0, 1]
where pr, p ∈ ∆. If δr are Nash equilibria relative to
game Γt

pr with {δr} → δ, then δ is a Nash equilibrium
of game Γt

p.
Corollary 9. Suppose that {pr} → p and {tm} → t
where tm, t ∈ [0, 1] and pr, p ∈ ∆. If δm,r are Nash
equilibria relative to game Γtm

pr with {δm,r} → δ, then
δ is a Nash equilibrium of game Γt

p.

Let us turn to the convexity of source sets. In some
games, the source sets are convex, in the sense that
any mixture combination between two strategies from
a source set also belongs to the source set. It is not the
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case, however, that convexity holds in general. This
point can be easily illustrated by considering the co-
ordination game in Figure 1. As mentioned before,
this game has three Nash equilibria, i.e., E1, E2, and
E3. It can be verified by simple computation that the
source sets of these three Nash equilibria can be de-
scribed as shown in Figure 4. In particular, the source
set of E1 consists of all points within the area AHEF ,
the source set of E2 consists of all points within the
area BCDFEH, and the source set of E3 consists of
all points lying on the border segment HEF . Clearly,
the source sets of the equilibria E1 and E3 are not
convex.
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Figure 4: The source Sets

3 Robustness to Sets of Probabilities

As we mentioned above, the purpose of the linear trac-
ing procedure is to provide a rational and effective
mechanism for selecting a Nash equilibrium as the so-
lution of non-cooperative game. Now let us recall how
the linear tracing procedure works. The linear trac-
ing procedure is not merely an examination of the
game itself. Instead, we invoke a sequence of hypo-
thetical games to investigate how the equilibria of the
original game behave in auxiliary games. It is worth-
while to note that these auxiliary games are also non-
cooperative, and typically resemble the original game
in other respects. In other words, the auxiliary games
themselves are also amenable to the linear tracing pro-
cedure. Therefore, it seems reasonable to apply the
linear tracing procedure recursively to solve these aux-
iliary games. In this section, we will investigate such
recursive applications of the linear tracing procedure.

Consider the finite non-cooperative strategic form
game G = 〈I, {Si}, {ui}〉i∈I and the linear tracing
procedure for G as described in Section 2. Let p ∈ ∆
be one prior strategy and define a one-parameter fam-
ily of auxiliary games Γt

p with t ∈ [0, 1]. Generally
speaking, any such game Γt

p will be a game of the
same structure as the original G except for the pay-
off functions. More precisely, Γt

p can be specified as
Γt

p = 〈I, {Si}, {ut
i}〉i∈I , where, for each δ ∈ ∆, the

payoff function ut
i is defined by

ut
i(δi, δ−i) = tui(δi, δ−i) + (1− t)ui(δi, p−i).

Now let us consider an application of the linear tracing

procedure to the game Γt
p for some t ∈ [0, 1]. That

is, for some t ∈ [0, 1] assume that Γt
p is the original

game, denoted by Gt. Define a one-parameter family
of auxiliary games Λt′ with t′ ∈ [0, 1] as follows. Given
a prior strategy p′ ∈ ∆, game Λt′ can be defined as
Λt′

p′ = 〈I, {Si}, {µt′

i }〉i∈I , where, for each δ ∈ ∆, the
payoff function µt′

i satisfies

µt′

i (δi, δ−i) = t′ut
i(δi, δ−i) + (1− t′)ut

i(δi, p
′
−i).

It was shown in Proposition 2 that the source set of
any equilibrium point for the original game G is not
empty. In order to examine the robustness of an equi-
librium, we focus on how its source set changes when
applying the linear tracing procedure recursively to
the auxiliary games.

Before entering into further analysis of the source set,
we first consider one interesting case: what happens
if, throughout the recursive application of the linear
tracing procedure, we always use the same prior as a
starting point? Suppose that δ∗ is an equilibrium of
game G, and p is an element of the source set of δ∗,
that is, p ∈ Φ(δ∗). Now consider the games Γt

p, which
can be represented as Γt

p = 〈I, {Si}, {ut
i}〉i∈I , where,

for each δ ∈ ∆, the payoff function ut
i satisfies

ut
i(δi, δ−i) = tui(δi, δ−i) + (1− t)ui(δi, p−i).

Then apply the linear tracing procedure to game Γt
p

with the same prior p. As mentioned above, we have
to consider a new one-parameter class of auxiliary
games Λt′

p = 〈I, {Si}, {µt′

i }〉i∈I with t′ ∈ [0, 1], where,
for each δ ∈ ∆, the payoff function µt′

i satisfies

µt′

i (δi, δ−i) = t′ut
i(δi, δ−i) + (1− t′)ut

i(δi, p−i).

Obviously, Λ0
p = Γ0

p, since the payoff functions are
identical, that is, µ0

i = u0
i . For the same reason, we

have Λ1
p = Γt

p. Thus, the class of auxiliary games Λt′

p

is a subset of the family of auxiliary games Γt
p with

respect to the game G. In other words, when consid-
ering the linear tracing procedure applied to the game
Γt

p, we are in fact investigating a smaller subset of the
family of auxiliary games generated by the linear trac-
ing procedure applied to the original game. Hence, we
can show that whenever δ∗ is an equilibrium point of
game Γt

p, the linear tracing procedure starting from
p always feasibly leads to δ∗. On the basis of this
observation, the following result is immediate:
Theorem 10. Let G = 〈I, {Si}, {ui}〉i∈I be a finite
non-cooperative strategic form game, and let δ∗ be one
equilibrium point of G. If p ∈ Φ(δ∗) and δ∗ is a Nash
equilibrium of game Γt

p, then p is an element of the
source set of δ∗ with respect to game Γt

p.
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Now we can ask: given a certain equilibrium, under
what constraint would a prior strategy belong to its
source set throughout the recursive application of the
linear tracing procedure? It turns out that, whenever
the equilibrium δ∗ under consideration maximizes the
expected payoff for each player with respect to the
prior strategy p, then p is always an element of the
source set of δ∗ pertaining to game Γt

p for any t ∈
[0, 1]. More precisely, we have:
Theorem 11. Let G = 〈I, {Si}, {ui}〉i∈I be a finite
non-cooperative strategic form game, and let δ∗ be an
equilibrium point of G. For any t ∈ [0, 1], if δ∗ maxi-
mizes all players’ expected payoffs with respect to the
prior strategy p, then p ∈ Φt(δ∗) with respect to Γt

p.

Clearly, the prior strategy determines how far into
the recursive application of the procedure the prior p
remains an element of a source set of the same equilib-
rium. This suggests that, when recursively applying
the linear tracing procedure, the duration in which the
prior strategy p belongs to the same source set can be
considered a measure of the stability of p. According
to the foregoing theorem, when a certain Nash equi-
librium δ∗ maximizes all the players’ expected payoffs
with respect to a prior p, then p is the most stable ele-
ment of the source set of δ∗. This is because the linear
tracing procedure that begins with p always points to
the same equilibrium δ∗. Thus, we can say that such
a prior strategy p is maximally stable with respect to
δ∗. We now define the measure of stability.
Definition 12. Given a finite non-cooperative strate-
gic form game G and one equilibrium δ∗, the stabil-
ity of a prior strategy p ∈ ∆ with respect to δ∗ is
a real-valued function γ on Φ(δ∗), which is defined
as γ(p, δ∗) = 1 − t∗, where t∗ is the smallest value
of t such that p ∈ Φt(δ∗). We say that p is max-
imally stable with respect to δ∗ when γ(p, δ∗) = 1.
The set consisting of all such prior strategies is called
the maximally stable source set of δ∗.

To illustrate the notion of stability with respect to
Nash equilibria, consider the coordination game men-
tioned in section 1. The general description is shown
in Figure 5. In particular, the source set of E1 (the
area AHEF ) can be divided into two parts: the area
AGEI contains all the maximally stable priors with
respect to the equilibrium E1, and the remaining area
consists of the priors with γ(p,E1) < 1. Similarly, the
source set of E2 is composed of the maximally stable
source set ENCM and the rest of the non-maximally
stable prior strategies with γ(p,E2) < 1. In contrast,
the maximally stable source set of the mixed strat-
egy equilibrium E3 consists of only one prior strategy,
namely itself. All other prior strategies in its source
set are not maximally stable with respect to E3.
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Figure 5: The Stability of Prior strategies

For each element p of the source set of a certain equi-
librium, there is a measure of the stability of p, indi-
cating how long the prior p remains associated with
the same source set in the recursive application of
the procedure. Recall from the previous section, that
the source set of each equilibrium is non-empty and
closed. Note that all the intermediate games invoked
by the linear tracing procedure are closely related to
the original game. Thus, the stability of the prior
strategies under the recursive application of the lin-
ear tracing procedure indicates the robustness of the
Nash equilibria with respect to the original game. On
the basis of t-value as a measure for the stability of the
priors, it is reasonable to employ the stability measure
to compare the robustness of the Nash equilibria of a
given game.

Before we define the measure of robustness, let us in-
formally motivate the very idea of introducing sets of
probabilities into the game-theoretic framework. As
mentioned above, there are many games that have
multiple Nash equilibria. This fact has given rise to
a wide discussion of the equilibrium refinement prob-
lem in game theory. We believe that the linear tracing
procedure is an appropriate mathematical mechanism
for comparing Nash equilibria, since it accords with
a common intuition regarding relative degrees of risk
associated with different Nash equilibria. As men-
tioned above, the linear tracing procedure invokes a
family of auxiliary games closely resembling the origi-
nal game in question. Thus, by applying it recursively
to the auxiliary games, we provide further information
about the original game. In fact, it indicates the sta-
bility of one prior strategy with respect to a certain
Nash equilibrium.

On the other hand, the linear tracing procedure as-
sumes that all players employ the same probability
distribution to represent their initial beliefs about the
other players’ likely strategy choices. In their analy-
sis, Harsanyi and Selten choose a single probability
distribution to express the uncertainty among play-
ers regarding which strategy the others would adopt.
In decision theory, however, there are numerous sug-
gested methods to represent decision makers’ uncer-
tainty besides using a single probability. Some salient
approaches involve modelling uncertainty using sets
of probabilities, upper and lower probabilities, upper
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and lower previsions, and belief functions ([9]).

Here we want to employ a non-trivial, convex set
of probability measures P to represent all players’
ignorance about the other players’ likely behaviors.
More precisely, we want to extend Harsanyi and Sel-
ten’s framework framework by employing sets of prior
strategies, rather than one single prior, to represent
players’ initial beliefs. Note that each of the prior
strategies under consideration leads to a certain equi-
librium under the linear tracing procedure, which sim-
ply means that it belongs to the source set of that
equilibrium. Moreover, when we recursively apply the
linear tracing procedure to the auxiliary games, we
can determine the stability measure associated with
each of the prior strategies with respect to a certain
equilibrium. Based on these measures of stability, we
can now define the robustness of equilibria with re-
spect to a set of prior strategies as follows.
Definition 13. Let G be a finite non-cooperative
strategic form game, and let the players’ initial beliefs
about the other players’ possible behaviors be repre-
sented by a set of prior strategies P. The robustness
of an equilibrium δ∗ with respect to P is defined as
R(δ∗,P) = min

p∈P
γ(p, δ∗), i.e., the minimum stability

index associated with the priors with respect to P.

This notion can be regarded as a further refinement
of Nash equilibria based on the stability measures of
the priors under the iterative application of the linear
tracing procedure. Basically, one equilibrium is more
robust than another if the least stability index asso-
ciated with the elements of its source set is higher
than the one associated with the other equilibrium
under the recursive application of the linear tracing
procedure. Given certain sets of prior strategies, we
employ the maximin principle to assess the robustness
of equilibria, where uncertainty is represented by sets
of probabilities. That is, we select the equilibrium
that maximizes the possible minimum stability of the
prior strategies in its source set.

In order to illustrate the idea, let us consider an ε-
contaminated class of probabilities given by M =
{(1 − ε)P + εQ,Q ∈ P}, where P is a particular
prior distribution and ε is a fixed number in [0, 1]. P
is the class of probability distributions that represents
the possible deviations of the prior P . And the fixed
ε represents the degree of contamination that players
want to introduce into P .
Example 14. (ε-contamination under equilibria
coordination) Consider the game described above.
Suppose that all players believe that they will play
the game in a coordination way. That is, the play-
ers collectively choose some mixed strategies involv-
ing the equilibria E1, E2, and E3. Let P = {Q :

Q = p1E1 + p2E2 + p3E3, where p1 + p2 + p3 = 1}.
Figure 6 (the dark segment on the diagonal AC) il-
lustrates the corresponding ε-contaminated class P =
{(1−ε)P+εQ,Q ∈P} when P (E1) = 7

10 , P (E2) = 1
5 ,

P (E3) = 1
10 and ε = 0.2, which represents the players’

initial beliefs. Observe that each prior in P is max-
imally stable with respect to either E1, E2, or E3.
Thus, R(E1,M) = R(E2,M) = R(E3,M) = 1. This
suggests that in this game when all players believe
they will coordinate on an equilibrium, the notion of
maximin robustness proposed here does not distin-
guish among these equilibria.
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Figure 6: ε-contaminated class
Example 15. (Coordination failure) Reconsider
the same game again. Suppose that all players ini-
tially believe that they will fail to coordinate with
small probability. More precisely, the players believe
that they will mostly choose a strategy from the ε-
contaminated class P, or otherwise adopt the strategy
D = (s12, s21) with some probability in [0.05, 0.2]. In
this case, the players’ initial beliefs can be represented
by P ′ = {(1 − α)P + αD, 0.05 ≤ α ≤ 0.2}, which is
illustrated by the grey area in Figure 6. Simple cal-
culation gives us the following result: for all p ∈ P,
57
64 = 0.89̄ ≤ γ(p,E1) ≤ 1, 375

482 = 0.78̄ ≤ γ(p,E2) ≤
1, and γ(p,E3) = 0. Thus, R(E1,P ′) = 0.89̄,
R(E2,P ′) = 0.78̄, and R(E3,P ′) = 0. Thus, accord-
ing to the notion of maximin robustness we defined,
E1 is the most robust equilibrium with respect to P ′.

4 Conclusion

Why should one Nash equilibrium be more likely to be
played than any other in a game? There is a large lit-
erature providing different criteria for selecting a par-
ticular equilibrium among many. Harsanyi and Selten
propose a notion of risk dominance based on the linear
tracing procedure. Here we do not attempt to address
the issue of whether risk dominance is an appropriate
criterion for equilibrium comparison. Instead, we ex-
tend the manner in which the linear tracing procedure
is applied, as well as to replace a single probability
distribution with sets of priors to represent players’
uncertainty about strategy choices.

We first showed that, for any Nash equilibrium, its
source set is always nonempty and closed, but not
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necessarily convex. We then considered a recursive
application of the linear tracing procedure onto se-
quences of hypothetical games generated by the pro-
cedure itself. Based upon this, we formalized a notion
of stability of priors, as well as a sufficient condition
for characterizing the set of maximally stable priors
with respect to certain Nash equilibria. Finally, we in-
troduced a notion of maximin robustness of equilibria
by considering the recursively applied linear tracing
procedure when uncertainty is represented by a set
of probabilities rather a single probability measure.
We employed the maximin criterion to measure the
robustness index associated with the Nash equilibria
related to certain sets of prior strategies under the
recursive procedure. The approach considered here
is thus meant to demonstrate how one might accom-
modate the idea of imprecise probabilities within the
traditional game-theoretic framework.

In the future, we intend to continue our examination
of robustness in more general games, for instance sym-
metric games. This would provide further character-
ization about how sets of probabilities can be inco-
porated within game-theoretic framework. We shall
also compare this approach to other existing theories
of equilibrium refinement to investigate the relation-
ships among them. Moreover, we shall consider the
possibility of developing a new solution concept based
on sets of probabilities that possesses more appealing
features.
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Appendix

Proof of Proposition 3: Let G be a finite non-
cooperative game. Assume that δ∗ ∈ ∆ is a Nash equi-
librium of G. We must show that δ∗ ∈ Φ(δ∗). In fact,
we need to show that for the prior strategy δ∗ the linear
tracing procedure will feasibly select δ∗ as the outcome.

Consider the games Γt invoked by the linear tracing proce-
dure based on δ∗. We will show that δ∗ is a Nash equilib-
rium for any game Γt for t ∈ [0, 1], which of course suffices
to establish the result that δ∗ ∈ Φ(δ∗).

According to the definition of Nash equilibrium, we have
that δ∗i ∈ Bi(δ∗−i) for every player i. More precisely, it
means that for any player i

δ∗i ∈ Bi(δ∗−i) = {δi ∈ ∆i | ui(δi, δ
∗
−i) ≥

ui(δ′i, δ∗−i), ∀δ′ ∈ ∆i}.

Consider first the separable game Γ0. Since the strategy δ∗
is the prior strategy, the payoff functions for each player
i are given by u0

i (δi, δ−i) = ui(δi, δ
∗
−i) for any δi ∈ ∆i.

Thus, for any δ ∈ ∆ the best response correspondence B0
i

can be represented by B0
i (δ−i) = {δi ∈ ∆i | ui(δi, δ

∗
−i) ≥

ui(δ′i, δ∗−i), for all δ′i ∈ ∆i}. Clearly, it implies B0
i (δ−i) =

Bi(δ∗−i) for any δ ∈ ∆. We then have that δ∗i ∈ B0
i (δ∗−i)

for every player i, and thus δ∗ ∈ NEΓ0 .

Now, let us consider the generic games Γt. First, the pay-
off functions for each player i are given by ut

i(δi, δ−i) =
tui(δi, δ−i) + (1 − t)ui(δi, δ

∗
−i). Thus, the best response

correspondence Bt
i can be represented as follows.

Bt
i (δ−i) = {δi ∈ ∆i | tui(δi, δ−i) + (1− t)ui(δi, δ

∗
−i)

≥ tui(δ′i, δ−i) + (1− t)ui(δ′i, δ∗−i),∀δ′i ∈ ∆i}.

In particular, Bt
i (δ∗−i) = {δi ∈ ∆i | tui(δi, δ

∗
−i) + (1 −

t)ui(δi, δ
∗
−i) ≥ tui(δ′i, δ∗−i) + (1 − t)ui(δ′i, δ∗−i), ∀δ′i ∈ ∆i}.

It follows that

Bt
i (δ∗−i) = {δi ∈ ∆i | ui(δi, δ

∗
−i) ≥ ui(δ′i, δ∗−i),∀δ′i ∈ ∆i},

which is independent of the value of t. This means that
Bt

i (δ∗−i) = Bi(δ∗−i) for each player i.

Hence we have that δ∗i ∈ Bt
i (δ∗−i) for every player i, and

thus δ∗ ∈ NE(Γt) for t ∈ [0, 1]. We can therefore conclude
that δ∗ ∈ Φ(δ∗). �

In order to prove our main result (Proposition 5), we need
to show some properties concerning Nash equilibria of con-
vergent sequences of games. Since the results are required
in proving the main result, we first present their proofs.

Proof of Proposition 7: Suppose that {Gr} converges
to game G. Assume for contradiction that δ is not a Nash
equilibrium of the limit game G. Then there exists some
player i with some ti ∈ ∆i such that

ui(δ) < ui(ti, δ−i).

First, note that {Gr} converges to G which thus implies
that ur

i converges uniformly to ui. Thus we can find a
continuous approximation of ui, denoted by uj

i , such that

uj
i (δ) < uj

i (ti, δ−i).

Moreover, we know that the sequence {δr} converges
pointwise to δ, and thus converges uniformly to δ. Hence,
when j is large enough, we have that

uj
i (δj) < uj

i (ti, δj
−i),

which contradicts the assumption that δj is a Nash equilib-
rium of game Gj . Therefore, δ must be a Nash equilibrium
of the limit game G. �

Proof of Corollary 8: Suppose that pr → p and
t ∈ [0, 1]. First, we show that the sequence of games {Γt

pr}
converges to game Γt

p. As described in the linear tracing
procedure, the sets of players and the strategy spaces, de-
noted by I and ∆ respectively, are all the same as the
original game G. Note that the payoff function of game
Γt

pr is given by

ut
i,pr (δi, δ−i) = tui(δi, δ−i) + (1− t)ui(δi, p

r
−i)
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where ui is the player i’s payoff function in the original
game G. Note that the first term on the right side is inde-
pendent of pr. And since it is assumed that ui is contin-
uous, it thus follows from {pr} → p that {ut

i,pr} converge
to ut

i,p. Hence, the sequence {Γt
pr} converges to Γt

p. More-
over, it is assumed that δr are Nash equilibria relative to
game Γt

pr with {δr} → δ. Therefore by Proposition 7, δ is
a Nash equilibrium of the limit game Γt

p. �

Proof of Corollary 9: Suppose that {pr} → p and
{tm} → t where tm, t ∈ [0, 1] and pr, p ∈ ∆. In order to
apply Proposition 7, we have to show that the sequence
of games {Γtm

pr } converges to game Γt
p. Similarly, we have

that the sets of players and the strategy spaces are all
the same as the original game G, denoted by I and ∆ re-
spectively. Now consider the payoff function of game Γtm

pr

which is defined as

utm

i,pr (δi, δ−i) = tmui(δi, δ−i) + (1− tm)ui(δi, p
r
−i)

where ui is the player i’s payoff function in the original
game G. Note that ui is assumed to be continuous. And
since {tm} → t and {pr} → p, it implies that {utm

i,pr}
converge to ut

i,p. Thus, according to the defintion of con-
vergent sequence of games, we have that the sequence of
games {Γtm

pr } converges to game Γt
p. And since it is as-

sumed that δm,r are Nash equilibria relative to game Γtm

pr

with {δm,r} → δ, it follows from Proposition 7 that δ is a
Nash equilibrium of the limit game Γt

p. �

With the aid of the foregoing results, we can now present
the proof of our main result in section 2.

Proof of Proposition 5: Let p ∈ ∆ be a limit point
of the source set Φ(δ∗). This means that there exists
some sequence of priors {pr} such that pj ∈ Φ(δ∗) for
each pj ∈ {pr} and {pr} pointwise converges to p, i.e.,
{pr} → p. According to the definition, pj ∈ Φ(δ∗) means
that there exists a feasible path, denoted by Lpj , connect-
ing the starting point δ0

pj and the end point δ∗, where δ0
pj

is a Nash equilibrium of the game Γ0
pj corresponding to the

separable game that used pj as the prior strategy. Here
for t ∈ [0, 1] and pj ∈ {pr}, we let Γt

pj denote the game
generated by using pj as the prior strategy, and let δt

pj de-
note the Nash equilibrium point(s) of game Γt

pj appearing
on the feasible path Lpj .

We must show that there exists a feasible path Lp for p
which connects some equilibrium point(s) of game Γ0

p to
δ∗. Clearly, the set of t-values T is totally bounded, and
thus can be covered by finitely many sets, each of which is
centered at a point of T with diameter at most ε, for any
ε > 0. Now let ε > 0. The set T can then be written as
the union of finitely many sets with diameters < ε. Let us
denote these sets by T1, . . . , Tm. To show the existence of
such a feasible path Lp, let us consider whether infinitely
many feasible paths of {Lpj} have continuous segments of
equilibrium points for the corresponding games at these
sets T1, . . . , Tm.

Case 1 : There is no such set where infinitely many fea-
sible paths of {Lpj} have continuous segments of equilib-
rium points. This implies that either all the feasible paths

are straight lines or only finite many feasible paths have
continuous segments of equilibrium points somewhere.

First, consider the former case. Since all the feasible paths
Lpj are straight lines passing from some points to the same
point δ∗, these feasible paths thus can be fully character-
ized by the corresponding slopes of the lines. Note that
we are considering only finite games. It thus follows that
the strategy space can be viewed as a subset of a finite-
dimensional Euclidean space Rn, and the slopes of the fea-
sible paths must be bounded to a certain region. Recall
that by the Bolzano–Weierstrass theorem, each bounded
sequence in Rn has a convergent subsequence. Thus,
there exists a convergent subsequence of the slopes of the
straight feasible paths, which means that there exists some
subsequence of the straight feasible paths converging to a
straight line determined by the limit slope, denoted by
Lp. And we know that each feasible path corresponds to
a prior strategy in the sequence {pr}, and, therefore, that
convergent subsequence of the straight feasible paths also
correspond to a convergent subsequence of {pr}, denoted
by {pr′

}. Of course, the subsequence {pr′
} must converge

to the same limit as {pr′
}, that is {pr′

} → p.

Now consider the subsequence {pr′
} converging to p. As

pointed out above, for each t ∈ [0, 1] the sequence of games
{Γt

pr′ } converges to Γt
p. Since that subsequence of the

straight feasible paths converges to a straight line Lp, the
sequence of Nash equilibria {δt

pr′ } thus converges to δt
p for

each t ∈ [0, 1]. It thus follows from Corollary 9 that δt
p

must be a Nash equilibrium of game Γt
p, which shows that

each point of the straight line Lp is one Nash equilibrium
of the corresponding game Γt

p. Hence, the straight line Lp

is a feasible path for p which connects some starting point
belonging to Γ0

p to the end point δ∗.

Now, consider the latter case, where only finite many
feasible paths have continuous segments of equilibrium
points somewhere. We can always ignore such feasible
paths and only consider the other infinitely many feasible
paths that are straight lines. Since each feasible path is
associated with a prior pj , there thus exists some subse-
quence {pr′

} corresponding to these infinitely many feasi-
ble paths. Hence, the above argument can be applied to
this subsequence {pr′

}. Therefore, in this case we have
that there exists one feasible path Lp for p as well.

Case 2 : There exists one and only one set, say Tk, where
infinitely many feasible paths of {Lpj} have continuous
segments of equilibrium points. Assume that the set Tk is
centered at tk. Similarly, we have that there exists some
subsequence {pr′

} corresponding to these infinitely many
feasible paths, and {pr′

} → p. We are going to show that
there exists a feasible path Lp for p.

Note that all or infinitely many feasible paths of {Lpj} do
not have any continuous segments in the interval (tk, 1].
This means that there are infinitely many feasible paths
that are straight lines in (tk, 1]. A similar argument as
that of case 1 shows that these infinitely many feasible
paths converge to Lp in (tk, 1].
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Now consider the set Tk. As described above, Tk is a
set centered at tk with diameter< ε where ε is arbi-
trarily small. We have that {pr′

} → p, and the cor-
responding feasible paths of {pr′

} have continuous seg-
ments of equilibrium points at Tk. Then, according to the
Bolzano–Weierstrass theorem, there exists a subsequence
{pr′′
} of {pr′

} such that {pr′′
} uniformly converges to p

with {tm} → tk. Thus the corresponding continuous seg-
ments of equilibrium points uniformly converge to one con-
tinuous segment of equilibrium points for the game Γtk

p .
This implies that there exists one continuous segment of
equilibrium points of the game Γtk

p . Next, we show that
the coming-in and coming-out points are exactly the two
endpoints of this continuous segment. The reason is that
the coming-in and coming-out points should be the limits
of the coming-in and coming-out points of the infinitely
many paths corresponding to {pr′′

}, which must coincide
with the the limits of the endpoints of these infinitely
many paths. So far we have established that there ex-
ists a continuous path from tk to 1, which has a continous
segment at tk.

Note again that there are infinitely many feasible paths
of {Lpj} that are straight line in [0, tk). By a similar
argument as in case 1, these infinitely many feasible paths
converge to Lp in [0, tk). Taking these together, we can
therefore conclude that there exists a feasible path Lp for
p.

We can employ the above argument to examine all the
sets T1, . . . Tk. Since these sets are finite, we know that
there exists a feasible path Lp for p, which implies that
p ∈ Φ(δ∗). �

Proof of Theorem 11: Assume that δ∗ is an equilibrium
of the game G, and δ∗ maximizes all players’ expected
payoff with respect to p. In order to check whether p ∈
Φt(δ∗), let us regard Γt

p as the original game, which can
be represented as Γt

p = 〈I, {Si}, {ut
i}〉i∈I , where, for each

δ ∈ ∆, the payoff function ut
i is defined as

ut
i(δi, δ−i) = tui(δi, δ−i) + (1− t)ui(δi, p−i).

We then consider a new one-parameter class of auxiliary
games Λt′

p = 〈I, {Si}, {µt′
i }〉i∈I with t′ ∈ [0, 1], where, for

each δ ∈ ∆, the payoff function µt′
i is given by

µt′
i (δi, δ−i) = t′ut

i(δi, δ−i) + (1− t′)ut
i(δi, p−i).

Obviously, Λ0
p = Γ0

p, since the payoff functions are identi-
cal, that is, µ0

i = u0
i ; and Λ1

p = Γt
p for the same reason.

In view of this, the class of auxiliary games Λt′
p is a sub-

set of the family of auxiliary games Γt
p with respect to

the game G. In other words, when considering the linear
tracing procedure with respect to game Γt

p, we are merely
examining a small subset of the family of auxiliary games
previously considered.

As was assumed, δ∗ is an equilibrium point of G, that is,
for each player i,

ui(δ∗i , δ∗−i) ≥ ui(δi, δ
∗
−i), for all δi ∈ ∆i.

Moreover, we assume that δ∗ maximizes the expected pay-
off with respect to p, which means that ui(δ∗i , p−i) ≥

ui(δi, p−i) for each player i and each δi ∈ ∆i. From
these two conditions, it is easy to verify that ut

i(δ∗i , δ∗−i) ≥
ut

i(δi, δ
∗
−i) for each player i and each δi ∈ ∆i, which

means that δ∗ is an equilibrium of game Γt
p. Note that

ut
i(δi, p−i) = ui(δi, p−i) for all δi ∈ ∆i. Thus, we have

that ut
i(δ∗i , p−i) ≥ ut

i(δi, p−i) for all δi ∈ ∆i. Together,
these two coniditions, which specfy the best response con-
ditions for games Γt

p and Γ0
p, guarantee the existence of a

feasible path for the equilibrium δ∗. This point can be eas-
ily illustrated by the following inequality: for each player
i and each δi ∈ ∆i

µt′
i (δ∗i , δ∗−i) = t′ut

i(δ∗i , δ∗−i) + (1− t′)ut
i(δ∗i , p−i)

≥ t′ut
i(δi, δ

∗
−i) + (1− t′)ut

i(δi, p−i)

= µt′
i (δi, δ

∗
−i)

Since this inequality holds for each player i and each
t′ ∈ [0, 1], it implies that there exists a feasible path con-
tinuously connecting game Λ0

p to Γt
p. We can therefore

conclude that p ∈ Φt(δ∗) for each t ∈ [0, 1]. �
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Abstract

In this paper, lower bounds and upper bounds are
given for the mass assigned to a set of maximal cliques
in self-consistent estimates of CDF NPMLEs for mul-
tivariate (including univariate) interval censored data
under the assumption that the censoring mechanism
is ignorable for the purpose of likelihood inference.
The bounds are applied to give upper bounds of the
diameter and size of the polytope of CDF NPMLEs
for multivariate censored data.

Keywords. Interval censoring, maximal clique,
clique matrix, self-consistent estimator, bounds,
NPMLE, mixture nonuniqueness

1 Introduction

Survival analysis is the statistical analysis of event
times, assumed nonnegative. It must account for, and
is largely characterized by, censoring. Censoring is
a type of coarsening of the data whereby an event
time is only known up to an interval. While right-
censored data consist of exactly observed times and
intervals unbounded on the right, collections of pos-
itive values and of bounded and (right-) unbounded
intervals on the nonnegative half-line are known as
interval censored data. Right-censoring will occur in
studies where follow-up is limited by design at a deter-
ministic or random time. Interval censored data will
typically arise in medical longitudinal studies, where
patients can be assessed for a condition continuously,
or at regular or irregular intervals.

The first task to undertake given interval censored
data is often to estimate the underlying cumulative
distribution function (CDF) F or equivalently the
survival function S = 1 − F . In many instances,
a nonparametric approach will be preferred to the
constraining assumption of a parametric form for the
CDF. In such situations the nonparametric maximum
likelihood estimator (NPMLE) of the CDF will be the

estimator of choice in the univariate case (Peto [18],
Turnbull [22]), even when smoothing estimators are
sought (Braun, Duchesne & Stafford [3]).

Event times can sometimes be stochastically associ-
ated, for instance through clustering. It is then use-
ful to treat them as multivariate. Multivariate in-
terval censored data are geometrically represented as
the Cartesian product of the marginal event times or
intervals that enter in a given observation.

Computing the CDF NPMLE can be a complex en-
deavor. Generally this computation can be carried
out in two phases: in the first the effective support of
the NPMLE is determined (Gentleman & Vandal [9],
Bogaerts & Lesaffre [2], Maathuis [16]). This effective
support consists in the real representations (RR) of
the maximal cliques of the data, concepts to be de-
fined in Section 2; for now it suffices to describe an
RR as a generalized, possibly degenerate, hypercube
in R+d

0 , (R+
0 = [0, +∞), d = 1, 2, ...), with edges par-

allel to the axes. In the second phase a nonparametric
likelihood with the CDF as argument is maximized;
the maximizer assigns a probability mass to each RR
(Wang [26]).

The probability vector obtained thus completely char-
acterizes the CDF NPMLE. It is worth noting that
this probability vector is always unique with univari-
ate data (Vandal [23]). Arbitrary mass placement
within an RR does not however affect the nonpara-
metric likelihood, a situation to which we refer as
R-nonuniqueness (Gentleman & Vandal [10]). With
multivariate data, the probability vector itself may
not be unique, a somewhat more serious situation we
label M-nonuniqueness.

In this paper, we are interested in obtaining lower
and upper bounds of the total CDF NPMLE mass as-
signed to an RR or a set of RRs of maximal cliques
without conducting NMPL estimation. This is done
by considering bounds on a class of more general es-
timators, namely self-consistent estimators (SCE), to
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which NPMLEs belong.

These bounds can be obtained much more quickly
than the probability vector that maximizes the like-
lihood (whether unique or not). There are good rea-
sons for providing such bounds. First, even when
one NPMLE vector is available, M-nonuniqueness will
prevent us from deducing bounds for the probabil-
ity mass on a collection of RRs. Second, reliable
lower and upper bounds may enable us to select
good starting probability vectors for NPML estima-
tion: currently all algorithms used in for NPML es-
timation with general interval censored data are iter-
ative. Third, there are self-contained applications of
the bounds; in Section 5, we use them to provide up-
per bounds for the diameter and size of the polytope
of NPMLEs.

The present paper focuses on nonparametric (and
non-smoothed) maximum likelihood estimation. In
that respect it differs from works such as those of Fer-
son et al. [7], whose statistical focus lies in parametric
analysis with some forays in smoothing estimators. It
also differs from the works such as that of Manski
[17], that focus on the consequences of unobservabil-
ity. This paper can be thought of as an inferential
addition to the “catalogue” of techniques for symbolic
data analysis, described in Billard & Diday [1].

We will assume in the sequel that the true CDF and
the CDF NPMLE have support in R+d

0 . We will also
assume that the censoring mechanism is ignorable in
the sense of Heitjian & Rubin [12], which implies in
particular that likelihood-based inference relying on
the data can be performed without reference to the
censoring mechanism. A sufficient condition for ig-
norability of the censoring mechanism is for the un-
derlying inspection process to be independent of the
event times.

The rest of the paper is divided into 4 sections. In
Section 2, we provide some necessary concepts and
notation. In Section 3, we provide SCE bounds for
any given collection of maximal clique RRs. In Sec-
tion 4, we consider two special cases: one concerns the
bounds on the SCE mass of a single maximal clique;
the other the bounds on the SCEs given univariate
censored data. In Section 5, we apply SCE bounds
to give upper bounds of the diameter and size of the
polytope of CDF NPMLEs for multivariate censored
data.

2 Preliminaries and Notation

We provide some concepts and notation used in sub-
sequent sections.

Let R1, ..., Rn be the n observations of an interval

censored data set in R+d
0 . Throughout this paper, we

always assume that the censoring mechanism is ig-
norable in the sense of Heitjian & Rubin [12], which
implies in particular that likelihood-based inference
relying on the data can be performed without refer-
ence to the censoring mechanism. A sufficient condi-
tion for ignorability of the censoring mechanism is for
the underlying inspection process to be independent
of the event times. For any CDF F , the likelihood of
F given the data is

L(F ) =
n∏

i=1

PF (Ri). (1)

2.1 Intersection Graph, Maximal Clique,
Clique Matrix, Real Representation

We can form the intersection graph of the data set in
the following way: each observation corresponds to a
vertex and two vertices are connected if and only if
their corresponding observations intersect. A clique is
a subset of vertices such that every pair are connected.
A clique is called maximal if it is not a proper subset
of another clique. The clique structure can be rep-
resented by the clique matrix, which is a 0/1 matrix,
each row corresponding to a maximal clique and each
column corresponding to an observation. An entry in
the clique matrix is 1 if and only if the corresponding
observation (i.e., vertex) belongs to the correspond-
ing maximal clique. The clique matrix is unique up
to permutations of rows and columns. In addition,
each maximal clique has a real representation (RR),
namely, the intersection of all its observations. The
following is an illustrative example.

Example 2.1 Let Ri, i = 1, ..., 7, be bivariate cen-
sored data as shown on Figure 1. Their intersection
graph 1 is displayed in Figure 2. There are 4 maximal
cliques M1, M2, M3 and M4:

M1 = {R1, R2, R4}, M2 = {R3, R4, R7},
M3 = {R4, R5, R6} and M4 = {R4, R6, R7}.

Their corresponding maximal intersections (i.e., real
representations of maximal cliques) are shaded in Fig-
ure 1. The clique matrix of these data is given in
Table 1.

2.2 NPML and Self-consistent Estimators of
the CDF

The importance of maximal cliques lies in two facts:
the possible support of NPMLE is limited to the RRs

1Note that each Ri intersects itself and hence corresponds
to a loop in the intersection graph. The loops are ignored in
Figure 1.
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Figure 1: An example of bivariate interval censored
data set

Figure 2: The intersection graph for the data in Fig-
ure 1

of maximal cliques; and the clique matrix is suffi-
cient for the probability vector corresponding to the
NPMLE. For a detailed discussion of the first fact, see
Peto [18] and Turnbull [22]. For the second, refer to
Gentleman & Vandal [10]. In the multivariate case,
maximal cliques are most efficiently identified using
the HeightMap algorithm of Maathuis [16] and the
marked iso-graph algorithm (Liu [15]).

Suppose we have m maximal cliques M1, ...,Mm,
which are assigned masses p1, ..., pm respectively. The
likelihood (1) can then be redefined as a function of
p:

L(p) =
n∏

j=1

m∑

i=1

aijpi, (2)

where aijs valued in {0, 1} are the entries of the
clique matrix Am×n. (That is, aij = 1 if and
only if the observation Rj is in the maximal clique
Mi.) The NPMLE corresponds to a probability vector
p = [p1, ..., pm]′. An NPMLE of the CDF will be con-
stant except for increases of sizes pi concentrated on
the on the real representations of the maximal cliques.

R1 R2 R3 R4 R5 R6 R7

M1 1 1 0 1 0 0 0
M2 0 0 1 1 0 0 1
M3 0 0 0 1 1 1 0
M4 0 0 0 1 0 1 1

Table 1: Clique matrix of the data in Example 2.1

The precise placement of the mass within the real rep-
resentations does not affect the likelihood, a situation
to which we refer as R-nonuniqueness.

An important feature of a CDF NPMLE under cen-
sored data is that it must satisfy the self-consistency
condition (Turnbull [22]). There are several equiv-
alent definitions of self-consistency of estimators in
the literature. We use the following, which precisely
identifies fixed points of the EM algorithm:

Definition 2.2 Let Am×n be the clique matrix for
the multivariate censored data. A probability vector p̃
is a self-consistent estimate if and only if

np̃ = Dp̃A(A′p̃)−I, (3)

where I is the identity matrix of order m, and

• Dx denotes the diagonal matrix with diagonal x;

• For any column vector am×1 := [a1, ..., am]′, ai ̸=
0, a−I is the column vector whose i−th element
is 1/ai, i = 1, 2, ..., m. 2

The product-limit estimator for univariate right-
censored data, first proposed by Kaplan & Meier [13],
was later shown by Efron [6] to be self-consistent.
Turnbull [21, 22] then used self-consistency as the ba-
sis for an estimation algorithm, later shown in Demp-
ster, Laird & Rubin [5] to be a particular application
of the EM algorithm. It is now a well recognized fact
(Groeneboom & Wellner [11], Gentleman & Geyer [8],
Wellner & Zhan [27]) that in general there exist sev-
eral distinct values of p̃ which are self-consistent but
do not maximize the likelihood. In order to be the
NPMLE, a self-consistent estimate must also satisfy
the Kuhn-Tucker conditions listed in Gentleman &
Geyer [8].

2.3 Further Notation

Let C be a set of maximal cliques of a multivariate cen-
sored data (MCD) set with n observations. Through-
out this chapter, we use p̃ to denote a self-consistent

2The notation a−I is a special case of Hadamard exponenti-
ation. For more detailed information, see Gentleman & Vandal
[9].
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estimate. For such an estimate, define p̃C to be the
total mass assigned to C.

Let n+(C) and n−(C) be the numbers of observations
in ∪

C∈C
C and only in ∪

C∈C
C respectively. Equivalently,

we may interpret n+(C) as the number of observations
covering some maximal clique RRs in C and n−(C) as
the number of the observations covering only some
maximal clique RRs in C. Formally,

n+(C) :=
∣∣∣
∪

C∈C
C
∣∣∣

and
n−(C) :=

∣∣∣
∪

C1∈C
C1\

∪

C2 /∈C
C2

∣∣∣.

We have
n−(C) = n− n+(Cc)

where Cc is the complement of C with respect to the
set of all maximal cliques.

3 Bounds on Self-consistent CDF
Estimates for MCD: General Case

3.1 Main Result

The main result of this section is the following theo-
rem.

Theorem 3.1 Let C be a set of maximal cliques of
an MCD set with n observations, there holds

n−(C)
n

6 p̃C 6 n+(C)
n

. (4)

Proof. First, we prove the right-hand side of (4),
that is

p̃C 6 n+(C)
n

. (5)

Without any loss of generality, we assume that in the
clique matrix A, the first |C| rows correspond to max-
imal cliques in C and first n+(C) columns correspond
to observations in ∪

C∈C
C. Therefore, A is of the form

A =
[

A11 O
A21 A22

]
,

where the size of A11 is |C| by |n+(C)| and O denotes
a matrix whose entries are all 0.

Rewrite p̃ as p̃ =
[

p̃1

p̃2

]
, where p̃1 ∈ R|C|

+ and p̃2 ∈

Rm−|C|
+ . Then p̃C =

∑|C|
i=1 p̃i. Also let I, I1 and I2

be the identity matrices of orders m, |C| and m −

|C| respectively. The self-consistency condition on p̃
becomes
[

p̃1

p̃2

]
=

1
n

[
Dp̃1 O
O Dp̃2

] [
A11 O
A21 A22

]

([
A′

11 A′
21

O A′
22

] [
p̃1

p̃2

])−I

=
1
n

[
Dp̃1 O
O Dp̃2

] [
A11 O
A21 A22

]

[
A′

11p̃1 + A′
21p̃2

A′
22p̃2

]−I

=
1
n

[
Dp̃1 O
O Dp̃2

] [
A11 O
A21 A22

]

[
(A′

11p̃1 + A′
21p̃2)−I1

(A′
22p̃2)−I2

]
,

which implies that

p̃1 =
1
n
Dp̃1A11(A′

11p̃1 + A′
21p̃2)−I1 .

Hence, by letting e be the vector [1]|C|×1,

|C|∑

i=1

p̃i = e′p̃1

=
1
n
e′Dp̃1A11(A′

11p̃1 + A′
21p̃2)−I1

=
1
n
p̃′1A11(A′

11p̃1 + A′
21p̃2)−I1

=
1
n

(A′
11p̃1)′(A′

11p̃1 + A′
21p̃2)−I1 .

Since A′
11p̃1 > 0 and A′

21p̃2 > 0, we have

|C|∑

i=1

p̃i 6 1
n

(A′
11p̃1 + A′

21p̃2)′(A′
11p̃1 + A′

21p̃2)−I1

=
1
n
× n+(C)

and (5) is proved.

Now we show the left part of (4). Denoting by Cc

the complement of the set C of maximal cliques, we
obtain from (5)

p̃Cc 6 n+(Cc)
n

and therefore

p̃C = 1− p̃Cc > 1− n+(Cc)
n

=
n− n+(Cc)

n
=

n−(C)
n

.

The proof is complete. �
Note that, in the proof of Theorem 3.1, since (A′

11p̃1+
A′

21p̃2)−I1 > 0 (without which the notation (A′
11p̃1+
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A′
21p̃2)−I1 does not make sense), the equality in (5) is

valid (that is, p̃C reaches its upper bound in (5)) if and
only if A′

21p̃2 = 0. The latter condition is equivalent
to the following statement: if the rth entry in p̃2 is
positive, then the rth row of A21 is a zero row-vector.

Specifically, when A21 is the null matrix, p̃C reaches
its upper bound in (5). In this case, the observations
R corresponding to A can be divided into two groups:
the observations which are only in C and observations
only in Cc. A similar argument is applicable to the
left-hand side of (4). We can therefore conclude that
(4) cannot be improved for any data set.

The lower and upper bounds described by Theo-
rem 3.1 correspond to belief and plausibility measures
in Dempster-Shafer Theory ([4, DST]). These mea-
sures are obtained from a basic assignment induced
by equiprobability on the original data; this basic as-
signment is normalized to the set of maximal cliques
rather than the power set of the data. To our knowl-
edge this is the first time a relationship is established
(via self-consistency) between Dempster-Shafer the-
ory and non-smoothing/non-penalized nonparametric
likelihood estimation.

3.2 Two Examples

Example 3.2 Consider the data depicted in Figure
3: Applying (4) to the data, we obtain the bounds
shown in Table 3. The “True region” heading indi-
cates the bounds on the total mass of p̂C implied by
the M-nonuniqueness of the NPMLE. Indeed, the two
end-points of the true region are the lower and upper
probabilities defined by the NPMLE probability vec-
tors.

Figure 3: An example bivariate censored data set

Example 3.3 Consider Pruitt’s data (Pruitt [19])
depicted in Figure 4. Applying (4) to the data, bounds
of p̃C for some given subsets C of maximal cliques are
given in Table 5.

A B C D
M1 1 1 0 0
M2 0 1 1 0
M3 0 0 1 1
M4 1 0 0 1

Table 2: The clique matrix for the data on Figure 3

C Lower Upper True
bound bound region

{p̃1}, {p̃2}, {p̃3}, {p̃4} 0 2/4 [0, 0.5]
{p̃1+p̃2}, {p̃2+p̃3}, 1/4 3/4 [0.5, 0.5]
{p̃3+p̃4}, {p̃4+p̃1}
{p̃1+p̃3}, {p̃2+p̃4} 0/4 4/4 [0,1]
{p̃i+p̃j+p̃k, 2/4 4/4 [0.5, 1]

1 6 i < j < k 6 4}

Table 3: Mass bounds on pC for the data set in Ex-
ample 3.2

Figure 4: Pruitt’s data set

A B C D E F G H
M1 0 0 0 1 0 0 0 0
M2 0 1 0 0 1 0 0 0
M3 1 0 1 0 1 0 0 0
M4 0 0 1 0 0 1 0 0
M5 0 1 0 0 0 0 1 0
M6 1 0 1 0 0 0 1 0
M7 0 0 1 0 0 0 1 1

Table 4: The clique matrix for Pruitt’s data set

C Lower Upper True
bound bound region

{p̃1} 1/8 1/8 [0.125, 0.125]
{p̃2} 0/8 2/8 [0.095,0.191]

{p̃5 + p̃6} 0/8 4/8 [0.096, 0.096]
{p̃2+p̃3+p̃5+p̃6} 3/8 5/8 [0.457, 0.457]

Table 5: Mass bounds on pC for some C’s for the data
set in Example 3.3
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3.3 Discussion

For uncensored data, the lower and upper bounds in
(4) are always equal. Hence, (4) is an extension from
uncensored to censored data.

M-nonuniqueness of NPMLEs for MCD can poten-
tially create large differences between the lower and
upper bounds in (4). From Examples 3.2 and 3.3, we
notice that some intervals are wide and that we get
no information at all in some cases. For instance, in
Example 3.2, the lower and upper bounds for p̃1 + p̃3

are 0 and 1 respectively. Note, however, that tighter
bounds on p̃1 + p̃3 are not available, since, the M-
nonuniqueness interval of p̃1 + p̃3 is [0, 1].

4 The Bounds in some Special Cases

4.1 Bounds on the SCE Mass of a Single
Maximal Clique

In this section, we focus on the bounds for the mass
assigned to one maximal clique by an SCE.

Theorem 4.1 Let Mi be any maximal clique of an
MCD set with n observations, there holds

n−({Mi})
n− n+({Mi}) + n−({Mi})

6 p̃i 6 n+({Mi})
n

. (6)

Note that, the lower bound in (6) improves the lower
bound in (4) in Section 3, and the upper bounds in
(6) and (4) are the same.

Proof of Theorem 4.1 . We only need to show the
left-hand side of (6), that is

p̃i > n−({Mi})
n− n+({Mi}) + n−({Mi})

.

Denote by
Ji := {j; Rj ∈ Mi}

the index set of Mi ∈M. So,

|Ji| = n+({Mi}).

Also, denote
η̃ := A′p̃.

Clearly, for every i = 1, ..., m and all j ∈ Ji,

p̃i 6 ηj 6 1. (7)

Put

Si = {j ∈ Ji; Rj is only contained in Mi}. (8)

Then |Si| = n−({Mi}) and hence,

n =
∑

j∈Ji

1
ηj

=
n−({Mi})

p̃i
+

∑

j∈Ji\Si

1
η̃j

(9)

> n−({Mi})
p̃i

+
∑

j∈Ji\Si

1 [from (7)]

=
n−({Mi})

p̃i
+ n+({Mi})− n−({Mi}) (10)

whence the result follows.

Note that
n+({Mi}) = n−({Mi})

if and only if

n−({Mi})/(n−n+({Mi})+n+({Mi}) = n+({Mi})/n.

�

4.2 Bounds on Self-consistent Estimates for
Univariate Censored Data

In this section, we give the form of (4) and (6) for
univariate censored data based on the characteristic
matrix notation introduced by Vandal [23]. For uni-
variate censored data, we further improve the lower
bound for one maximal clique in (6).

4.2.1 Characteristic Matrix for Univariate
Data

The clique matrix of a univariate censored data set
is equivalent to its characteristic matrix, defined as
follows.

Definition 4.2 Let A = [aij ]m×n be the clique ma-
trix for a univariate censored data set {R1, ..., Rn}
with maximal cliques M1, ...,Mm and corresponding
RRs H1, ..., Hm, ordered in the natural way. For each
pair i, j ∈ {1, ..., m} with i 6 j, define χi,j to be the
number of columns in A such that the sub-column of
1’s starts at i and ends at j.3 The following upper-
right triangle matrix

χ :=




χ1,1 χ1,2 ... χ1,m−1 χ1,m

χ2,2 ... χ2,m−1 χ2,m

. . .
...

...
χm−1,m−1 χm−1,m

χm,m




is called the characteristic matrix of the data. 4

3Recall that the clique matrix of univariate censored data
has the consecutive-1’s property.

4The lower-left triangle in characteristic matrix is left unde-
fined.
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Example 4.3 The following is the clique matrix of a
univariate censored data set:

A =




1 1 1 1 0 0 0 0 0 0 0
0 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1 1 1


 .

The equivalent characteristic matrix is

χ =




1 2 1 0
0 3 0

0 2
2


 .

4.2.2 Bounds on SCEs for Univariate
Censored Data

The inequalities (4) for univariate censored data can
be expressed using the entries of the characteristic
matrix. Let Am×n be the clique matrix for a univari-
ate data set with rows ordered according to the nat-
ural order of the maximal cliques5. Let p̃ = [p̃i]m×1

be a self-consistent estimate based on A. Also, in
this section, we always assume that χ1,m = 0 in
A’s characteristic matrix χ, since χ1,m corresponds
universal observations and have no bearing on the
CDF estimation. For any given j ∈ {1, ...m}, let
C := {M1, ...,Mk}. We then have

n−(C) =
∑

s6k
r free

χrs =
k∑

s=1

s∑

r=1

χrs,

and

n+(C) =
∑

r6k
s free

χrs =
k∑

r=1

m∑

s=r

χrs.

From (4), the bounds on
k∑

i=1

p̃i can be given as

Theorem 4.4

1
n

k∑

s=1

s∑

r=1

χr,s 6
k∑

i=1

p̃i 6 1
n

k∑

r=1

m∑

s=r

χr,s (11)

Corollary 4.5 When j > 1,

k∑

i=j

p̃i > 1
n

(
k∑

s=1

s∑

r=1

χr,s −
j−1∑

r=1

m∑

s=r

χr,s

)
, (12)

k∑

i=j

p̃i 6 1
n

(
k∑

r=1

m∑

s=r

χr,s −
j−1∑

s=1

s∑

r=1

χr,s

)
. (13)

5 That is, H < H′ if and only if x < x′ for all x ∈ H and
x′ ∈ H′.

Proof. Apply (11) to
∑k

i=j p̃i and
∑j−1

i=1 p̃i and sub-
tract. �
When we focus on the bounds of mass for one maximal
clique, it is not difficult to show that for i = 1, ..., m,

n−({Mi}) = χi,i,

n+({Mi}) =
∑

j16i6j2

χj1,j2 =: ni.

from Theorem 4.1, we have

Theorem 4.6

χi,i

n− ni + χi,i
6 p̃i 6 ni

n
. (14)

If 0 < χi,i < ni < n for some i = 1, ...,m, then we can
further improve the lower bound on p̃i in (14). First,
for i = 1, ..., m, introduce the following notation:

li := min{r; χr,s > 0 and r 6 i 6 s},
ui := max{s; χr,s > 0 and r 6 i 6 s},

di :=
ui∑

r=1

m∑

s=r

χr,s −
li−1∑

s=1

s∑

r=1

χr,s

(We adhere to the usual convention that a summa-
tion over an empty index set is 0.) Since di is always
smaller than n, the lower bound on p̃i can be improved
in the following theorem.

Theorem 4.7

p̃i > χi,idi

n(di − ni + χi,i)
. (15)

Proof. The proof is similar to that of Theorem 4.1,
except that for every i = 1, ..., m and all j ∈ Ji, η̃j

now satisfies that,

η̃j 6
ui∑

c=li

p̃c

6 di

n
. [from (13)]

Therefore,

n =
∑

j∈Ji

1
ηj

=
χi,i

p̃i
+

∑

j∈Ji\Si

1
η̃j

> χi,i

p̃i
+

ni − χi,i

di

n

,

and (15) follows. �
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Corollary 4.8

p̃1 > χ1,1(n− χm,m)
n(n− χm,m − n1 + χ1,1)

p̃m > χm,m(n− χ1,1)
n(n− χm,m − ni + χm,m)

and for i = 2, ..., m− 1,

p̃i > χi,i(n−min(χ1,1, χm,m))
n(n−min(χ1,1, χm,m)− ni + χi,i)

.

Proof. Proof is obtained from the facts that

d1 6 n− χm,m, dm 6 n− χ1,1,

and for every i = 2, ...,m− 1,

di 6 n−min(χ1,1, χm,m).

�

Example 4.9 Consider a univariate data set
{R1, ..., R12} =

{
1, 2, [3, 5], [4, 7], [6, 10], [8, 12], 9,

[11,∞), 13, [14,∞), 15, [16,∞)
}

which are represented
in Figure 5. (The vertical positions hold no special
meaning.) The RRs of the data are represented at the
lowest vertical position and labeled H1, ..., H9. The

Figure 5: An artificial univariate data set

following is the clique matrix of this univariate cen-
sored data set:

A =




1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 1 0 1 0 1




.

The equivalent characteristic matrix is

χ =




1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

1 1 0 0 0 0 0
0 1 0 0 0 0

1 1 0 0 0
0 0 0 1

1 0 1
1 0

1




.

The (unique) NPMLE probability vector is p̂ =
[0.083, 0.083, 0.167, 0, 0.25, 0, 0.104, 0.156, 0.156]′. The
CDF NPMLE is displayed in Figure 6.

Figure 6: Example CDF NPMLE. Shaded boxes in-
dicate areas of R-nonuniqueness, i.e. nonuniqueness
related to arbitrariness of mass placement.

Applying Theorem 4.4, we can compare the NPMLE
and the SCE lower and upper bounds as shown in Ta-
ble 6.

C Lower NPMLE Upper
bound bound

p̃1 0.083 0.083 0.083
p̃1 + p̃2 0.167 0.167 0.167

p̃1 + p̃2 + p̃3 0.250 0.333 0.333
p̃1 + · · ·+ p̃4 0.333 0.333 0.417
p̃1 + · · ·+ p̃5 0.500 0.583 0.583
p̃1 + · · ·+ p̃6 0.583 0.583 0.667
p̃1 + · · ·+ p̃7 0.667 0.688 0.750
p̃1 + · · ·+ p̃8 0.750 0.844 0.917
p̃1 + · · ·+ p̃9 1.000 1.000 1.000

Table 6: NPMLE, lower and upper bounds compari-
son for a univariate data set
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5 Application to M-Nonuniqueness

For MCD, the NPMLEs may display the aforemen-
tioned mixture or M-nonuniqueness, which occurs
when different probability vectors have the same like-
lihood, that is, mass may be exchanged between max-
imal cliques without changing the likelihood. Gen-
tleman & Vandal [9] proved that M-nonuniqueness
cannot occur with univariate censored data but that
it may arise with multivariate censored data. Liu
[14, 15] and Vandal, Gentleman & Liu [24] discuss
conditions for uniqueness of the NPMLEs and ap-
ply methods from convex optimization theory to show
that the set of all NPMLEs is a polytope.

Suppose that the size of the clique matrix A for a
MCD set is m×n. When we have one CDF NPMLE p̂
for A, the NPMLE’s polytope P can be described by
the following so called H-representation (Liu [14, 15],
Vandal, Gentleman & Liu [24]):

P = {p = [p1, ...pm]′;A′p = A′p̂,p > 0 and e′p = 1}.

We consider three descriptions of the NPMLE’s
polytope P designed to quantify the extent of M-
nonuniqueness. The first description is the so-called
V-representation of P, that is, the list of all its ver-
tices. The second is the diameter of P, correspond-
ing to the longest distance between two of its ver-
tices. The third is the size of P, defined as the
longest projection on one of the m axes correspond-
ing to the vector entries. The diameter and size of P
have been considered in the study of CDF NPMLE M-
nonuniqueness and asymptotic properties. For more
detail, see Liu [14, 15] and Vandal, Gentleman & Liu
[24].

From (6), upper bounds for the diameter and the size
of P for a censored data set with clique matrix Am×n

can be obtained respectively as

dia(P) 6
(

m∑

i=1

(Ui − Li)2
)1/2

, (16)

size(P) 6 max
i=1,...,m

(Ui − Li), (17)

where for i = 1, 2, ..., n,

Li :=
n−({Mi})

n− n+({Mi}) + n−({Mi})

and

Ui :=
n+({Mi})

n

are lower and upper bounds of p̃i given in (6). As an
application of (16) and (17), consider a cyclical data

set with order 2k, k = 2, 3, ..., circulant clique matrix
defined as follows:




1 1
1 1

1 1
. . . . . .

1 1
1 1




(18)

where all unspecified entries in the matrix are 0.

Then the diameter and size of the corresponding
NPMLE polytope are at most

√
2/k and 1

k respec-
tively. 6

The last theorem provides a sufficient condition for
asymptotic mixture uniqueness.

Theorem 5.1 When

1
n

max
i=1,...m

(n+(Mi)− n−(Mi))
a.s−→ 0,

the M-nonuniqueness of the CDF NPMLE will disap-
pear asymptotically, in the sense that,

size(P) a.s−→ 0.

Proof. Since for every i = 1, ..., m,

n+({Mi}) > n−({Mi}),

then from (17),

size(P) 6 max
i=1,...,m

(n+({Mi})− n−({Mi})
n

)
.

The conclusion follows. �
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Abstract
Credal networks lift the precise probability assumption of
Bayesian networks, enabling a richer representation of un-
certainty in the form of closed convex sets of probabil-
ity measures. The increase in expressiveness comes at the
expense of higher computational costs. In this paper we
present a new algorithm which is an extension of the well-
known variable elimination algorithm for computing pos-
terior inferences in extensively specified credal networks.
The algorithm efficiency is empirically shown to outper-
form a state-of-the-art algorithm. We then provide the first
fully polynomial time approximation scheme for inference
in credal networks with bounded treewidth and number of
states per variable.

Keywords. Probabilistic graphical models, credal net-
works, approximation scheme, valuation algebra.

1 Introduction

Credal networks [11] are generalizations of Bayesian net-
works that allow for a richer representation of uncer-
tainty in the form of set-valued probabilities—in contrast
to the sharp numeric values required by their Bayesian
counterpart. They are models of imprecise probability
as advocated by Walley [18]. In a nutshell, credal net-
works rely on a directed acyclic graph (DAG) to encode a
compact and computationally efficient representation of a
closed convex set of joint probability mass functions over
a set of variables, much in the same way that Bayesian
networks do for single joint probability mass functions.
Namely, credal networks respect the local Markov condi-
tion that each variable (uniquely represented by a node in
the DAG) is (strongly) independent of its non-descendant
non-parents conditional on its parents. Strong indepen-
dence is justified by a sensitivity analysis interpretation,
where we assume that there exists a single probability
mass function representing our knowledge which we can-
not know precisely for lack of resources; epistemic irrele-
vance, on the other hand, is arguably more consistent with
a behavioral interpretation of inherent imprecision [18]. In

the following, we assume credal networks to operate under
strong independence.

In order to enable efficient computation, additional con-
straints need to be imposed to the set-valued specifications
of the local probabilities. The two most common choices
are extensively specified sets, in which local models are
given as sets of probability potentials, and separately spec-
ified sets, in which local models are specified as collec-
tions containing one set of probability mass functions for
each configuration of the parents. Separately specified net-
works can be mapped to extensively specified and vice-
versa [2].

There is also another subtlety when computing with such
local models, which concerns the way they are represented
in a computer. The sets of local (conditional) probabil-
ity mass functions can be encoded either as sets of points
(e.g., the sets of vertices of a convex polytope), or as sets
of (linear) inequalities. Although these two encodings can
represent any finitely-generated closed convex set, mov-
ing from an inequality-based encoding to a vertex-based
encoding can dramatically increase the length of the rep-
resentation of the local models. For example, a simple
8-dimensional polytope specified by 729 inequalities has
between 5 thousand and 12 billion vertices [4].

Inference with credal networks has been theoretically and
empirically shown to be a difficult problem. For example,
computing exact marginals in credal networks is known
to be NP-hard even for polytree-shaped networks, a par-
ticular case that can be computed in polynomial time in
Bayesian networks [7]. Despite the hardness of the prob-
lem, several algorithms are known to perform reasonably
well under certain conditions. Most notably, the 2U al-
gorithm [12], which computes exact posterior bounds in
polytree-shaped credal networks with binary variables,
continues to be the only known polynomial time algo-
rithm available, and its generalizations to arbitrary net-
works (e.g., the GL2U [3]), which perform approximate
inference, are among the fastest algorithms. A notable ex-
ample, against which we compare our results in this pa-
per, is the algorithm of de Campos and Cozman [8], which
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algorithm complexity topology inference representation

2U [12] polynomial polytree exact inequality
GL2U [3] polynomial all approximate vertex
A/R+ [16] exponential polytree approximate inequality

IP [8] exponential all exact/approx. inequality
ML [6] exponential all exact/approx. inequality
HC [9] exponential all exact/approx. vertex

Table 1: Comparison of some existing algorithms for inference in credal networks.

finds exact posterior bounds in general networks by con-
verting the problem into a mixed integer program, which
can be solved exactly for small networks, or relaxed to
provide approximate results in large networks. Other ap-
proaches mix branch-and-bound methods for exact infer-
ence and local searches for approximate results [6, 9, 16].
Table 1 contrasts some of the available algorithms. To
date, no algorithm is known to provide approximations
within given bounds in polynomial time. Recently, de
Cooman et al. [10] developed a polynomial time algorithm
for tree-shaped credal networks, but it operates under epis-
temic irrelevance.

In this paper, we present a new algorithm for computing
exact posterior bounds in extensively specified credal net-
works encoded by vertices, as well as a fully polynomial
time approximation scheme (FPTAS) for networks with
bounded treewidth and number of states per variable. We
begin by stating the basic elements of our formalism (Sec-
tion 2), followed by a formal definition of inference in ex-
tensively specified credal networks (Section 3). Then we
present a modified variable elimination algorithm for ex-
act inference, which has worst-case complexity exponen-
tial in both the treewidth of the graph and the size of local
sets (Section 4). We address this issue by devising an FP-
TAS (Section 5). Experiments showing the performance
of the algorithms are presented and discussed in Section 6.
Finally, Section 7 contains our concluding thoughts.

Due to the limited space, we only present proofs for the
most important results.

2 An Algebra of Ordered Potentials

In this section, we introduce the main ingredients of the
message passing algorithms that we present later as well
as the basic results needed to guarantee the correctness and
efficiency of computations.

From an algebraic viewpoint, the primitive entities of
our formalism are the so-called labeled valuations (φ, x),
which encode information about a (local) domain through
a valuation φ and a set of variables x. Here we adopt
the equivalent notation φx to denote the pair (φ, x). More
concretely, valuations can take as straightforward forms as

bounded real-valued functions (Section 2.2), or represent
more complicated objects such as sets of pairs of probabil-
ity potentials (Section 2.3).

The set of all variables we consider relevant to a problem,
denoted by U , is the largest set of variables that can be con-
sidered for a (labeled) valuation in our setting, which we
assume to be bounded. We write variables with capital let-
ters (e.g., X1, . . . , Xn ∈ U) and sets of variables in lower
case (e.g., x = {X1, . . . , Xn}). Any variable X is as-
sumed to be associated with a finite set of values ΩX called
its frame. The elements of ΩX are called states. If x is a
set of variables, the domain Ωx is given by the Cartesian
product of the frames of variables in x, Ωx ,×X∈x ΩX .
Any element of Ωx is called a configuration. If x is a con-
figuration in Ωx, the notation x↓y denotes the projection
of x onto y ⊆ x, with x↓∅ , λ, where λ denotes the null
element that does not appear in any frame.

The set of all valuations (φ, x) over a subset x ⊆ U is
denoted by Φx. The set of all valuations is denoted by
Φ ,

⋃
x⊆U Φx. The algebra comes with two basic op-

erations of combination and marginalization. Intuitively,
combination represents aggregation of two pieces of in-
formation. If φx and φy are two arbitrary valuations, then
φx×φy is a valuation φx∪y with domain Ωx∪y . Marginal-
ization, on the other hand, acts by coarsening informa-
tion. If φx is a valuation then the marginal φ↓yx is a val-
uation with domain Ωy . Sometimes, it is convenient to
define the elimination operation, which is in a one-to-one
correspondence to marginalization. Formally, if φx is a
valuation then φ−yx , φ

↓x\y
x is the result of the elimi-

nation of variables in y. When clear from the context,
we write Y to denote a singleton y = {Y }, for exam-
ple φ−Yx = φ

↓x\{Y }
x . A system (Φ,U ,×, ↓) closed under

combination and marginalization is said to be a valuation
algebra if it satisfies the following three axioms [15, 17].

(A1) Combination is commutative and associative.

(A2) For y ⊆ x ⊆ z,
(
φ↓xz
)↓y = φ↓yz .

(A3) If x ⊆ z ⊆ x ∪ y then (φx × φy)↓z = φx × φ↓z∩yy .

The purpose of a valuation algebra is the computation of
marginals of the form (×i φui)

↓y , where the joint valu-
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ation ×i φui is computationally too expensive to be ob-
tained explicitly. The complexity of the operations of com-
bination and marginalization is given by the size of the
valuations involved, which is in general a function of the
cardinality of the domain. Hence, as a rule-of-thumb, the
larger the domain of a valuation the more expensive are the
operations involving it. The axioms of valuation algebras
provide the necessary framework for breaking down the
computation of costly marginals into a sequence of com-
putations of marginals over smaller domains. The pseudo-
code in Algorithm 1 exhibits the variable elimination pro-
cedure (also known as fusion algorithm), which more effi-
ciently computes marginals of factorized valuations.

Algorithm 1: Variable Elimination
input : A finite set of valuations Ψ, a set of target

variables y ⊂ U , ⋃φu∈Ψ u, and an ordering
o = (X1, . . . , Xn) of the variables in U \ y

output: The marginal (×φ∈Ψ φ)↓y

for i← 1 to n do
Set Bi ← {φu ∈ Ψ : Xi ∈ u} ;
Compute Ψi , (×φ∈Bi φ)−Xi ;
Set Ψ← (Ψ \ Bi) ∪ {Ψi};

end
return Γ ,×φ∈Ψ φ;

Instead of computing a valuation ×φ∈Ψ φ over a large
domain ΩU and then marginalizing to y, the algorithm
computes marginals (×φ∈Bi φ)−Xi over possibly much
smaller domains. The overall complexity of the algorithm
is given by the size of the largest valuation Ψi generated
at the loop step. If such a size is bounded then (A1)–(A3)
are sufficient to show that the algorithm efficiently outputs
the desired marginal [15].

Some optimization tasks like the credal network infer-
ences we aim at here admit a partial ordering over the
valuations. Let ≤ denote a partial order over Φ (i.e., a
reflexive, antisymmetric and transitive relation). An or-
dered valuation algebra [13] is a system (Φ,U ,×, ↓,≤),
where (Φ,U ,×, ↓) is a valuation algebra and ≤ is mono-
tonic with respect to × and ↓:

(A4) If φx ≤ ψx and φy ≤ ψy then (φy × φx) ≤ (ψy ×
ψx) and φ↓yx ≤ ψ↓yx .

Given a finite set of ordered valuations Ψ ⊆ Φ, we say
that φ ∈ Ψ is maximal if for all ψ ∈ Ψ such that φ ≤ ψ
it holds that ψ ≤ φ. The operation max(Ψ) returns the set
of maximal valuations of a set Ψ. Given any relation R on
Ψ, a subset Ψ′ ⊆ Ψ is called an R-covering of Ψ if for
every φ ∈ Ψ there is ψ ∈ Ψ′ such that φRψ. For example,
the set max(Ψ) is a ≤-covering for Ψ.

2.1 Set-Valuations

The algorithms we develop use the more complex entities
of sets of valuations, called set-valuations. Theses entities
can nevertheless be casted in the algebra of valuations, and
manipulated by the variable elimination algorithm to pro-
duce sets of marginal valuations.

Let 2Φx denote the power set of Φx, that is, the set of all
subsets of it. Thus, 2Φ denotes the set of all subsets of
valuations in Φ. If Ψx ∈ 2Φx and Ψy ∈ 2Φy , we define
their set-combination⊗ as the set-valuation resulting from
element-wise combination of their elements, Ψx ⊗ Ψy ,
{φx × φy : φx ∈ Ψx, φy ∈ Φy}. Likewise, we define the
set-marginalization operation ⇓ on 2Φ as the element-wise
marginalization of the valuations in a set, Ψ⇓yx , {φ↓yx :
φx ∈ Ψx}.
Proposition 1. The system (2Φ,U ,⊗,⇓) of set-valuations
with set-combination and set-marginalization is a valua-
tion algebra.

The exact variable elimination algorithm we develop in
Section 4 obtains its (relative) efficiency by propagating
only maximal valuations. Let max(2Φ) , {max(Ψ) :
Ψ ∈ 2Φ} denote the set of all sets of maximal valua-
tions in 2Φ. We define the max-combination ⊕ and max-
marginalization � as Ψx ⊕ Ψy , max(Ψx ⊗ Ψy) and
Ψ�y
x , max(Φ⇓yx ).

Proposition 2. The system (max(2Φ),U ,⊕,�) of max-
imal set valuations with max-combination and max-
marginalization is also a valuation algebra.

If (Φ1,U ,×1, ↓1) and (Φ2,U ,×2, ↓2) are two valuation
algebras, we say that a mapping h : Φ1 → Φ2 is a
homomorphism if for any φx, φy ∈ Φ1 we have that
h(φx)×2 h(φy) = h(φx×1 φy) and h(φx)↓2y = h(φ↓1yx ).
Thus, if we are interested in computing h(φ↓1y1 ) for some
valuation φ1 ∈ Φ1 that we know that factorizes as φ1 =
ψ1 ×1 · · · ×1 ψm, we can equivalently obtain (h(ψ1) ×2

· · · ×2 h(ψm))↓2y , which might be computationally more
convenient. The following result relates the algebras of
set-valuations and maximal set-valuations.

Proposition 3. max is a homomorphism from
(2Φ,U ,⊗,⇓) to (max(2Φ),U ,⊕,�).

Since the set of maximal elements of a set is in the worst
case as large as the set itself, but often much smaller, the
homomorphism max allows us to conveniently obtain a
set of maximal marginals max([

⊗
i Ψxi ]

⇓y) by computing
the equivalent [

⊕
i max(Ψxi)]

�y . Recall that⊗ is defined
as element-wise combination of valuations in the carte-
sian product, and assume that the set-valuations Ψxi can
not be factorized as combinations of other set-valuations.
Hence, the set

⊗
i Ψxi is exponentially large in the size

of each Ψxi and often intractable. On the other hand,
the combination of maximal set-valuations

⊕
i max(Ψxi)

can mitigate the exponential explosion if the number of
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maximal points is kept bounded after each pairwise com-
bination. For instance, if each of the local maximal sets
max(Ψxi) is half as large as its original set Ψxi , then com-
puting max([

⊗
i max(Ψxi)]

⇓y) involves O(2n) less com-
putations than max([

⊗
i Ψxi ]

⇓y). The speed up strongly
depends on the number of non-maximal elements that are
discarded after each max-combination.

In the rest of this section we introduce the concrete valua-
tion algebras our framework relies on.

2.2 Probability Potentials

Probability potentials are perhaps the most common exam-
ple of valuation algebras. They generalize (conditional)
probability mass functions. If x ⊆ U is a nonempty set
of variables, we define a potential px as a mapping from
Ωx to the set of nonnegative reals. A potential p∅ over the
empty set is defined as a nonnegative real number. The size
of a potential px is the cardinality of its domain. The fol-
lowing operations are defined over potentials. Combina-
tion of potentials is done by element-wise multiplication:
for z ∈ Ωx∪y ,

(px × py)(z) , px(z↓x)py(z↓y) . (1)

Marginalization is defined as the sum of compatible ele-
ments. For y ∈ Ωy ,

p↓yx (y) ,
∑

x∈Ωx:x↓y=y

px(x) . (2)

Note that if y = ∅, the marginal p↓yx is a (nonnegative real)
number.

Partial ordering is given by weak Pareto dominance. Given
two potentials px and qx over Ωx, we define px ≥ qx if
px(x) ≥ qx(x) for all x ∈ Ωx. Note that if px and qx
have equal sum (i.e.,

∑
x∈Ωx

px(x) =
∑

x∈Ωx
qx(x)) then

px 6≥ qx and qx 6≥ px (unless px = qx). This is the
case, for example, of potentials representing (conditional)
probability mass functions. Therefore, the identity Px =
max(Px) holds for any set Px of (conditional) probability
mass functions. Let P denote the set of all probability
potentials.

Proposition 4. The system (P,U ,×, ↓,≤) is an ordered
valuation algebra.

Given a real number α > 1, we define an equivalence
relation≡α over potentials such that any two potentials px
and qx are α-equivalent (i.e., px ≡α qx) if for all x ∈ Ωx
either px(x) = qx(x) = 0 or px(x) and qx(x) are both
positive and blogα px(x)c = blogα qx(x)c.

2.3 Pairs of Potentials

The algorithms we develop in Sections 4 and 5 rely on a
more abstract structure over pairs of potentials. Let φx =

(p`x, p
r
x) denote a pair of probability potentials over x. The

potentials p`x and prx are referred to as the left and right po-
tentials of φx, respectively. For any two pairs of potentials
φx and ψx, we define φx = (p`x, p

r
x) ≥ (q`x, q

r
x) = ψx if

p`x ≤ q`x and prx ≥ qrx. The partial order defined in this way
reflects the nature of computations with credal networks.
We seek for a solution that partly dominates (according
to right potentials) all other potentials and partly is dom-
inated by them (according to left potentials). It is in part
this dichotomy in the objective that makes posterior infer-
ences in credal networks much harder than their Bayesian
counterpart.

If φx = (p`x, p
r
x) and φy = (p`y, p

r
y) are two pairs of po-

tentials, we define their combination as the pair of left
and right combinations of potentials, that is, φx × φy ,
(p`x × p`y, p

r
x × pry). Similarly, the marginalization of

a pair φx = (p`x, p
r
x) is performed on both potentials,

φ↓yx , ((p`x)↓y, (prx)↓y). Let Φ be the set of all pairs of
potentials.

Proposition 5. The system (Φ,U ,×, ↓,≤) is an ordered
valuation algebra.

Let 2Φ and max(2Φ) denote, respectively, the set of all sets
of pairs of potentials and the set of all sets of maximal pairs
of potentials. It follows from Propositions 1 and 2 that the
systems (2Φ,U ,⊗,⇓) and (max(2Φ),U ,⊕,�) are valua-
tion algebras. Moreover, max is a homomorphism from
2Φ to max(2Φ). Thus, given a collection of finite sets of
pairs Ψx1 , . . . ,Ψxn , we can obtain the set max(Ψy) ,
max((

⊗
Ψxi)

⇓y) of maximal marginal valuations poten-
tially more efficiently by performing computations in the
algebra of sets of maximal pairs, that is, by computing
max((

⊕
i max(Ψxi))

�y). Bentley et al. [5] showed that
sets with n uniformly distributed pairs of potentials over
a domain Ωy have, on average, O((log n)2|Ωy|−1) maxi-
mal elements. Unfortunately, the uniformity assumption
does not hold in the computations we perform, and we ex-
pect the average number of maximal elements to be higher
than this. To our knowledge, it remains to be obtained any
bounds or expectations on the size of maximal sets ob-
tained from propagated valuations such as those generated
by variable elimination. Note that, as with sets of probabil-
ity potentials, if Ψ contains only valuations whose left or
right potentials specify a probability mass function, then
Ψ = max(Ψ).

We can have an upper bound on the cardinality of sets
by relaxing the partial order to allow approximate Pareto
dominance. Given a real number α > 1, we define a re-
lation ≤α such that φ ≤α ψ denotes that by mistakenly
assuming φ ≤ ψ we introduce an error no greater than α
in each coordinate. More formally, we define φ ≤α ψ if
(α−1, α) × ψ ≥ φ. Note that ≤α is neither transitive nor
antisymmetric, and that we may have φ ≤α ψ for φ 6≤ ψ.

The α-equivalence relation over potentials can easily be
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extended to pairs. Two pairs (p`x, p
r
x) and (p`y, p

r
y) are α-

equivalent if p`x ≡α p`y and pry ≡α pry . It is not difficult to
see that φ ≡α ψ implies both φ ≤α ψ and ψ ≤α φ.

A ≤α-covering for a set of pairs of potentials Ψx pro-
vides an approximated version of Ψx, one in which for
each φx ∈ Ψx we are guaranteed to have a pair ψx in the
covering such that the left and right potentials of ψx and
φx differ in each coordinate by a factor no greater than α.
We can easily obtain a≤α-covering of Ψx of bounded car-
dinality from its quotient set Ψx/α, that is, by discarding
one of any two α-equivalent pairs in Ψx. The approxima-
tion algorithm we develop in Section 5 strongly relies on
the following results.
Lemma 6. If k1, . . . , km are positive integers and
Ψx1 ,Ψ

′
x1
, . . . ,Ψxm ,Ψ

′
xm are set valuations such that for

i = 1, . . . ,m Ψ′xi is a ≤αki -covering for Ψi, then Ψ′x1
⊗

· · · ⊗Ψ′xm is a ≤β-covering for Ψx1 ⊗ · · · ⊗Ψxm , where
β = α

Pm
i=1 ki .

Proof. We work by induction on j = 1, . . . ,m. For j =
1, it follows directly that Ψ′1 is a ≤αk1 -covering for Ψ1.
Assume the result holds for 1 ≤ j < m− 1, and consider
any pair φ = φ′ × φ′′ in Ψx1 ⊗ · · · ⊗ Ψxj+1 , where φ′ ∈
Ψx1 ⊗ · · · ⊗Ψxj and φ′′ ∈ Ψxj+1 . There is ψ = ψ′ × ψ′′
in Ψ′x1

⊗ · · · ⊗ Ψ′xj+1
, where ψ′ ∈ Ψ′x1

⊗ · · · ⊗ Ψ′xj and

ψ′′ ∈ Ψxj+1 , such that (α−
Pj
i=1 ki , α

Pj
i=1 ki) × ψ′ ≥

φ′ (by assumption) and (α−kj+1 , αkj+1) × ψ′′ ≥ φ′′. It
follows from (A4) that (α−

Pj+1
i=1 ki , α

Pj+1
i=1 ki)×ψ ≥ φ.�

Let Ψx1 , . . . ,Ψxm denote sets of pairs of potentials which
take values on the interval [0, 1], and let b be the number
of bits required to encode these sets.
Proposition 7. The number of elements in (Ψx1 ⊗ · · · ⊗
Ψxm)⇓y/α is O((bmα/(α− 1))2|Ωy|).

The latter result is in fact an adaptation of Papadim-
itriou and Yannakakis’ result on the boundedness of ε-
approximate Pareto curves in multi-objective optimization
problems [1, Theorem 1].

3 Credal Networks

In this section we review the basic concepts and computa-
tional challenges of extensively specified credal networks.
Let G = (U , E) be a DAG, and X a node in U . We write
pa(X) , {Y ∈ U : (Y,X) ∈ E} to denote the parents
of X , ch(X) , {Y ∈ U : (X,Y ) ∈ E} to denote the
children of X in U , and fa(X) , {X} ∪ pa(X) to denote
the family of X . We call Y a descendant of X if there is a
directed path from X to Y in G.

An extensive credal setKx is a set of probability potentials
px over domain Ωx. Given an extensive credal set Kx, we
write H(Kx) to denote its convex hull (i.e., the set ob-
tained by all convex combinations of elements inKx), and
ext[H(Kx)] to denote its extreme points (i.e., the elements

A

B C

K{A} =

„
0.1
0.9

«ff

K{B,A} = H

„„
0.2 0.3
0.8 0.7

«
,

„
0.4 0.5
0.6 0.5

«ff«
K{C,A} =

„
0.6 0.7
0.4 0.3

«ff

Figure 1: Example of extensively specified credal net-
work.

of H(Kx) that cannot be written as a convex combination
of other elements). The convex hull of a set and the set of
its extreme points are themselves extensive credal sets.

An extensively specified credal network is a pair (G,K),
where K is a collection of finitely-generated closed con-
vex extensive credal sets Kfa(X), one for each X ∈
U , such that each potential pfa(X) ∈ Kfa(X) satis-
fies

∑
x↓pa(X)=π pfa(X)(x) = 1 for all π ∈ Ωpa(X)

(i.e., they represent conditional probability mass functions
p(X|pa(X))). Figure 1 depicts a simple extensively spec-
ified credal network over 3 binary-valued variables.

The strong extension of a credal network is given by the
credal set generated by the convex closure of the product
of all extensive credal sets in K,

Kstrong
U , H

(⊗

X∈U
Kfa(X)

)
. (3)

Since the product of local extremes Kext
U ,⊗

X∈U ext[Kfa(X)] is a subset of the strong extension (by
definition), we have that ext[Kstrong

U ] = ext[H(Kext
U )] ⊆

Kext
U . Notice that Kext

U contains a finite number of
elements.

Let q, e ⊂ U denote disjoint sets of query and evidence
variables, respectively, and (q, e) an element of Ωq∪e. In-
ference with credal networks consists in computing lower
and upper posterior probabilities (we assume p↓e(e) > 0
for all p ∈ Kstrong

U ):

p(q|e) , min
p∈Kstrong

U

p↓q∪e(q, e)
p↓e(e)

, (4)

p(q|e) , max
p∈Kstrong

U

p↓q∪e(q, e)
p↓e(e)

. (5)

Our goal in the rest of this section is to show that the
continuous optimizations of Equations (4) and (5) can
be mapped into problems of computing maximal sets of
marginals of the combinations of finite sets of pairs of po-
tentials. We begin with a well-known result that the so-
lutions to the convex optimizations in Equation (5) are at-
tained at extreme points of the strong extension [18]. Since
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any non-extreme point of Kext
U is also a non-extreme point

of the strong extension, we have that

p(q|e) = max
p∈Kext

U

p↓q∪e(q, e)
p↓e(e)

(6)

= max
pU∈Kext

U

p↓q∪e(q, e)
p↓q∪e(q, e) + p↓q∪e(¬q, e)

, (7)

where p↓q∪e(¬q, e) ,
∑

q′∈Ωq :q′ 6=q p
↓q∪e(q′, e). We

can derive analogous equations for the lower bound. The
passage from Equation (6) to (7) follows from the defi-
nition of marginalization. Notice that Equation (7) states
a combinatorial problem over products of local extreme
points. If p(q|e) > 0, we can divide the numerator and
the denominator of Equation (7) by p↓q∪e(q, e) > 0 and
obtain

p(q|e) = max
p∈Kext

U

(
1 +

p↓q∪e(¬q, e)
p↓q∪e(q, e)

)−1

. (8)

For any potential p ∈ Kext
U , let pq|e denote the pos-

terior probability obtained by p, that is, pq|e , [1 +
p↓q∪e(¬q, e)/p↓q∪e(q, e)]−1. Now consider two poten-
tials p and r such that p↓q∪e(¬q, e) ≤ r↓q∪e(¬q, e) and
p↓q∪e(q, e) ≥ r↓q∪e(q, e). Clearly, pq|e ≥ rq|e, and r is
not a solution of the maximization problem (conversely, p
is not a solution of the minimization problem). This allows
us to define a partial ordering among solutions p ∈ Kext

U .

Let Φq|e denote the set of pairs of potentials
(p↓q∪e(¬q, e), p↓q∪e(q, e)), where p ∈ Kext

U . Then
Equation (8) can be rewritten as

p(q|e) = max
(p`,pr)∈max(Φq|e)

(
1 + p`/pr

)−1
. (9)

Basically, what Equation (9) states is that we can narrow
down the optimization space to the set of potentials whose
corresponding pairs in Φq|e are not smaller than any other
pair in the set (conversely, we take the set of minimal el-
ements in the minimization case). Although this set could
be as large asKext

U , our experiments show that most often it
is significantly smaller. Thus, if max(Φq|e) is sufficiently
small, we can find the solution by a simple enumerative
scheme, and the optimization problem is then converted
into the problem of computing the maximal elements of
Φq|e, which can be done by the variable elimination pro-
cedure in Algorithm 1, as the following section shows.

4 Exact Inference

In this section we describe an algorithm for exact compu-
tation of upper posterior probabilities in credal networks.
An algorithm for obtaining lower probabilities can be ob-
tained in a very similar way.

For any variable X and a subset X ⊂ ΩX , we define the
identity potential IX as a potential over X that returns 1
for x ∈ X and 0 otherwise. If X = {x} is a singleton,
we write Ix. For any x ∈ ΩX , we define the set ¬x ,
ΩX \ {x}.
Consider a credal network (G,K), an elimination order-
ing o = (X1, . . . , Xn) of the variables in U , sets of query
and evidence variables q and e, and a query-evidence pair
(q, e) ∈ Ωq∪e. The variable elimination algorithm (Al-
gorithm 1) can be used to compute exact upper posterior
probabilities using the valuation algebra of sets of max-
imal pairs of potentials in the following way. Let Ψ be
the set that contains (i) for each X ∈ U a set-valuation
ΨX , {(pfa(X), pfa(X)) : pfa(X) ∈ ext[Kfa(X)]} in Φ;
(ii) a set-valuation Ψq , {(I¬q, Iq)} in Ψ; and (iii) for
each E ∈ e a set-valuation ΨE , {(Ie↓E , Ie↓E )} in
Ψ. Let Γ be the output of the variable elimination al-
gorithm with max-combination, and max-marginalization
and inputs Ψ, y = ∅ and ordering o, and let pq|e ,
max(p`,pr)∈Γ

(
1 + p`/pr

)−1
. Finally, let p(q|e) be the

solution of the maximization problem in Equation (5). The
following result states the correctness of the upper poste-
rior probability obtained the procedure.

Theorem 8. pq|e = p(q|e).

Proof. The sets ΨX ,Ψq,ΨE ∈ Ψ as well as the sets Ψi

generated by the variable elimination algorithm are valu-
ations in the valuation algebra of sets of maximal pairs of
potentials. It follows from (A1)–(A3) that

Γ =
(

Ψq

⊕

E∈e
ΨE

⊕

X∈G
ΨX

)�∅
(10)

= max
([

Ψq

⊗

E∈e
ΨE

⊗

X∈G
ΨX

]↓∅)
, (11)

where the last equivalence is obtained by repeatedly ap-
plying Proposition 3. Recall that combination of pairs is
defined as the pair formed by the combination of left po-
tentials and the combination of right potentials. Therefore,
Γ is a set of maximal pairs of potentials (p`, pr), where by
definition of Ψq , ΨE , and ΨX ,

p` =
(
I¬q

⊗

E∈e
Ie↓E

⊗

X∈G
pfa(X)

)↓∅
(12)

= p↓q∪eU (¬q, e) , (13)

pr =
(
Iq
⊗

E∈e

Ie↓E
⊗

X∈G
pfa(X)

)↓∅
(14)

= p↓q∪eU (q, e) . (15)

Moreover, p` and pr are compatible, that is, for any po-
tential pfa(X) in p` taken from a local extensive credal set
Kfa(X), the same potential appears in pr and no other po-
tential from Kfa(X). Hence, Γ = max(Φq|e). The result
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is obtained by comparing the definition of pq|e and Equa-
tion (9). �
The complexity of the algorithm is upper bounded by the
cost of the combination of sets of pairs in computing Ψi

during the variable elimination part. Each of these compu-
tations takes time polynomial in the size of the largest set,
which might be exponential in the size of the input sets.
For instance, the size of the largest potential is a function
of the topology of G and the given elimination ordering
o. The number of elements of a set, on the other hand,
depends on the number of non-maximal elements that are
discarded at each combination or marginalization opera-
tion. In the worst-case scenario where no element is ever
discarded, the algorithm runs in exponential time even if
the network treewidth and the cardinality of the frames of
the input sets are bounded (which is not surprising given
that the problem is NP-hard under such assumptions).

An algorithm for lower posterior probabilities can be ob-
tained by substituting sets of maximal valuations and max-
imizations by sets of minimal valuations and minimiza-
tions, respectively. The correctness and complexity analy-
ses are analogous to the maximization case.

5 FPTAS

The computational bottleneck of the variable elimination
procedure presented in Section 4 is the existence of large
sets at some point in the propagation step (apart from the
inherent difficulty of manipulating potentials over large
domains). We can remedy the large set problem by trading
off accuracy and running time. In this section, we devise
a multiplicative approximation scheme that runs in time
polynomial in the number of potentials of the input ex-
tensive credal sets, but it is still exponential in the size
of the largest pair ψXi generated during the propagation
step, which depends only on the sizes of the frames of the
variables and the network treewidth. For the rest of this
section, we assume the size of variable frames and the net-
work treewidth to be bounded by a constant. Additionally,
we require the input potentials to be represented by ratio-
nal numbers, so that the length of the input is well-defined.
The approximation scheme we obtain is an FPTAS, that is,
a family of algorithms parameterized by ε > 0 that returns
in time polynomial to 1/ε and to the input size a feasible
solution that is no worse than the optimal solution by a fac-
tor of ε. If x∗ is the optimal solution (of a maximization
problem), the approximation algorithm returns a solution
x such that x∗/(1 + ε) ≤ x ≤ x∗.
Given a real number α greater than one, we define the
α-combination of two set-valuations Ψx and Ψy as the
quotient set of the their set-combination, that is, Ψx �α
Ψy , (Ψx ⊗Ψy)/α. The operation �α is not associative,
that is, there are set-valuations Ψx, Ψy and Ψz such that
(Ψx�αΨy)�αΨz differs from Ψx�α (Ψy�αΨz). Nev-

ertheless, the order in which sets are α-combined does not
alter the combined approximation factor, as the following
result states.
Lemma 9. If Ψ1, . . . ,Ψm are set-valuations, then Ψ1�α
· · ·�αΨm (where the operations are applied in any order)
is a ≤β-covering for Ψ1 ⊗ · · · ⊗Ψm, where β = αm−1.
Proof. We work by induction on k = 2, . . . ,m. For k =
2, it follows directly from the definition of α-combination
that Ψ1�αΨ2 is an≤α-combination for Ψ1⊗Ψ2. Assume
for k ∈ {2, . . . ,m− 1} that Ψ1 �α · · ·�α Ψk−1 is a ≤β-
covering for Ψ1⊗· · ·⊗Ψk−1, where β = αk−2. Consider
any pair φ = φ′ × φ′′ in Ψ1 ⊗ · · · ⊗ Ψk, where φ′ ∈
Ψ1 ⊗ · · · ⊗Ψk−1 and φ′′ ∈ Ψk. There is ψ = ψ′ × ψ′′ in
Ψ1�α · · ·�αΨk−1⊗Ψk, where ψ′ ∈ Ψ1�α · · ·�αΨk−1

and ψ′′ ∈ Ψk, such that ψ′ ≥β φ′ (by assumption) and
ψ′′ = φ′′. Then it follows from (A4) that ψ ≥β φ, or
equivalently that (β−1, β) × ψ ≥ φ. But since Ψ1 �α
· · ·�αΨk is a≤α-covering for Ψ1�α · · ·�αΨk−1⊗Ψk,
there is ψ′′′ ∈ Ψ1 �α · · · �α Ψk such that ψ′′′ ≥α ψ, or
equivalently that (α−1, α)×ψ′′′ ≥ ψ. By combining both
sides with (β−1, β) and applying (A4) we get to

(β−1, β)× (α−1, α)× ψ′′′ ≥ (β−1, β)× ψ ≥ φ ,
and hence (α−(k−1), αk−1)×ψ′′′ ≥ φ, and ψ′′′ ≥αk−1 φ.
The lemma follows from the induction. �
Thus, by properly choosing the value of α we can ob-
tain a covering that approximates a combination of set-
valuations with errors as small as we want. In addition,
Proposition 7 guarantees that the sets obtained after each
α-combination have cardinality polynomial in the input
length and in the maximum error, and so the covering.

We can then modify the exact variable elimination algo-
rithm devised in Section 4 to provide an FPTAS by sub-
stituting max-combination and max-marginalization by α-
combination with α = 1 + ε/4n and set-marginalization.
Let Ψi and Ψi

α denote, respectively, the sets obtained in
the ith iteration of the loop step of variable elimination us-
ing set-combination and α-combinations (and both with
set-marginalization). In other words, Ψi is the set ob-
tained by a brute-force elimination algorithm, whereas Ψi

α

denote the sets obtained by the approximation algorithm.
Similarly, we let Γ and Γα denote the outputs of variable
elimination with set-combination and α-combination, re-
spectively.

Let s1 denote the number of set-valuations that are com-
bined to compute Ψ1

α (and also Ψ1) minus one, that is,
s1 , |B1| − 1. Then, for i = 2, . . . , n, we define si re-
cursively as si , |Bi| − 1 +

∑
j:Ψjα∈Bi sj . Intuitively,

si denote the number of valuations from the input that are
required either directly or indirectly to compute Ψi

α (and
also Ψi) minus one. Hence, if Ψ is the set obtained after
the loop step, we have that |Γα|+

∑
i:Ψiα∈Ψ si = n, since

there are n set-valuations given as input and each is used
exactly once in the computation of some Ψi

α (or Ψi).
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The following lemma relates the set-valuations propagated
by variable elimination with α-combination to the corre-
sponding sets obtained by set-combination.

Lemma 10. For i = 1, . . . , n, the set-valuation Ψi
α is a

≤αsi -covering for Ψi.

Proof. For i = 1 the result follows directly from
Lemma 9. Without loss of generality, let Ψi = [Ψ1 ⊗
· · · ⊗ Ψk ⊗ · · · ⊗ Ψ|Bi|]

−Xi , where Ψ1, . . . ,Ψk denote
set-valuations given as input and Ψk+1, . . . ,Ψ|Bi| denote
sets Ψj (j < i) generated in the propagation step. Simi-
larly, let Ψi

α = [Ψ1 �α · · · �α Ψk �α Ψ′k+1 �α · · · �α
Ψ′|Bi|]

−Xi , where, for k + 1 < ` < |Bi|, Ψ` = Ψj

implies Ψ′` = Ψj
α. Assume by induction that the re-

sult holds for 1, . . . , i − 1. Hence, if Ψ′` = Ψj
α then

Ψ′` is a ≤αsj -covering for Ψ`. Now, consider any pair
φ = [φ′ × φ′′]−Xi ∈ Ψi, where φ′ ∈ Ψ1 ⊗ · · · ⊗ Ψk

and φ′′ ∈ Ψk+1 ⊗ · · · ⊗ Ψ|Bi|. From Lemma 9, we
have that there is ψ′ ∈ Ψ1 �α · · · �α Ψk such that
(α−k+1, αk−1)×ψ′ ≥ φ′. Likewise, since Ψ′k+1�α· · ·�α
Ψ′|Bi| is a≤α|Bi|−(k+1) -covering for Ψ′k+1⊗· · ·⊗Ψ′|Bi| (by
Lemma 9) and Ψ′k+1 ⊗ · · · ⊗ Ψ′|Bi| is a ≤αP

` s` -covering
for Ψk+1 ⊗ · · · ⊗ Ψ|Bi| (by Lemma 6 and the induction
hypothesis), there is ψ′′ ∈ Ψ′k+1�α · · ·�αΨ′|Bi| such that
(α−si+k, αsi−k)×ψ′′ ≥ φ′′. Since ≡α implies ≤α, there
is ψ ∈ (Ψ1�α · · ·�αΨk)�α (Ψk+1�α · · ·�αΨ|Bi|) such
that (α−1, α)× ψ ≥ ψ′ × ψ′′. Thus, it follows from (A4)
that [(α−si , αsi) × ψ]−Xi ≥ φ. But from (A3) we have
that [(α−si , αsi) × ψ]−Xi = (α−si , αsi) × ψ−Xi , where
ψ−Xi ∈ Ψi

α. Since this is true for any φ ∈ Ψi, the result
holds for i. The lemma follows from the induction. �

Consider a credal network (G,K), an elimination ordering
o = (X1, . . . , Xn) of the variables in U , sets of query
and evidence variables q and e, and a query-evidence
pair (q, e) ∈ Ωq∪e. Let Ψ be a collection of sets of
pairs as defined in Section 4, and consider the variable
elimination algorithm with inputs Ψ, y = ∅ and o, and
α-combination and set-marginalization. Finally, return
pq|e , max(p`,pr)∈Γα(1 + p`/pr)−1 as the approximate
solution output.

Theorem 11. The procedure described is an FPTAS for
computing upper posterior probabilities for networks of
bounded treewidth and number of states per variable.

Proof. First, we analyze the time complexity of the algo-
rithm. We are thus interested in the maximum cardinal-
ity of a set Ψi

α, and in the cardinality of the domain of a
valuation generated in the loop step. The boundedness as-
sumptions imply that the cardinality of the domain of any
propagated valuation is smaller than a constant. Hence,
the polynomial time complexity depends on |Ψi

α| being
bounded. For i = 1, . . . , n, any valuation φi ∈ Ψi

α is pro-
duced by first combining valuations that are either in some
previously generated set Ψj

α (j < i) or in a set given as in-
put, and then eliminating Xi from it. Thus, by recursively

applying (A1)–(A3) to factorize each valuation from a Ψj
α

into a combination of valuations and moving the elimina-
tions out, we have that φi = [φ1×· · ·×φsi+1]−{X1,...,Xi},
where each φj is in a set-valuation given as input. Hence,
each Ψi

α can be factorized as [Ψ1⊗· · ·⊗Ψsi ]
−{X1,...,Xi},

where each Ψi is a subset of a set-valuation given as
input. It follows then from Proposition 7 that Ψi

α has
O([bsiα/(α − 1)]2ω), where ω is a constant greater than
the cardinality of the domain of any φi. Since α =
1 + ε/4n, O([bsiα/(α− 1)]2ω) ≤ O((4n2b/ε)2ω), where
b is the length of the input in bits. Therefore the algorithm
runs in time polynomial in the input, in the given approxi-
mation factor ε, and in the number of variables n.

Let p(q|e) , max(p`∗,p
r
∗)∈Γ(1 + p`∗/p

r
∗)
−1 denote the op-

timum value. We now show that the approximation algo-
rithm yields a solution such that pq|e ≥ p(q|e)/(1+ε) for
any given positive ε. Let Ψ′1, . . . ,Ψ

′
m denote the sets Ψi

α

in Ψ after the loop step of the approximation algorithm,
where m = |Γα|, and let Ψ1, . . . ,Ψm be the sets Ψi in
Ψ after the loop step of the brute-force version. Then,
Γα = Ψ′1 �α · · · �α Ψ′m and Γ = Ψ1 ⊗ · · · ⊗ Ψm. It
follows from Lemma 9 that Γα is a ≤αm−1 -covering for
Ψ′1 ⊗ · · · ⊗Ψ′m, which in turn is a ≤αn−m -covering for Γ,
by Lemma 10. Hence, for any φ ∈ Γ there is ψ ∈ Γα such
that (α−(n−1), αn−1)×ψ ≥ φ an thus (α−n, αn)×ψ ≥ φ.
In particular, there is ψ = (p`, pr) ∈ Γα such that
ψ ≥αn (p`∗, p

r
∗) = φ∗. Therefore, p` ≤ αnp`∗, αnpr ≥ pr∗,

and

(1 + p`/pr)−1 ≥ (1 + α2np`∗/p
r
∗)
−1

≥ α−2n(1 + p`∗/p
r
∗)
−1 .

Since α = (1 + ε/4n), we have that

(1 + p`/pr)−1 ≥ (1 + ε/4n)−2n(1 + p`∗/p
r
∗)
−1

≥ (1 + ε)−1(1 + p`∗/p
r
∗)
−1

= (1 + ε)−1p(q|e) ,

where the second passage is due to the inequality (1 +
x/z)z ≤ 1 + 2x, valid for any x ∈ [0, 1] and any positive
integer z. Hence, pq|e ≥ p(q|e)/(1 + ε). �

Finally, we note that the approximation algorithm can
be made more efficient by discarding non-maximal pairs
from sets Ψi

α like in the exact algorithm in Section 4. This
is done in our implementation of the algorithm whose per-
formance we evaluate in the next section.

6 Experiments

We evaluate the performance of the exact and the approx-
imation algorithms on a collection of extensively speci-
fied credal networks randomly generated using the BN-
Gen package [14]. The graph topology of these networks
is divided in three types, namely (from the simplest to the
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Type Exact Method Approx. (ε = 0.1) Integer Programming
% Time(sec) % Time(sec) % Time(sec)

solved Median Avg. SD solved Median Avg. SD solved Median Avg. SD

M10-2-16 20 824 5617 9923 21 955 6978 11157 6 40464 35079 10451
M10-2-2 100 0.04 0.04 0.03 100 0.04 0.04 0.03 100 2 6 8
M10-2-4 100 4 1096 3906 100 3 276 1025 73 11445 13487 9206
M10-4-2 100 0.19 0.38 0.46 100 0.2 0.41 0.49 75 1320 5699 8922
M10-4-4 100 248 2030 4407 100 238 1992 4335 3 8459 8459 1108
M20-2-2 95 113 1835 4304 96 95 1592 3747 46 8039 12601 10654
M20-4-2 81 1154 5864 9584 81 1266 6009 9594 0 – – –
M30-2-2 26 8560 12170 11710 30 4032 13775 13734 3 9484 9484 0
P10-4-16 10 15428 16877 14159 10 16719 16470 13080 0 – – –
P10-4-2 100 0.04 0.04 0.03 100 0.04 0.05 0.03 96 248 2451 7752
P10-4-4 100 4 1977 5075 100 4 2095 5476 6 15101 15101 1564
P20-4-2 100 39 2055 5097 100 32 1691 4483 0 – – –
P20-4-4 6 20669 20669 20588 6 13484 13484 13400 36 5393 8931 6016
P30-4-2 6 8207 8207 1385 6 5171 5171 1306 0 – – –
T10-4-16 13 1559 1381 687 16 1855 9778 16704 0 – – –
T10-4-2 100 0.04 0.04 0.02 100 0.04 0.05 0.02 100 12 14 7
T10-4-4 100 6 784 3554 100 6 674 3129 0 – – –
T20-4-2 96 89 2415 6164 96 73 2597 7009 13 29022 29587 4839

Table 2: Performance of proposed methods and the integer programming idea. Columns show percentage of solved cases,
median, mean and standard deviation (SD) for each group. Numbers greater than one are truncated.

most complicated): trees (graphs with maximum in-degree
one), polytrees (graphs where the underlying undirected
graph has no cycles), and multi-connected (DAGs without
restrictions). All networks have treewidth no greater than
four, 10 to 30 nodes, 2 to 4 states per variable, and 2 to
16 potentials in each local extensive credal set. In order to
have statistically significant measures, we group networks
of similar structure which we identify by the notation Sn-
k-c, where S is one of T (for trees), P (for polytrees),
or M (for multi-connected), n is the number of nodes in
the graph, k is the number of states per node, and c is the
cardinality of the credal sets. The number of networks in
each group is either 30 or 60 (see second column of Ta-
ble 3). For each network, we set some evidence to every
leaf node and arbitrarily choose a node with no parents
as query. This creates problems where a brute-force ap-
proach would have to execute cn Bayesian network infer-
ences. The elimination ordering is obtained by a greedy
algorithm that attempts to minimize the size of propagated
set-valuations. To make the removal of non-maximal val-
uations effective, we ensure the set-valuation Ψq is in B1,
even if it is not required (i.e., if X1 /∈ q). Since the query
has no parents, this can only increase the treewidth by one.

Table 2 reports the performance of the exact and the ap-
proximation algorithms along with the integer program-
ming method of de Campos and Cozman [8]. The latter
is a state-of-the-art solver for inference in credal networks
that performs a symbolic inference in the credal network
to obtain a set of linear constraints over continuous and
binary optimization variables, which is then processed by

a mixed integer programming solver. For each inference
method and network group, Table 2 contains the percent-
age of cases that were correctly solved using at most 12
hours of CPU time and 2GB of RAM, and the median,
average and standard deviation of the time spent. Regard-
ing the mixed integer programming, we considered an in-
stance solved only if the lower and upper bounds given
returned by the solver matched. As the networks become
more complicated, the percentage of solved cases reduces
and the time to solve each case increases. The superior-
ity against the integer programming is clear, though we
suspect the integer programming might be suffering from
numerical issues that are preventing it to achieve better re-
sults. Regarding the approximation, we see no significant
reduction in time nor increase in the number of solved
cases with respect to the exact method. Some facts con-
tribute to that: (i) the limit of 12 hours of computation
might be too short to get a consistent difference in the per-
formance of the methods; (ii) the approximation has an
additional computational cost in removing α-equivalent
pairs, which is asymptotically irrelevant but significant
otherwise; (iii) the number of discarded potentials in each
step depends on the elimination order, the dimension of
the potentials, and the randomness of input values. Table
3 shows average and standard deviation of the maximum
number of elements in a set generated by the exact and ap-
proximation algorithms in the loop step. Recall that the
complexity is related to the number of elements (as well
as the cardinality) of the set-valuations generated. For in-
stance, there would eventually be cn propagated potentials
if no ≤ relation (conversely, ≤α relation) was observed.
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Type # of Exact Approximation
nets Avg. SD Avg. SD

M10-2-16 60 36046 28928 34579 28563
M10-2-2 60 154 141 130 109
M10-2-4 60 24642 64632 7254 9439
M10-4-2 60 225 128 224 127
M10-4-4 60 46147 65056 42664 55941
M20-2-2 60 37515 61606 28977 46774
M20-4-2 60 67573 73868 66185 73362
M30-2-2 30 93213 55519 81624 57996
P10-4-16 30 104468 75687 92784 64183
P10-4-2 30 115 100 114 100
P10-4-4 30 37155 78008 31361 64117
P20-4-2 30 24856 44469 20337 37219
P20-4-4 30 76083 68966 58358 51241
P30-4-2 30 92744 5476 65708 16654
T10-4-16 30 11840 9570 11834 9572
T10-4-2 30 135 108 132 107
T10-4-4 30 17178 49396 13706 41225
T20-4-2 30 57055 104187 49044 96469

Table 3: Average and standard deviation (SD) of the max-
imum number of pairs of a set for the cases where both
methods solved the inference. Numbers are truncated.

7 Conclusion

We derived a new algorithm for exact posterior inference
in extensively specified credal networks under strong in-
dependence. The algorithm is empirically shown to out-
perform an state-of-the-art method, being able to solve
medium-sized networks in feasible time. We then showed
that for networks of bounded treewidth and number of
states per variable, a FPTAS for the problem exists. In
our experiments, approximation and exact algorithms per-
formed similar, likely due to the large constants hidden by
the boundedness assumptions in the asymptotic complex-
ity analysis.
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Abstract

We study the weakest conglomerable model that is
implied by desirability or probability assessments: the
conglomerable natural extension. We show that tak-
ing the natural extension of the assessments while
imposing conglomerability—the procedure adopted in
Walley’s theory—does not yield, in general, the con-
glomerable natural extension (but it does so in the
case of the marginal extension). Iterating this process
produces a sequence of models that approach the con-
glomerable natural extension, although it is not known,
at this point, whether it is attained in the limit. We
give sufficient conditions for this to happen in some spe-
cial cases, and study the differences between working
with coherent sets of desirable gambles and coherent
lower previsions. Our results indicate that it might be
necessary to re-think the foundations of Walley’s the-
ory of coherent conditional lower previsions for infinite
partitions of conditioning events.

Keywords. Conglomerability, natural extension, de-
sirable gambles, coherent lower previsions.

1 Introduction

You are offered a gamble f (that is, a bounded real-
valued function representing an uncertain reward) on a
possibility space Ω. You assess that, whatever event B
you consider in a certain partition B of Ω, you would
desire f conditional on B. Does this imply that you
should unconditionally desire f?

Common axioms of desirability, such as those in
Refs. [11, Section 3.7] or [12], imply that this should
indeed be the case, at least when B is finite. When
B is infinite, some authors have proposed to impose
the above requirement through an axiom of so-called
conglomerability. In fact, conglomerability is a key
founding axiom for Walley’s theory of coherent lower
previsions in the conditional case with infinite parti-
tions of conditioning events.

Conglomerability was introduced by de Finetti [2, 3]
as a property that a finitely—but not countably—
additive probability need not satisfy. In fact, de Finetti
was also the first to reject the idea that conglomerabil-
ity should be required as an axiom of rationality. The
concept was studied later by Dubins [5], who estab-
lished a connection with disintegrability. The property
of conglomerability was also studied by Seidenfeld,
Schervisch and Kadane (e.g., in Refs. [9, 10]). They
show in particular [9] that when a probability is defined
on all events and takes infinitely many values, count-
able additivity is equivalent to full conglomerability,
that is, for conglomerability to hold with respect to all
the possible partitions of Ω. See Ref. [4] for an inter-
esting connection with imprecise probability models.

Requiring conglomerability, even only with respect to
a single partition B, comes at the expense of some
undesirable mathematical properties: for example, a
conglomerable coherent lower prevision may not be
the lower envelope of conglomerable linear previsions.
Perhaps also because of this, conglomerability was
rejected in some extensions of de Finetti’s work, such
Williams’s [12] (see also Ref. [8]). In our view, what
appears to be mostly controversial is in particular the
idea of full conglomerability, as opposed to conglomer-
ability only for the partitions that are actually used
for updating beliefs.1 This is for instance the approach
taken by De Cooman and Hermans in Ref. [1] when
they require modes to be ‘cut conglomerable’.

Here, we do not take any philosophical position about
whether models should be conglomerable. Our aim is
to perform a technical study of the impact of conglom-
erability on the possible extensions of an initial set of
assessments. We focus in particular on what we call
the conglomerable natural extension: loosely speaking,
this is the weakest (least committal) conglomerable
model that is implied by the initial assessments. A re-
lated concept is the natural extension, which is defined

1This is also called partial conglomerability. Here, when we
talk about conglomerability, we mean partial conglomerability.
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in a similar way except for not requiring the extension
to be conglomerable.

We start in Section 2 by introducing some basic no-
tions: desirability, coherent lower previsions and the
connections between them. We introduce conglomer-
ability in a few different forms: for desirable gambles,
in the traditional form and in a weaker variant; and
for coherent lower previsions, in the traditional way
and in a strengthened form. We uncover the relation-
ships between these notions, which allows us to convert
problems formulated for one model into the other.

In Section 3, we focus on desirability. We show that,
if it exists, then the conglomerable natural extension
F of a set R of desirable gambles with respect to a
partition B is the intersection of all conglomerable sets
including R. Moreover, we relate F to the natural
extension: we start from R, take its natural extension,
and close it with respect to conglomerability, obtaining
E1; we reiterate this process, yielding the sequence E2,
. . . , En, . . . . We show that En ⊆ F for all n, and that
the sequence stabilises if and only if one if its elements
coincides with F . We provide some sufficient conditions
for this, as well as a few examples to illustrate the
situation. One of them, in particular, shows that the
gambles in R that do not satisfy conglomerability may
be only in the border of the set, and yet the closure
with respect to conglomerability may extend the set
beyond this border.

In Section 4, we study the conglomerable natural ex-
tension F of a coherent lower prevision P with respect
to a partition B. Here, too, we consider a sequence: we
start from P , compute its conditional natural exten-
sion P (·|B), and then the natural extension of the two
of them together, E1; we iterate the process, yielding
the sequence E2, . . . , En, . . . . We show that En ≤ F
for all n, and again that the sequence stabilises if and
only if one of its elements coincides with F . We then
provide what is arguably the most important result of
this paper: we show in Example 5 that E1 may not
equal F . This is interesting because, when it comes to
natural extension (as well as coherence), Walley’s the-
ory is implicitly based on stopping at the first element
of the sequence: E1. We show that this is not enough
to fully capture the implications of conglomerability,
and give sufficient conditions for E1 = F .

In Section 5, we relate the results obtained for desir-
able gambles and coherent lower previsions: we start
from the set R and induce from this a coherent lower
prevision P . We then create the sequences of sets En,
on the one hand, and the sequences of coherent lower
previsions En, on the other. We investigate the re-
lationship between the elements of these sequences.
This allows us, in Example 7, to exploit Example 5

to show that E1 may not coincide with F : this means
that taking the one-step conglomerable closure falls
short of the mark for desirable gambles as well. We
give sufficient conditions for E1 = F , as well as for the
two sequences to be made up of equivalent models.

To conclude, we consider in Section 6 the problem
of dealing with more than one partition. We show
that under the assumptions of the Marginal Extension
Theorem (see Refs. [11, Theorem 6.7.2] and [6]), it
does hold that E1 = F .

Due to lack of space, we must assume the reader has
a working knowledge of the basics of the theory of
coherent lower previsions [11]. We refrain from giving
proofs of most technical results for the same reason.

2 Introductory Notions

Consider a possibility space Ω. In this paper Ω will
frequently be N, the set of natural numbers without
zero, but our results will be applicable to more general
spaces. A gamble is a map f : Ω → R. The set of all
gambles defined on Ω is denoted by L(Ω), or simply L
when there is no ambiguity about the possibility space
we are working with. In particular, we use ‘f � 0’ to
mean ‘f ≤ 0 and f 6= 0’ (and we then say that the
gamble f is negative), and we write f  0 if −f � 0.

Given a set of gambles R, we consider the following
axioms of desirability:2

D1. f  0⇒ f ∈ R;

D2. 0 /∈ R;

D3. f ∈ R, λ > 0⇒ λf ∈ R;

D4. f, g ∈ R ⇒ f + g ∈ R.

Let us define

posi(R) :=
{ n∑

k=1

λkfk : fk ∈ R, λk > 0, n ≥ 1
}
.

We call R a convex cone if it is closed under positive
linear combinations, meaning that posi(R) = R. This
is equivalent to R satisfying conditions D3 and D4.

Given a partition B of Ω, R is called B-conglomerable
when it satisfies the following axiom:

D5. if f 6= 0 and (∀B ∈ B′ ⊆ B)Bf ∈ R then∑
B∈B′ Bf ∈ R.

2This axiomatic definition is related to strict and almost-
desirability, see Ref. [11, Section 3.7]. The differences between
these concepts lie mostly in the topological properties of the
set of desirable gambles and in whether the zero gamble is
considered to be desirable.
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Axiom D5 is a consequence of D4 when B is finite. It
can be easily checked that D5 is equivalent to:

D5’. if f 6= 0 and (∀B ∈ B)Bf ∈ R ∪ {0} then∑
B∈B Bf ∈ R.

A lower prevision is a real-valued functional defined on
some set of gambles K ⊆ L. When K is a linear space,
P is called coherent when it satisfies the following
conditions:

C1. P (f) ≥ inf f for all f ∈ K;

C2. P (λf) = λP (f) for all f ∈ K and λ > 0;

C3. P (f + g) ≥ P (f) + P (g) for all f, g ∈ K.

When K = L and P satisfies C3 with equality, it is
called a linear prevision. The set of linear previsions
that dominate a coherent lower prevision P on its
domain is denoted by M(P ).

Given a partition B of Ω, a conditional lower prevision
P (·|B) on L is a functional such that for every B ∈ B,
P (·|B) is a lower prevision on L. It is called separately
coherent when P (·|B) is coherent and P (B|B) = 1 for
every B ∈ B. For a lower prevision P and a conditional
lower prevision P (·|B), we use the notation

GP (f) := f − P (f), GP (f |B) := B(f − P (f |B)

GP (f |B) := f − P (f |B) =
∑

B∈B
GP (f |B).

When both P and P (·|B) are defined on L, they are
called coherent if and only if P (GP (f |B)) ≥ 0 and

P (GP (f |B)) = 0 (GBR)

for every gamble f and every B ∈ B. This last condi-
tion is called the Generalised Bayes Rule.
Definition 1. Let P be a coherent lower prevision on
L, and B a partition of Ω. P is called B-conglomerable
when the following condition holds:

WC. P (
∑

n∈N Bnf) ≥ 0 for any f ∈ L and any
countable number of distinct sets Bn in B such
that P (Bn) > 0 and P (Bnf) ≥ 0 for all n ∈ N .

Again, WC holds trivially when N is finite, and in
particular when the partition B is finite, because of
the super-additivity of coherent lower previsions.

Let us shed more light on the relation between the
coherence and conglomerability concepts for lower pre-
visions and sets of desirable gambles. On the one hand,
given a coherent lower prevision P , we define its asso-
ciated set of strictly desirable gambles by

R := {f ∈ L : f  0 or P (f) > 0} , (1)

and its set of almost-desirable gambles by

R := {f ∈ L : P (f) ≥ 0} . (2)

R satisfies the axioms D1–D4 considered above, and R
is a convex cone that includes all non-negative gambles.
Moreover, it follows from the equations above that
R ⊆ R, and that R contains all positive gambles and
is closed under dominance.

Conversely, given a set R of gambles satisfying D1–D4,
we can define the corresponding lower prevision by

P (f) := sup {µ : f − µ ∈ R} . (3)

It follows from Theorem 6 in Ref. [7] that P is a
coherent lower prevision. Moreover, if we consider the
sets R and R given by Eqs. (1) and (2), it follows from
Theorem 3.8.1 in Ref. [11] that

sup {µ : f − µ ∈ R} = P (f) = sup
{
µ : f − µ ∈ R

}
.

As a consequence, any set R such that R ⊆ R ⊆ R in-
duces the same lower prevision P through Equation (3)
[11, Theorem 3.8.1].

The set R is the closure of R (and as a consequence
also of any R ⊆ R ⊆ R) in the topology of uniform
convergence [7, Proposition 4]. In addition,

R := {f ∈ R : f  0 or f − ε ∈ R for some ε > 0} ,

for all R ⊆ R ⊆ R.

We now establish a conglomerability condition for sets
of desirable gambles that is equivalent to WC.
Theorem 1. Let R be a set of desirable gambles that
satisfies D1–D4, and P be the coherent lower prevision
it induces through Equation (3). Then P satisfies WC
if and only if R satisfies the following condition:

WD5. if (∀B ∈ B)Bf ∈ R ∪ {0} then f ∈ R.

Since R ⊆ R ⊆ R, D5 implies WD5. On the other
hand, when we consider a coherent set of almost-
desirable gambles R (see Ref. [11, Section 3.7.3] for
the definition), condition D5 is equivalent to:

D5”. if (∀B ∈ B)Bf ∈ R then f ∈ R.

By definition, condition D5” is a consequence of D5.
To see that they are equivalent when we work with
a coherent set of almost-desirable gambles, note that
the zero gamble belongs to R, and as a consequence if
Bf ∈ R for all B ∈ B′ ⊆ B, then also B1

∑
B∈B′ Bf

belongs to R for all B1 ∈ B; using D5” we then deduce
that

∑
B∈B′ Bf belongs to R.

We next show that D5 can also be related to a notion
of conglomerability for coherent lower previsions:
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Definition 2. Let P be a coherent lower prevision
on L, and B a partition of Ω. P is called strongly
B-conglomerable when the following condition holds:

SC. if f ∈ L and (∀B ∈ B′ ⊆ B)P (Bf) ≥ 0, then
P (
∑

B∈B′ Bf) ≥ 0.

Theorem 2. Let P be a coherent lower prevision, and
let R be its associated set of almost-desirable gambles.
Then P is strongly B-conglomerable if and only if R
satisfies D5. Conversely, a coherent set of almost-
desirable gambles satisfies D5 if and only if the coher-
ent lower prevision P it induces satisfies SC.

We deduce from Theorems 1 and 2 that if a coherent
lower prevision is strongly B-conglomerable, then it is
also B-conglomerable.

3 Conglomerability for Sets of
Desirable Gambles

Let us consider a set of gambles R, and look for the
smallest superset F (if it exists) that satisfies D1–D5
with respect to a fixed partition B. This set is called
the B-conglomerable natural extension of R. A first
characterisation of this set is given in the following:

Proposition 1. If there is some set of gambles in-
cluding R and satisfying D1–D4 and D5 (resp. WD5),
then F is the intersection of all such sets.

From now on, we assume that R satisfies condi-
tions D1–D4; D2 is necessary for the existence of a
B-conglomerable natural extension, and D1, D3 and D4
can be satisfied by replacing R with the convex cone
posi(R∪ {f : f  0}).
The existence of a superset of R that satisfies D1–
D5 does not guarantee that there is a half-space that
includes R and satisfies these axioms. The example
that establishes this is a reformulation of [11, Ex-
ample 6.6.9]:
Example 1. Let Ω be the set of integers without zero,
and consider the partition B := {Bn : n ∈ N} given by
Bn := {−n, n}.
Let P1 be a linear prevision on L satisfying P1({n}) = 1

2n+1

and P1({−n}) = 0 for all n ∈ N, and P1(N) = 1
2
. Also

consider a linear prevision P2 satisfying P2({−n}) = 1
3n ,

P2({n}) = 0 for all n ∈ N, and P2(N) = 1
2
. Let P :=

min{P1, P2}.
Consider R := {f : f  0 or P (f) > 0}, the set of strictly
desirable gambles associated with P . Then R satisfies D1–
D4. To see that it also satisfies D5, note that if for a gamble
0 6= f , Bnf ∈ R∪{0} for all n ∈ N, then either P (Bnf) > 0
or Bnf ≥ 0, and in the latter case P (Bnf) ≥ 0. But
since P (Bnf) > 0 implies that both P1(Bnf) > 0 and
P2(Bnf) > 0, and since this in turn means that both

f(−n) and f(n) are non-negative, we also deduce that
P (Bnf) > 0 implies that Bnf  0. As a consequence, if
Bnf ∈ R∪{0} for all Bn ∈ B, then f ≥ 0, and since f 6= 0
we deduce that f ∈ R.

Let us now show that there is no half-space includingR and
satisfying WD5 (and as a consequence neither D5). Assume
ex absurdo that D is such a space. Let P be the associ-
ated linear prevision, given by P (f) := sup {µ : f − µ ∈ D}.
Since R ⊆ D, we deduce that P dominates P . But Walley
has shown in Ref. [11, Example 6.6.9] that no dominating
linear prevision satisfies WC, and using Theorem 1, we
deduce that D does not satisfy WD5, and as a consequence
it does not satisfy D5 either. �

Our next goal is to derive a more practical expression
for F . In order to do this, let us define the following
sequence of sets of desirable gambles, starting with:

R∗ := {f 6= 0: (∀B ∈ B)Bf ∈ R ∪ {0}}
E1 := posi(R∪R∗)

and for all n ≥ 2:

E∗n−1 := {f 6= 0: (∀B ∈ B)Bf ∈ En−1 ∪ {0}}
En := posi(En−1 ∪ E∗n−1). (4)

We will also use E0 := R and E∗0 := R∗.
Lemma 1. Let F ′ ⊇ R and suppose that F ′ satis-
fies D1–D5. Then F ′ ⊇ En for all n ∈ N.

It follows that the B-conglomerable natural extension
ofR, if it exists, must include

⋃
n En. As a consequence,

in that case we can also express the sets E as

E1 = {f + g : f ∈ R ∪ {0}, g ∈ R∗ ∪ {0}} \ {0},
En =

{
f + g : f ∈ En−1 ∪ {0}, g ∈ E∗n−1 ∪ {0}

}
\ {0}.

We next investigate which desirability axioms are sat-
isfied by the sets En and E∗n.

Proposition 2. Assume that there is some superset
F of R satisfying D1–D5. Then:

1. En satisfies D1–D4 for all n ∈ N.

2. E∗n satisfies D1–D5 for all n ∈ N.

We can now characterise under which conditions En
coincides with the B-conglomerable natural extension,
in terms of the desirability axioms:

Proposition 3. The following conditions are equival-
ent for any natural number n ≥ 0:

1. E∗n ⊆ En.

2. En satisfies D5.

3. F = En.
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This simple result has interesting consequences: on the
one hand, if En is not the B-conglomerable natural
extension of R, then there must be some gamble f in
E∗n \ En, and as a consequence En is a proper subset of
En+1. In other words, the sequence En does not stabilise
unless we get to the B-conglomerable natural extension.
On the other hand, if E∗n = E∗n+1 for some n then E∗n+1

is included in En+1, and Proposition 3 implies that
En+1 is the B-conglomerable natural extension of R.
Hence, we can use both sequences to determine at
which step we get to F : En = F if E∗n−1 = E∗n, and
also if and only if En = En+1.

Next we provide a sufficient condition for E1 to coincide
with F :

Proposition 4. Let R be a set of desirable gambles
satisfying D1–D4, and assume that its B-conglomerable
natural extension F exists.

1. (∀f ∈ R)(∀B ∈ B)Bf ∈ R ∪ {0} ⇔ R∗ = F ⇔
R ⊆ R∗.

2. If there is some superset Q of R satisfying D1–D5
and such that Q∗ = R∗, then E1 = F .

As a consequence, when R is included in R∗ the se-
quence En stabilises in the first step: E1 = F .

Let us give an example showing that the inclusion
R ⊆ R∗ does not imply that R = R∗, or, equivalently,
that we may have R ( E1 = F :
Example 2. Consider Ω = N, Bn := {2n − 1, 2n} and
B := {Bn : n ∈ N}. Let R be the set of gambles f for
which there is some nf ∈ N such that

f(nf →)  0 and

f(2n) + f(2n− 1) ≥ 0 and f(2n) ≥ 0 for all n ∈ N,

where (nf →) := {nf , nf+1, . . . }. Then R satisfies D1–D4:

D1. Any f  0 belongs to R by definition: take nf = 1.

D2. 0 /∈ R by definition.

D3. Let f ∈ R and λ > 0. Then there is some nf ∈ N such
that f(nf →)  0, f(2n) + f(2n− 1) ≥ 0 and f(2n) ≥ 0
for all n ∈ N, whence (λf)(nf →) = λ(f(nf →))  0,
(λf)(2n) + (λf)(2n− 1) = λ(f(2n) + f(2n− 1)) ≥ 0 and
λ(f(2n)) ≥ 0 for all n ∈ N. Since moreover λf 6= 0 because
f 6= 0 and λ > 0, we conclude that λf ∈ R.

D4. Let f, g ∈ R. Then there are nf , ng ∈ N such
that f(nf →) ≥ 0 and g(ng →) ≥ 0, whence given
n∗ := max{nf , ng}, we infer that (f + g)(n∗ →)  0.
On the other hand, (f + g)(2n) + (f + g)(2n − 1) =
f(2n)+g(2n)+f(2n−1)+g(2n−1) ≥ 0 and (f+g)(2n) ≥ 0
for all n ∈ N, whence also f + g ∈ R.

To see that R ⊆ R∗, observe that given a gamble f ∈ R
and Bn ∈ B, Bn(f(2m)+f(2m−1)) ≥ 0 and Bn(f(2m)) ≥
0 for all m ∈ N. Moreover, if Bnf = 0 then automatically

Bnf ∈ R ∪ {0}; and if Bnf 6= 0 then either f(2n) > 0, in
which case Bnf ∈ R by letting nBnf = 2n, or f(2n) = 0,
in which case f(2n − 1) > 0 and Bnf ∈ R by letting
nBnf = 2n− 1.

However, R does not satisfy D5, and as a consequence it
does not coincide with R∗: the gamble g given by g(2n) =
1, g(2n− 1) = −1 for all n does not belong to R because
there is no natural number ng for which g(ng →)  0. On
the other hand, for every natural number n, Bng does
belong to R: consider nBng = 2n. Therefore g ∈ R∗. �

This example also allows us to show that conditions D5
and WD5 are not equivalent:
Example 3. Consider the set R from Example 2. We have
already shown there that R does not satisfy D5. To see
that it satisfies WD5, observe that given a gamble f and
Bn ∈ B, Bnf belongs to R ∪ {0} if and only if Bnf ≥ 0,
because there is no δ > 0 such that Bnf − δ ∈ R. As
a consequence, (∀Bn ∈ B)Bnf ∈ R ∪ {0} implies that
0 ≤ f ∈ R. �

The same example shows us something else: even if the
gambles that violate D5 are only on the border of R,
taking the closure of R with respect to D5 will require
us in general to enlarge the set beyond its border.
Example 4. Consider set R and gamble g from Example 2.
Taking into account the observations in Example 3, there is
no δ > 0 such that Bng−δ ∈ R, because this gamble is not
positive, and on the other hand, we know that Bng ∈ R.
This means that Bng ∈ R\R ⊆ R\R for all Bn ∈ B. Now
consider any δ ∈ (−1, 0), and observe that g − δ /∈ R: in
fact, g(2n− 1)− δ < 0 for all n ≥ 1, so there is no ng ∈ N
such that (g− δ)(ng →) ≥ 0. On the other hand, g+ 1  0
and hence belongs to R. This means that

sup
{
µ : g − µ ∈ R

}
= sup {µ : g − µ ∈ R} = −1,

and therefore g /∈ R. �

It is an open problem whether the sequence En always
stabilises in a finite number of steps, and, if it does not,
whether the sequence limit

⋃
n∈N En always coincides

with the B-conglomerable natural extension F of R.

4 Conglomerability for Coherent
Lower Previsions

We now turn to the relationship between the natural
extension studied in Ref. [11, Chapter 8] and the con-
glomerable natural extension, which we define next.
Throughout this section, B is a partition of Ω.
Definition 3. Let P be a coherent lower prevision on K.
Its B-conglomerable natural extension is the smallest
coherent lower prevision F on L that dominates P
and is B-conglomerable.

There may be no dominating B-conglomerable coher-
ent lower prevision, and then the B-conglomerable
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natural extension will not exist. On the other hand,
if there is some dominating B-conglomerable coher-
ent lower prevision, then there is a B-conglomerable
natural extension, because B-conglomerability is pre-
served by taking lower envelopes.

We may assume without loss of generality that the
domain K of P is the set L of all gambles: otherwise,
it suffices to consider the natural extension E of P to
L. To see that the B-conglomerable natural extensions
of P and E coincide, denote these by F 1 and F 2,
respectively. Trivially F 2 ≥ F 1. Conversely, F 1 is by
definition a B-conglomerable coherent lower prevision
that dominates P on K, and therefore also dominates
its natural extension E. Hence F 1 ≥ F 2 as well.

Given a coherent lower prevision P , Walley defines its
conditional natural extension as

P (f |B) :=

{
sup {µ : P (B(f − µ)) ≥ 0} if P (B) > 0
infω∈B f(ω) otherwise

(5)
for every f ∈ L and B ∈ B. In fact, when P (B) > 0
then P (f |B) is to the unique value of µ such that
P (B(f − µ)) = 0, i.e., for which (GBR) is satisfied.

From Theorem 6.8.2 in Ref. [11], P is B-conglomerable
if and only if it is coherent with the conditional lower
prevision P (·|B) derived from P by natural extension.
In Ref. [11, Section 6.6], Walley gives a number of
examples of coherent lower previsions that are not
B-conglomerable. We give a sufficient condition for
conglomerability:
Proposition 5. If the conditional natural extension
P (·|B) of P is given by P (f |B) = infω∈B f(ω) for all
B ∈ B and f ∈ L, then P is B-conglomerable, and so
is any Q ≤ P .

When P is not B-conglomerable, we can consider the
natural extensions E, E(·|B) of P , P (·|B), determined
by Theorem 8.1.5 in Ref. [11]:

E(f) := sup
g,h∈L

sup
{
µ : f − µ ≥ GP (g) +GP (h|B)

}
,

and it can be checked that E(·|B) coincides with the
conditional natural extension of E: it can be obtained
using Eq. (5).
Proposition 6. The natural extension E of P and
P (·|B) is dominated by the B-conglomerable natural
extension F of P . They coincide if and only if E
and E(·|B) are coherent. Moreover, if we let Q :=
P (P (·|B)), we have

M(E) =
{
P ∈M(P ) : (∀f ∈ L)P (GP (f |B)) ≥ 0

}

=M(P ) ∩M(Q).

As a consequence, if Q ≥ P , then Q coincides with E
and it is the B-conglomerable natural extension of P .

Next we show that E does not necessarily coincide
with the conglomerable natural extension:
Example 5. Consider Ω := N∪−N, Bn := {−n, n} and let
B be the partition of Ω given by B := {Bn : n ∈ N}. Let
P be a finitely additive probability on P(N) that satisfies
P ({n}) = 0 for every n (it follows from Ref. [9] that P is
not conglomerable), and consider the linear previsions P1,
. . . , P4, where P1 is the expectation functional associated
with the σ-additive probability measure with

P1({n}) = P1({−n}) =
1

2n+1
for all n ∈ N

and P2, P3 and P4 are given, by

P2(h) =
1

2

∞∑
n=1

h(n)
1

2n
+

1

2
P (h2)

P3(h) =
3

4
P (h1) +

1

4
P (h2)

P4(h) =
1

2
P1(h) +

1

2
P3(h),

where for every h ∈ L the gambles h1, h2 are defined on N
by h1(n) := h(n) and h2(n) := h(−n) for every n ∈ N.

First, we consider the coherent lower prevision P :=
min{P1, P2, P4}. Since

P (Bn) = min

{
1

2n
,

1

2n+1
,

1

2n+1

}
> 0

for all n ∈ N, we see that for every gamble f :

P (f |Bn) = min

{
f(n),

f(n) + f(−n)

2

}
. (6)

To see that P is not B-conglomerable, consider the gamble
f given by

f(n) := 1− 1

n
and f(−n) := −f(n) for all n ∈ N.

It follows from Eq. (6) that P (f |Bn) = 0 for every n,
whence GP (f |B) = f . On the other hand,

P (GP (f |B)) ≤ P2(f) =

∞∑
n=1

1

2n+1
(1− 1

n
)− 1

2
< 0,

taking into account that P2(−Nf) := 1
2
P (f2) = − 1

2
.

Next we show that P4(GP (h|B)) ≥ 0 for every gamble h.
Note first of all that

GP (h|B)(n) =

0 if h(n) ≤ h(−n)
h(n)− h(−n)

2
otherwise

GP (h|B)(−n) =

h(−n)− h(n) if h(n) ≤ h(−n)
h(−n)− h(n)

2
otherwise.

As a consequence, GP (h|Bn) ≥ 0 when h(n) ≤ h(−n),
and this means that P4(GP (h|B)) ≥ P4(GP (h|B)C),
where C :=

⋃ {Bn : h(n) ≥ h(−n)}. On the other hand,
GP (h|B)(n) = −GP (h|B)(−n) ≥ 0 for every n ∈ C, so

P4(GP (h|B)C) = 0 +
1

2
P3(GP (h|B)C)
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and

P3(GP (h|B)C) =
3

4
P (h′)− 1

4
P (h′) ≥ 0,

where h′ is the non-negative gamble on L(N) given by
h′(n) := GP (h|B)(n)C(n), and where the second term on
the right-hand side follows from the definition of P3.

To determine the natural extension E of P and P (·|B), we
apply Proposition 6. First of all, for every linear prevision
Q ∈ M(P ), there are α1, α2 and α4 ∈ [0, 1] such that
α1 + α2 + α4 = 1 and Q = α1P1 + α2P2 + α4P4. We
are going to check which of these combinations satisfies
Q(GP (f |B)) ≥ 0 for every gamble f . On the one hand,
if α2 = 0 then Q belongs to M(E), since we have just
proven that P4 dominates E and P1 is conglomerable.
Assume now that α2 > 0, and consider an arbitrary gamble
f . As before, since GP (f |B) ≥ GP (f |B)C, where C :=⋃ {Bn : f(n) ≥ f(−n)}, we can concentrate on gambles f
such that f(n) ≥ f(−n) for every n ∈ N. In that case, if we
denote h := GP (f |B), it holds that h1 ≥ 0 and h2 = −h1.
As a consequence,

Q(h) = α1P1(h) + α2P2(h) + α4P4(h)

= α2P1(hN) + P (h1)(
1

4
α4 − 1

2
α2).

When α4 ≥ 2α2 > 0, we deduce from the non-negativity
of hN (and as a consequence of h1) that Q(h) ≥ 0 and
therefore Q ∈ M(E). When α4 < 2α2, there is some
natural number n∗ such that

1

2n∗
<

1
2
α2 − 1

4
α4

α2
.

We consider the gamble f given by f(n) := 0 for n ≤
n∗, f(n) := 1 for n > n∗ and f(−n) := −f(n) for all
n ∈ N. Then h = GP (f |B) = f , and using the equation
above we obtain P1(hN) = 1

2(n∗+1) and P (h1) = 1. As a

consequence, Q(h) = α2P1(hN) + P (h1)( 1
4
α4 − 1

2
α2) < 0,

since by construction P1(hN) <
1
2α2− 1

4α4
α2

.

We deduce from all this that E is the lower envelope of the
set {P1, P4,

1
3
P2 + 2

3
P4}, and as a consequence it induces

the conditional lower prevision E(·|B) determined by

E(f |Bn) = min

{
f(n) + f(−n)

2
,

2f(n) + f(−n)

3

}
. (7)

To see that E is not B-conglomerable, consider any gamble
g such that g(n) ≤ g(−n) for all n ∈ N, then Eq. (7) yields

E(g|Bn) =
2g(n) + g(−n)

3
,

and consequently

GE(g|Bn)(n) =
g(n)− g(−n)

3
,

GE(g|Bn)(−n) =
2g(−n)− 2g(n)

3
.

Thus, given h := GE(g|B) we obtain h2 = −2h1 ≥ 0,

whence

P4(h) =
1

2
P1(h) +

3

8
P (h1) +

1

8
P (h2)

=
1

2
(P1(hN) + P1(h−N)) +

1

8
P (h1)

= −1

2
P1(hN) +

1

8
P (h1).

Now, if we make for instance P (h1) < 4P1(hN), as is the
case for g(n) := g(−n) := 0 for n = 1, 2 and g(n) := −1
and g(−n) := 1 for n > 2, then we get P4(GE(g|B)) < 0,
whence E(GE(g|B)) < 0. Hence, E is not B-conglomerable,
and therefore it does not coincide with the conglomerable
natural extension F , which exists because P1 ≥ P is B-
conglomerable. �

On the other hand, we can give a number of sufficient
conditions for E to be B-conglomerable.
Proposition 7. If the conditional natural extension
derived from P is linear and the B-conglomerable nat-
ural extension F exists, then it coincides with the
natural extension E of P and P (·|B). More generally,
if there is a coherent lower prevision Q ≥ P that is
coherent with the conditional lower prevision P (·|B)
derived from P using natural extension, then the nat-
ural extension E of P and P (·|B) coincides with the
B-conglomerable natural extension F .

Hence, if P is not B-conglomerable, we can consider
the natural extension E of P and P (·|B). If then E
is not B-conglomerable, we can consider the natural
extension E1 of E and E(·|B), and so on. Our next
result shows that the resulting sequence En of coherent
lower previsions does not stabilise unless we get to a
B-conglomerable coherent lower prevision.
Proposition 8. If P is not B-conglomerable, then it
does not coincide with the natural extension E of P
and P (·|B). On the other hand, if E(·|B) = P (·|B)
then E is B-conglomerable.

The sequence En is increasing and therefore converges
to a coherent lower prevision E∞, which by construc-
tion is dominated by the B-conglomerable natural ex-
tension F of P : it suffices to use induction on n and to
take into account that at each step n, En+1 is a lower
bound of any coherent extension of En and En(·|B),
and is therefore bounded by the B-conglomerable nat-
ural extension F . It is an open problem whether the
two coherent lower previsions E∞ and F coincide, and
also to find an example where En does not coincide
with F∞ for any n, i.e., where we cannot get to the
B-conglomerable natural extension in a finite number
of steps.

5 Connecting the Two Approaches

The correspondence between sets of desirable gambles
and coherent lower previsions we have summarised
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in Section 2 does not extend towards the notion of
B-conglomerable natural extension we have discussed
in Sections 3 and 4. The reason is that in our defin-
ition of the B-conglomerable natural extension of a
set of gambles we are using condition D5, while the
B-conglomerable natural extension for coherent lower
previsions is based on condition WC, which is equival-
ent to WD5, and therefore weaker than D5 in general.
We now exhibit all this in more detail.

Let R be a set of desirable gambles satisfying D1–D4,
and let P be its associated coherent lower prevision,
given by Eq. (3). If R does not satisfy D5, then we can
consider the increasing sequence of sets of desirable
gambles En, defined by means of Eq. (4). From each
of these sets of desirable gambles we can induce a
coherent lower prevision Pn, again by means of Eq. (3).
At the same time, we can consider the sequence En of
coherent lower previsions derived from P in the manner
discussed in Section 4: E1 is the natural extension of
P and P (·|B), where P (·|B) is the conditional natural
extension of P ; E2 is the natural extension of E1 and
E1(·|B); and so on.

Proposition 9. En(f) ≤ Pn(f) for all f ∈ L.

However, En and Pn do not coincide in general:
Example 6. Consider the set of desirable gambles R from
Example 2, and let P be its associated coherent lower pre-
vision. We have shown in Example 3 that R satisfies WD5,
so Theorem 1 implies that P is B-conglomerable, and in
particular E1(f) = P (f) for every f . On the other hand,
we have seen in Example 2 that R does not satisfy D5,
and in particular that the gamble g = even− odd belongs
to R∗ \ R. Moreover, we have seen in Example 4 that
sup {µ : g − µ ∈ R} = −1. From all this, we infer that

P 1(g) ≥ 0 > −1 = sup {µ : g − µ ∈ R} = P (f) = E1(f).

This shows that the inequality in Proposition 9 may be
strict. �

The reason for this lies in the next result:

Proposition 10. Pn is the natural extension of Pn−1

and P ′n−1(·|B), where P ′n−1(·|B) is derived from the
set En−1 by

P ′n−1(f |B) := sup {µ : B(f − µ) ∈ En−1} (8)

for all f ∈ L and B ∈ B.

P ′n−1(·|B) satisfies (GBR) with respect to Pn−1: given
a gamble f and a set B ∈ B, then for all ε > 0,

Pn−1(GP ′n−1
(f |B) + ε)

≥ Pn−1(B(f − P ′n−1(f |B) + ε)) ≥ 0,

whence Pn−1(GP ′n−1
(f |B)) ≥ −ε for every ε > 0 and

therefore Pn−1(GP ′n−1
(f |B)) ≥ 0. Conversely, if there

is some ε > 0 such that Pn−1(GP ′n−1
(f |B)) ≥ ε, then

the gamble GP ′n−1
(f |B)) − ε

2 must belong to En−1,
and therefore also the gamble B(f − P ′n−1(f |B)− ε

2 ),
which is greater. But this means that we can increase
the value P ′n−1(f |B) by ε

2 > 0, a contradiction with
Eq. (8). As a consequence, P ′n−1(·|B) can strictly dom-
inate the conditional natural extension Pn−1(·|B) of
Pn−1 only when some of the conditioning events have
lower probability zero.

From Proposition 9, we can infer the following:
Proposition 11. Let R be a coherent set of strictly
desirable gambles, and let P be its associated coherent
lower prevision. Then P 1 = E1. As a consequence, if
E1 is the B-conglomerable natural extension of R, then
E1 is the B-conglomerable natural extension of P .

Note however that the number of steps necessary to
compute the B-conglomerable natural extension can
be different in the two cases, as Example 6 shows.

As a consequence of Proposition 11, if E1 is not B-
conglomerable, then E1 does not satisfy D5, provided
we start from a set of strictly desirable gambles. Using
this, we give an example where the sequence of sets
En does not stabilise at the first step:
Example 7. Consider the coherent lower prevision P from
Example 5 and let R be its associated set of strictly desir-
able gambles. We have shown in Example 5 that the natural
extension E of P and P (·|B) is not B-conglomerable, and
therefore it does not coincide with the B-conglomerable
natural extension of P . Applying Proposition 11, we deduce
that E1 cannot be the B-conglomerable natural extension
of R, and therefore the sequence En does not stabilise at
the first step. �

Next we give another sufficient condition for the two
sequences of coherent lower previsions to coincide:
Proposition 12. If P (B) > 0 for all B ∈ B, then
Pn(f) = En(f) for all f ∈ L.

The intuition behind this result is that when the con-
ditioning events have all positive lower probability,
then the corresponding conditional lower prevision is
uniquely determined by (GBR), and then it necessarily
coincides with the natural extension of the uncondi-
tional. It implies the following:
Corollary 1. If P (B) > 0 for all B ∈ B and En is
the B-conglomerable natural extension of R, then En

is the B-conglomerable natural extension of P .

The condition P (B) > 0 for every B ∈ B does not
imply that the sequence stabilises at the first step, as
Example 5 shows. On the other hand, the sequences
En and En need not stabilise at the same time: there
are examples where R satisfies WD5, so the associated
coherent lower prevision P is B-conglomerable, but it
does not satisfy D5, so R is strictly included in E1.
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6 The Case of More Partitions

Next we consider a finite number of sets R1, . . . , Rm,
where Ri satisfies D1–D5 with respect to a partition
Bi, and we look for the smallest superset F , if it exists,
that satisfies D1–D5 with respect to all partitions in
B := {B1, . . . ,Bm}.
We first show that conglomerability with respect to the
partitions B1, . . . , Bm is equivalent to conglomerability
with respect to all partitions that can be derived from
them. Let us define B′ as the (finite) set of partitions
B such that

(∀B ∈ B)(∃j ∈ {1, . . . ,m})B ∈ Bj .

Proposition 13. Let R be a set of gambles satisfy-
ing D1–D4. If it satisfies D5 (resp. WD5) with re-
spect to all partitions in B, then it also satisfies D5
(resp. WD5) with respect to all partitions in B′.

Taking into account Proposition 1, we can show:
Proposition 14. If there is a set of gambles
that includes

⋃m
i=1Ri and satisfies D1–D4 and D5

(resp., WD5) with respect to all partitions in B, then
the smallest such set is given by the intersection of all
sets that do so.

On the other hand, if we consider the notion of con-
glomerability for coherent lower previsions, this time
with respect to a finite number of partitions, we can
make a link with the property of weak coherence stud-
ied in Ref. [11, Section 7.1]:
Proposition 15. Let P be a coherent lower prevision
on L. The following statements are equivalent:

1. P is B-conglomerable for all B ∈ B.

2. P is B-conglomerable for all B ∈ B′.
3. There are conditional lower previsions P 1(·|B1),

. . . , Pm(·|Bm) that are weakly coherent with P .

6.1 The Marginal Extension Theorem

We next prove that when the partitions are nested,
the sequence stabilises after one step. This is a version
in terms of sets of desirable gambles of the Marginal
Extension Theorem 6.7.2 established in Ref. [11] and
generalised to any finite number of partitions in Ref. [6].
In a different context, using different notations, this
result was also proved (in a different manner) by De
Cooman and Hermans [1, Theorem 3]. To proceed, we
need to introduce a number of definitions:
Definition 4. Let B be a partition of Ω. A gamble f
on Ω is called B-measurable when it is constant on the
elements of B. The set of all B-measurable gambles is
denoted by G(B).

Definition 5. Let Q be a linear subspace of gambles
containing all constant gambles, and let R ⊆ Q. We
say thatR is coherent relative to Q if it satisfies D2–D4
and

D1*. if f ∈ Q and f  0 then f ∈ R.

When Q = L, this reduces to the usual coherence
notion characterised by axioms D1–D4.

We begin by establishing our result for the case of one
partition only.

Proposition 16. Let R0 be a set of desirable gambles
coherent relative to G(B). For each B ∈ B, let R|B
be a coherent set of desirable gambles on L(B). The
B-conglomerable natural extension of R0 and R|B,
B ∈ B, is the set F given by
{
f +

∑

B∈B
BgB : f ∈ R0 ∪{0}, gB ∈ R|B ∪{0}

}
\ {0}.

Proof. Let us show that F satisfies D1–D5:

D1. Consider h  0. Write it as h =
∑
B∈B : Bh6=0Bh =∑

B∈B : Bh6=0BgB , where gamble gB ∈ L(B) is defined by
gB(ω) := h(ω) for all ω ∈ B. Since gB  0, it belongs to
the coherent set R|B. Hence h belongs to F .

D2. We know that 0 /∈ F by definition.

D3. Consider h ∈ F and λ > 0. We know that λh =
λf +

∑
B∈B BλgB . Since G(B) is a linear space containing

all constant gambles, and R0 is coherent relative to it, it
follows that λf ∈ R0 ∪ {0}; moreover, λgB ∈ R|B ∪ {0},
because R|B is a coherent set. It follows that λh ∈ F .

D4. Consider h, h′ ∈ F . Then h+h′ = f+f ′+
∑
B∈B B(gB+

g′B), where f, f ′ ∈ R0 ∪ {0} and gB , g
′
B ∈ R|B ∪ {0}. For

analogous reasons as in the previous step, it holds that
f + f ′ ∈ R0 ∪{0} and gB + g′B ∈ R|B∪{0}. From this, we
obtain that h+h′ ∈ F , provided that h+h′ 6= 0. To see that
this is indeed the case, assume that h+ h′ = 0; then either
0 = f + f ′ or f + f ′ 6= 0. In the first case, the coherence of
R0 implies that f = f ′ = 0, and similarly since gB+g′B = 0
for every B we should have that gB = g′B = 0 for all B.
But then h = h′ = 0, a contradiction. In the second case,
0 6= f+f ′ = −∑B∈B B(gB+g′B). Taking into account that
f+f ′ is B-measurable, there must be some B ∈ B such that
B(f + f ′)  0: otherwise f + f ′ ≤ 0 and R0 would incur
partial loss. But on such a B we obtain that gB + g′B � 0,
so R|B would incur partial loss, a contradiction.

D5. Consider 0 6= h ∈ L such that Bh ∈ F ∪ {0} for all
B ∈ B. We focus on the case Bh 6= 0, where it holds
that Bh = f +

∑
B∈B BgB . If f = 0, then Bh = BgB . If

f 6= 0, then consider B′ ∈ B such that B′ 6= B. Bh is
zero on B′, and hence B′f + B′gB′ = 0. Now, recalling
that f is B-measurable, it is only possible that f < 0
on B′: otherwise, R|B′ would incur partial loss. Since we
can repeat this reasoning for all B′ 6= B, we deduce that
f > 0 on B, as otherwise R0 would incur partial loss. In
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other words, f is a positive constant, say kB , on B. Then
gB + kB ∈ R|B, so that if we re-define gB := gB + kB ,
we obtain that Bh = BgB . Thus, h =

∑
B∈B : Bh6=0Bh =∑

B∈B : Bh6=0BgB ∈ F .

Since F is included in any superset of R0 ∪ R|B satisfy-
ing D1–D5, this completes the proof.

The result also holds for a finite number of partitions.

Proposition 17. Let B1, . . . ,Bn be partitions of Ω
such that Bi+1 is finer than Bi for i = 1, . . . , n−1. Let
R0 be a set of desirable gambles coherent relative to
G(B1). For each i = 1, . . . , n− 1 and each Bi ∈ Bi, let
Bi+1|Bi := {Bi+1 ∈ Bi+1 : Bi+1 ⊆ Bi} and Ri|Bi be
a coherent set of desirable gambles on L(Bi) relative
to G(Bi+1|Bi). Finally, for each Bn ∈ Bn, let Rn|Bn

be a coherent set of desirable gambles on L(Bn). The
conglomerable natural extension Fn of R0 and Ri|Bi,
Bi ∈ Bi, is given by

{
f0 +

n∑

i=1

∑

Bi∈Bi

BigBi :

f0 ∈ R0 ∪ {0}, gBi ∈ Ri|Bi ∪ {0}
}
\ {0}.

7 Conclusions

We have studied the extension of desirability and prob-
abilistic assessments under the requirement of conglom-
erability. Our main finding is that taking the natural
extension while imposing conglomerability (which is
the procedure adopted in Walley’s theory), does not
yield the conglomerable natural extension in general
(but it does so in the case of the Marginal Extension
Theorem); and that although iterating that process
yields models ever closer to it, it is an open problem
whether or not the conglomerable natural extension is
achieved in the limit, or whether the limit is achieved
in a finite number of steps. Future work could con-
sist in (i) addressing these problems, and extending
everything to the case of multiple partitions; (ii) de-
fining a new coherence notion that follows from the
conglomerable natural extension; (iii) investigating
the relationship between such an extension and envel-
ope theorems; and (iv) more generally, investigating
whether the conglomerable natural extension always
allows the most informative conclusions to be drawn.
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Abstract 
 
Game-theoretic solution concepts such as Nash 
equilibrium are commonly used to model strategic 
behavior in terms of precise probability distributions over 
outcomes.  However, there are many potential sources of 
imprecision in beliefs about the outcome of a game:  
incomplete knowledge of payoff functions, non-
uniqueness of equilibria, heterogeneity of prior 
probabilities, unobservable background risk, and 
distortions of revealed beliefs due to risk aversion, 
among others. This paper presents a unified approach for 
dealing with these issues, in which the typical solution of 
a game is a convex set of probability distributions that, 
unlike Nash equilibria, may be correlated between 
players.  In the most general case, where players are risk 
averse, the probabilities do not represent beliefs alone. 
Rather they must be interpreted as products of subjective 
probabilities and relative marginal utilities for money.  
 
Keywords:  coherence, previsions, lower and upper 
probabilities, correlated equilibrium, risk neutral 
probabilities, risk neutral equilibrium 
  
1   Introduction 
 
Game theory occupies the increasingly large middle 
ground of rational choice theory:   the problem of  “2, 3, 
4… bodies” in which agents must reason about the 
strategic behavior of other rational agents as well as 
reflect on their own preferences and compete in markets.   
The modeling of interactive decisions of this kind 
requires some special tools and assumptions.   First, the 
rules of the game are (in the most general case) 
parameterized in units of utility rather than money or 
goods in order to allow for differences in tastes and 
attitudes toward risk.  Second, the utility functions of 
different players are assumed to be common knowledge, 
enabling them to model each other’s decisions as well as 
their own, and to all know that they can all do this, and 
so on.  Third, common knowledge of rationality and 
common knowledge of the rules of the game are assumed 

to lead to an equilibrium, usually a Nash equilibrium or 
one of its refinements or extensions, in which the 
decision of each player is individually rational given the 
decisions simultaneously made by the other players, and 
randomization (if any) is performed independently.  And 
fourth, when there is uncertainty about any of the game 
parameters, the beliefs of the players are assumed to be 
consistent with a common prior distribution, which 
generates an infinite hierarchy of mutually consistent 
reciprocal beliefs.  In applications these assumptions are 
usually applied at maximum strength in order to tightly 
(often uniquely) constrain the solution, yet all of them 
are open to question.   This paper will pursue some of 
these questions and show how they lead to solutions that 
are characterized by exactly the same rationality 
conditions as individual decisions and competitive 
markets.  Their common priors and equilibria are 
generally expressed in terms of imprecise probabilities 
that need not satisfy an independence condition and do 
not always represent the players’ true subjective beliefs. 
 
The approach to modeling games that will be used in this 
paper follows that of Nau and McCardle (1990) and Nau 
(1992), which is just a multi-player extension of de 
Finetti’s operational approach to defining subjective 
probabilities, which in turn is a microcosm of a financial 
market.   It lends itself naturally to modeling imprecise 
probabilities; in fact, its behavioral primitives are 
assertions of lower and upper bounds on probabilities 
and expectations 
 
2   Imprecise subjective probabilities 
 
Virtually all of the fundamental theorems of rational 
choice theory—subjective probability, expected utility, 
subjective expected utility, asset pricing, welfare 
economics, cardinal utilitarianism, and non-cooperative 
games—are duality theorems that can be proved by using 
a separating hyperplane argument.  In the versions of 
these theorems that involve finite sets of states and/or 
consequences, it is a variant of Farkas’ lemma, the basis 
of the duality theorem of linear programming: 

297



LEMMA 1:  For any matrix G, either there exists a non-
negative vector α such that α ∑ G < 0 or else there exists 
a non-negative vector π such that G π ≥  0, π ≠ 0. 
 
LEMMA 2:  For any matrix G, either there exists a non-
negative vector α such that α ∑ G ≤ 0 and [α ∑ G]k < 0 or 
else there exists a non-negative vector π, with πk > 0, 
such that G π ≥  0. 
 
De Finetti’s (1974) “fundamental theorem of 
probability,” as it applies to imprecise probabilities and 
expectations, can be proved as follows, using the 
language of financial markets.  Consider an agent (“she”) 
who is uncertain about which element of a finite set S of 
states of the world will occur.  Let N denote the number 
of states and let x denote an asset, which is an N-vector 
of payoffs assigned to states.  The agent’s lower 
prevision for  x is the price P(x) that she is publicly 
willing to pay per unit of x in arbitrary (but small) 
quantities chosen by someone else.  This means that for 
any small positive number α chosen by an observer 
(“he”), the agent will accept a bet whose payoff vector 
for her is  α(x − P(x)), with the opposite payoffs to the 
observer.1  For example, if N=3, x = (3, 1, −2), and P(x) 
= 1.4, the agent will accept a bet whose payoff vector for 
her is (1.6α, −0.4α, −3.4α) for any small positive α 
chosen by the observer.  A lower prevision for an asset 
may be considered as a lower expectation, i.e., a lower 
bound on its subjective expected value for the agent.   In 
the special case where x is a binary vector that is the 
indicator of an event, its prevision is a lower probability 
for the event.   
 
Lower previsions can also be assessed conditionally.  If x 
is the payoff vector of an asset and e is the indicator 
vector of an event, the agent’s conditional lower 
prevision for x given e is the price P(x|e) that she is 
publicly willing to pay per unit of x in arbitrary (but 
small) multiples chosen by an observer, subject to the 
condition that the bet will be called off if e does not 
occur.  This means that the agent will agree to accept a 
bet whose payoff vector for her is  α(x − P(x|e))e, for 

                                                           
1 Notational conventions:  Lower-case boldface letters such as x and  e  
are used interchangeably for payoff vectors of assets and indicator 
vectors of events as well as for their proper names (e.g., “event e” is the 
event whose indicator vector is e). In the expression α(x − P(x)), x is a 
vector and α and P(x) are scalars, and the multiplication and 
subtraction are performed pointwise, yielding a vector whose nth 
element is α(xn − P(x)).  If x and y are vectors of the same length, then 
xy denotes their pointwise product (another vector of the same length), 
and x ∏ y denotes their inner product (a scalar).  If G is a matrix and x 
and y  are vectors of appropriate length, then x ∏ G and G y denote 
matrix multiplication of G by x on the left or by y on the right, yielding 
vectors.  If π is a probability distribution on states and x is a payoff 
vector and e is an indicator vector for an event, then Pπ(x) is the 
corresponding expected value of x and Pπ(e) is the probability of e, i.,e.  
Pπ(x) = π  ∏ x and Pπ(e) = π  ∏ e.  Pπ(x|e) denotes the conditional 
expectation of x given the occurrence of e that is determined by π, i.e, 
Pπ(x|e) = Pπ(xe)/Pπ(e) provided that Pπ(e) > 0. 

any small positive α.  To continue the previous example, 
if e = (1, 1, 0), i.e., the indicator for the event in which 
either state 1 or state 2 occurs, and P(x|e) = 2.1, the agent 
will accept a bet whose payoff vector for her is (0.9α, 
−1.1α, 0).  In the special case where P(x|e) = 0, the agent 
is willing to pay zero for x conditional on e, i.e.,  she will 
accept a small bet whose payoff vector is proportional to 
x conditional on the occurrence of e.  This is equivalent 
to an unconditional bet with payoffs proportional to xe. 
 
It remains to show that rational lower previsions satisfy 
the laws that ought to be satisfied by lower bounds on 
probabilities and expectations.  Suppose that the agent 
assigns a conditional lower prevision P(xm|em) to asset xm 
given the occurrence of event em, m = 1,…, M, subject to 
the further requirement that  bets on different events are 
additive, which is the way a bookmaker or financial 
market normally operates.  For example, if the agent 
simultaneously assigns lower previsions P(x1|e1) and 
P(x2|e2) to asset x1 conditional on event e1 and asset x2 
conditional on event e2, this means that for any positive 
real numbers α1 and α2 chosen by the observer, she will 
accept a bet whose payoff for her in state n is  
α1(x1n − P(x1|e1))e1n + α2(x2n − P(x2|e2))e2n, where xmn and 
emn denote the values of xm and em in state n for m = 1, 2. 
 
The agent is rational ex ante if her previsions do not 
expose her to arbitrage, i.e., if the opponent is not able to 
make a riskless profit through a clever combination of 
bets.  She is rational ex post in state k if they do not allow 
the opponent to earn a riskless profit if state k occurs.  
These rationality conditions are called “coherence” and 
“ex post coherence,” respectively.  More precisely: 
 
DEFINITION:  The conditional lower previsions 
{P(x1|e1), …, P(xM|eM)} are coherent if  there do not exist 
non-negative numbers {α1, …, αM} such that 

1
( ( | )) 0  αM

m mn m m mnm
x P e n

=
− < ∀∑ x e , i.e., the payoff to 

the agent is strictly negative in all states.  They are ex 
post coherent in state k if and only if there do not exist 
non-negative numbers {α1, …, αM} such that 

1
( ( | ) 0  αM

m mn m m mnm
x P e n

=
− ≤ ∀∑ x e  with strict inequality 

when n = k, i.e., the agent’s payoff is surely non-positive 
and strictly negative in state k.  
  
Coherence entails ex post coherence in at least one state.  
 
THEOREM 1 (de Finetti and others): The conditional 
lower previsions {P(x1|e1), …, P(xM|eM)} are coherent 
[ex post coherent in state k] if and only if there exists a 
non-empty convex set ÷ of probability distributions on 
states of the world [satisfying πk > 0] such that, for all m 
and all π œ ÷,  Pπ(xm|em)  ≥  P(xm|em)  or else Pπ(em) = 0. 
 
Proof:  Let G denote the matrix whose mth row is the 
vector (xm − P (xm|em))em of payoffs to the agent for the 
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conditional bet determined by the assignment of 
prevision P (xm|em)  to asset xm conditional on event em.   
The conditional lower previsions {P(x1|e1),…, P(xM|eM)} 
are coherent if and only if there does not a exist non-
negative vector α such that α ∑ G < 0.  By Lemma 1, this 
is true if and only there exists a non-negative vector π 
such that G  π ≥ 0,  π ≠ 0, which can be normalized so that 
its elements sum to 1, a probability distribution.  The 
condition  G π ≥ 0 means Pπ((xm − P(xm|em))em) ≥ 0, or 
equivalently Pπ(xmem) ≥ P(xm|em))Pπ(em), for all m.  This 
is trivially true if Pπ(em) = 0, because both sides are zero.  
If Pπ(em) > 0, it rearranges to Pπ(xmem)/Pπ(em) ≥ P(xm|em), 
which by definition means Pπ(xm|em) ≥ P(xm|em).  The 
corresponding result for ex post coherence in state k 
follows by applying Lemma 2 in place of Lemma 1.  É 
 
Coherent lower previsions therefore have the properties 
of lower probabilities and expectations determined by a 
convex set of probability distributions, which can be 
interpreted to represent the possibly-imprecise beliefs of 
the agent, if she has linear utility for money. 
 
An under-appreciated property of de Finetti’s operational 
definition of subjective probabilities and expectations is 
that it does not merely define them:  it makes them 
common knowledge in the everyday specular sense of 
the term.  The prices are visible to both actors in the 
scene, and the actors both know it, and both know that 
they both know it, and so on, and the meaning of the 
numbers is commonly understood by virtue of the 
opportunities that they create for reciprocal financial 
transactions.  This is a property of posted prices in 
general.  They do not only simplify the decision-making 
of consumers and investors:  they are also credible and 
commonly known numerical measurements of the 
comparative beliefs and values of those who post them. 
 
It might be argued that game-theoretic techniques should 
be used to address the question of why and how the agent 
should offer distinct lower and upper previsions (bid and 
ask prices) in her interaction with the observer, or 
whether she should offer to bet at all.  There might be 
asymmetric information or incentives for secrecy or 
deception or speculation that would motivate the agent to 
set her bid prices for assets at levels other than her true 
lower bounds on their expected payoffs, whatever “true” 
might mean.  This would merely beg the question of how 
the rules of the higher-order game would come to be 
commonly known in numerical terms.  If an infinite 
regress is to be avoided, then at some level of description 
the amount of private information about her beliefs and 
values that an agent is willing to publicly reveal is a 
behavioral primitive.  In the sequel, the game-theoretic 
argument will be turned on its head:  the fundamental 
theorem of non-cooperative games is merely an 
extension of the fundamental theorem of probability to 
multiple actors in the same scene. 
 

3 Previsions conditioned on one’s own moves 
 
In the assessment of previsions via offers to bet, there is 
no requirement that states of the world should be events 
that are beyond the agent’s control.  However, an 
observer might be reluctant to take the other side of any 
bet whose payoff depends on an event that they both 
know the agent does control, and by the same token, the 
agent might be reluctant to offer to bet on events that she 
knows to be controlled by others.  An important special 
case is one in which the state space can be partitioned as 
S = S1 ×  S2, where S1 is a set of events that the agent 
controls (her own moves) while S2 is a set of events 
outside her control (moves of nature or other agents).  If 
e is an event that is measurable with respect to S1 (the 
indicator for a move or subset of moves of the agent), 
and x is the payoff vector of an asset that is measurable 
with respect to S2 (a bet whose payoff depends only on 
moves of others), it might be reasonable for the agent to 
assert a lower prevision for x conditional on e.   If she 
asserts that P(x|e) = 0, it means that she will accept a 
small bet whose payoff vector is proportional to x under 
the same conditions in which she would choose the move 
e, or equivalently, she will accept a small bet whose 
payoff vector is proportional to xe.  Such a bet reveals 
some information about the agent’s payoff function in 
the game she is playing against nature or her adversaries, 
without necessarily revealing the move she intends to 
make.  Namely, her payoffs in the game are such that her 
best move is e only under conditions where her prevision 
for x is non-negative. This method for revealing limited 
information about one’s payoff function yields enough 
detail about the rules of a non-cooperative game to 
determine its equilibria, as will be shown next. 
 
4   Imprecise equilibria of games 
 
Let G denote a non-cooperative game among I players, 
each having a finite set of strategies.  Let S = S1 ×…× SI 
denote the set of outcomes, where Si  is the set of index 
numbers for strategies of player i.  Let s = (s1, …, sI) 
denote a particular outcome, in which si is the strategy 
chosen by player i.  Let xi denote the payoff function (an 
|S|-dimensional vector) for player i, whose value in 
outcome s is xi(s).  Assume that payoffs are measured in 
units of a common money and that the players are risk 
neutral.  (The risk neutrality assumption will be relaxed 
later.)  The “true” game G is therefore defined by the sets 
of strategies {Si} and payoff vectors {xi}. 
 
Let eij denote the event in which player i plays her jth 
strategy, and for every j œ Si, let xij denote a vector of 
payoffs that is obtained from xi as follows:  xij(s) = xi(s1, 
…, j, …, sN), where the j occurs in the ith position.  In 
other words, xij(s) is the profile of payoffs that player i 
receives by playing her jth strategy while all other players 
play according to s.  Note that there is some duplication 
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of information in the structure of xij(s):  it contains 
multiple copies of the payoff profile that player i obtains 
by playing j, because the element of xij(s) in coordinate 
(s1, …, si, …, sN) is the same for all values of si.   
 
Suppose that the payoff functions {xi} are not commonly 
known a priori and must therefore be revealed through 
some credible language of communication.  The 
language that will be used here is the same one that was 
sketched in the previous section.  To see how it works in 
the game, observe that in the event that player i chooses 
her jth strategy, she must weakly prefer the profile of 
payoffs she gets by playing strategy j to the profile of 
payoffs she would have gotten by playing any other 
strategy k.  In the terms introduced above, she evidently 
prefers xij over xik in the event that eij occurs, which 
means that she would trade xik for xij conditional on eij. 
Such a trade is equivalent to an unconditional bet with a 
payoff vector of (xij − xik)eij.  If the agent wants to let this 
information about her payoff function become common 
knowledge, she can publicly offer to accept a small bet 
whose payoff vector is proportional to (xij − xik)eij at the 
discretion of an observer.  Or, to turn the story around, if 
by magic her payoff function xi is already common 
knowledge, then it is also common knowledge that she 
will accept such a bet.2  Note that she is not betting 
directly on her own strategy.  Rather, her own strategy is 
used as a conditioning event for bets on what other 
players will do.  Bets that are conditioned on the player’s 
own strategy, which may be uncertain to the observer 
and the other players, do not necessarily reveal her actual 
state of information or her intended move. 
 
Suppose that all the players offer to accept small 
conditional bets that are determined by their true payoff 
functions in the manner described above.  Let G denote 
the matrix whose columns are indexed by outcomes of 
the game, whose rows are indexed by ijk, and whose ijkth 
row is (xij − xik)eij, the payoff vector of the bet that is 
acceptable to player i in the event that she chooses 
strategy j in preference to strategy k. Then, under the 
assumption that such bets may be non-negatively linearly 
combined, an observer of the game may choose a non-
negative vector of multipliers α to construct an 
acceptable bet that yields a total payoff vector of α ∑ G to 
the players, with the opposite total payoffs to himself.    
 
G will be henceforth called the “revealed rules of the 
game matrix” because, as will be shown, it contains all 
the commonly-knowable information about the rules that 
                                                           
2 Strictly speaking, the choice of strategy j in the presence of k can only 
be interpreted to mean a preference for j over k if the agent has 
complete preferences, requiring precise beliefs.  Here, offers to bet are 
assumed to occur at a point in time when the agents may not yet have 
formed precise beliefs about what their opponents will do, but they 
expect that they will have done so by the time they are called upon to 
move.  In the meantime they are making assertions about constraints 
that precise beliefs would have to satisfy in order for them to prefer one 
strategy over another, thereby partially revealing their payoff functions. 

is actually used in determining the equilibria of non-
cooperative games.  However, G does not contain all the 
information about the true game G that is economically 
important to the players.  In particular, it does not reveal 
the benefits that a given player might obtain from 
changes in the strategies of the other players, holding her 
own strategy fixed. The latter information is subtracted 
out when the calculation (xij − xik)eij is performed.  All 
that remains is information about how a given player 
would benefit by changing her own strategy, holding the 
strategies of the other players fixed.  This is the essence 
of “non-cooperative” game-playing.  The players do not 
consider the implications of their own play for the 
payoffs of other players, nor do they expect the other 
players to show that consideration to them. 
 
Under the assumptions given above, we can define what 
it means for the game to be played rationally by applying 
the concept of ex post coherence jointly to all the players.  
Consider an observer who knows nothing about the game 
except the bets that the players have offered, which is the 
minimal information about the game’s rules that is 
common knowledge.  Suppose that he does not want to 
speculate on the game’s outcome, but he would like to 
make a riskless profit if possible.  From the observer’s 
perspective, if several bets are placed on the same table 
at the same time, it doesn’t matter if they are offered by 
one individual or by many who are all looking each other 
in the eye.  If the observer manages to pick their pockets, 
the players have behaved irrationally as a group. 
 
DEFINITION:  The strategy s is jointly coherent if there 
does not exist a non-negative α such that α ∑ G ≤ 0 and 
[α ∑ G](s) < 0, i.e., if, under the revealed rules of the 
game, there is no system of system of bets under which 
the observer cannot lose and will win a positive amount 
from the players if they play  s.    
 
Fortunately for the players, there is always at least one 
jointly coherent strategy: they are not doomed to 
exploitation if they honestly reveal some information 
about their payoff functions.3  The interesting question is 
whether there are strategies that are not jointly coherent, 
and if so, how are they characterized. 
 
In general, the players might choose either pure or 
randomized strategies, and randomized strategies might 
be either independent or correlated. Correlated 
randomization of strategies could be carried out with the 
help of a mediator but does not necessarily require it:  
flipping a coin or playing paper-scissors-rock are familiar 

                                                           
3 A  proof of this result is given in Nau and McCardle (1990).  A proof 
of the dual condition, which (by Theorem 2) is the existence of a 
correlated equilibrium, is given by Hart and Schmeidler (1989).  These 
proofs are more elementary than the proof of existence of a Nash 
equilibrium insofar as they do not invoke a fixed-point theorem.  In 
Nau and McCardle’s proof, the result follows from the existence of a 
stationary distribution of a Markov chain. 
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correlation devices that do not require a mediator, and a 
taking-turns convention in repeated play could be viewed 
as a correlation device from the perspective of an 
observer who doesn’t who whose turn it is.  Let π denote 
a (possibly-degenerate) probability distribution over the 
outcomes of the game, and suppose, hypothetically, that 
the players do employ a mediator who is instructed to 
randomly draw a joint strategy s according to the 
distribution π and then privately recommend to each 
player that she should play her own part of it.  Thus, 
player i hears only her own recommended strategy, si, 
not those of the other players.  Under these conditions, π 
is a common prior distribution over recommended joint 
strategies in the game, and each player can use Bayesian 
updating to compute a posterior distribution for the 
recommendations that were received by the other 
players, given her own recommendation.  If each player’s 
recommended strategy is optimal for her a posteriori 
when the others play their own recommended strategies, 
then π is a correlated equilibrium of the game (Aumann 
1974, 1987).    More precisely: 
 
DEFINITION:  π is a correlated equilibrium of G if and 
only if G π ≥ 0, which means that for every player i and 
every recommended strategy j and alternative strategy k 
of that player, either Pπ(eij) = 0 (the probability of 
strategy j being recommended to player i is zero) or else 
Pπ(xij(s) − xik(s)|eij) ≥ 0 (the conditional expected payoff 
of strategy j is greater than or equal to the conditional 
expected payoff of strategy k when j is recommended).   
 
Because the set of all correlated equilibria of G is 
determined by a system of linear inequalities, it is a 
convex polytope—a tractable geometrical object—which 
will henceforth be denoted by ÷G.  A Nash equilibrium is 
a special case of a correlated equilibrium in which π is 
independent between players, allowing each player to 
perform her own randomization (if necessary) without a 
mediator.  The set of Nash equilibria is not necessarily 
convex or connected or bounded by points with rational 
coordinates, and it can be rather difficult to compute, 
particularly in games with more than 2 players. 
 
In these terms we can prove a “fundamental theory of 
non-cooperative games” which is the strategic 
generalization of the fundamental theorem of probability.  
Actually, the theorem and its proof are merely a 
restatement of the fundamental theorem of probability 
and its proof for the special case in which conditional 
previsions are jointly announced by two or more 
individuals and the assets and conditioning events to 
which they refer have a special structure that is 
determined by a non-cooperative game they are playing. 
 
THEOREM 2 (Nau and McCardle 1990):  In a game 
among risk neutral players, a strategy is jointly coherent 
if and only if there exists a correlated equilibrium in 
which it has positive probability. 

Proof:  By Lemma 2, either there exists a non-negative 
vector α such that α ∑ G ≤ 0 and [α ∑ G](s) < 0 or else 
there exists a non-negative vector π, with π(s) > 0, such 
that G  π  ≥  0.   É 
 
Hence, the players are rational ex post if and only if they 
behave as if they had implemented a correlated 
equilibrium, i.e., if they play a strategy that could have 
occurred with positive probability in such an 
equilibrium.4  But even more can be said: lower and 
upper bounds can be placed on the players’ jointly-held 
previsions for outcomes of the game and any side bets 
that might be placed on it, namely the bounds that are 
determined by the convex polytope ÷G of correlated 
equilibria.  On this basis it is appropriate to consider ÷G 
to be the rational “solution” of the game when it is 
played non-cooperatively in the absence of any 
constraints other than coherence, and in general it is a 
solution in terms of imprecise probabilities.5 
 
A canonical example of a game in which a non-Nash 
correlated equilibrium is an attractive strategy is the 
coordination game known as “battle-of-the-sexes,” one 
version of which has the following payoff matrix: 
 

 Left Right 
Top 2, 1 0, 0 

Bottom 0, 0 1, 2 
 
The players would prefer to coordinate on either TL or 
BR as the solution, but Row has a slight preference for 
TL and Column has a slight preference for BR.    The 
corresponding rules-of-the-game matrix, G, is  
 

 TL TR BL BR 
1TB 2 -1 0 0 
1BT 0 0 -2 1 
2LR 1 0 -2 0 
2RL 0 -1 0 2 

  
The row label 1TB means G1TB , the payoff vector of the 
bet for player 1 choosing Top in preference to Bottom, 
etc.  The correlated equilibrium polytope is a hexahedron 
with 5 vertices, of which 3 are Nash equilibria: 

                                                           
4 In games of incomplete information, joint coherence leads to a 
correlated generalization of Bayesian equilibrium (Nau 1992). 
5 This approach can be generalized to the situation in which players do 
not exactly know their own payoffs.  If each payoff in the game matrix 
is known by its recipient only to lie within some interval, then the ijkth 
row of G becomes (xij

max − xik
min)eij, where xij

max and xik
min

 are pointwise 
maxima and minima of the possible payoffs of strategies j and k for 
player i. This means that in the event that player i chooses strategy j 
over strategy k, the minimal requirement that her conditional beliefs 
must satisfy is that her best possible lower prevision for the payoff of  j 
should be at least as great as her worst possible lower prevision for the 
payoff of k.  In general, this sort of payoff-imprecision weakens the 
constraints and therefore enlarges the set of correlated equilibria. 
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 TL TR BL BR Nash? 

Vertex 1 1 0 0 0 Yes 
Vertex 2 0 0 0 1 Yes 
Vertex 3 2/9 4/9 1/9 2/9 Yes 
Vertex 4 2/5 0 1/5 2/5 No 
Vertex 5 1/4 1/2 0 1/4 No 

Two views of the geometry of the correlated equilibrium 
polytope are shown below  The simplex of all probability 
distributions on outcomes of the game is a tetrahedron, 
the set of distributions that are independent between 
players is a saddle, the correlated equilibrium polytope is 
a hexahedron, and their 3 points of intersection are the 
Nash equilibria. Nash equilibria always lie on the surface 
of the correlated equilibrium polytope, but in larger 
games they need not be vertices of it (Nau et al. 2004). 

 

 
 
The mixed-strategy Nash equilibrium is on the inefficient 
frontier, as is often true of completely mixed strategies in 
games with multiple equilibria. An obvious and 
appealing solution of this game that is neither a Nash 
equilibrium nor an extremal correlated equilibrium is to 

flip a coin to choose between TL and BR, which is the 
midpoint of the edge connecting their two vertices. 
 
The players can further restrict the set of rational 
solutions of the game through the acceptance of 
additional bets that reflect joint beliefs more precise than 
the whole set of correlated equilibria.  For example, in 
the battle-of-sexes game, the row player could say “in the 
event that I play Top [Bottom], I will assign probability 1 
(for betting purposes) to the event that my opponent will 
play Left [Right],” and the column player could similarly 
say that in the event that she plays Left [Right], she will 
assign probability 1 to the event that her opponent plays 
Top [Bottom].  This would indicate that, perhaps through 
cheap talk or some mechanism such as coin-flipping, the 
players have coordinated their moves, thereby reducing 
the set of joint probability distributions to the edge of the 
simplex that connects TL and BR.  
 
5  Risk aversion & risk neutral probabilities 
 
The results of the previous sections require the players to 
be risk neutral, i.e., to have state-independent linear 
utility for money.  The more general case of risk averse 
players will be considered next, and it will be shown that 
risk aversion leads them to hedge their bets, making the 
revealed set of equilibria larger than it would have been 
otherwise.   Furthermore, when players are risk averse, 
side bets may provide opportunities for Pareto-improving 
modifications of the rules of the game, which leads to 
some blurring of the distinction between strategic and 
competitive equilibria.  In extreme cases, players may be 
able to hedge their positions so as to decouple their 
payoff functions and exit from the game altogether.  To 
set the stage, some general remarks on the modeling of 
risk aversion are appropriate. 
 
If an agent is risk averse rather than risk neutral, and if 
she has substantial prior stakes in events (“background 
risk”), then Theorem 1 still holds, but its parameters have 
a different interpretation.  Suppose that the agent has 
subjective expected utility preferences and her risk 
attitude is represented by a strictly concave von 
Neumann-Morgenstern utility function U(x), with its 
derivative denoted by U ′(x), and suppose that her 
background risk is represented by a payoff vector z 
whose elements differ across states by amounts that are 
large enough to cause substantial variations in the 
marginal utility of money.   Then her acceptance of an 
additional small bet x will not be based on its expected 
value but rather on its expected marginal utility in the 
context of z.    If the agent’s beliefs are represented by a 
precise probability distribution p, then her status quo 
expected utility is Ep[U(z)].  A bet x will be acceptable to 
her if it maintains or increases her expected utility, i.e., if 
Ep[U(z+x)] − Ep[U(z)]  ≥ 0.   
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If the elements of x are small enough in magnitude so 
that only first-order effects are important, then x is 
acceptable if  Ep[U ′(z)x] ≥ 0, or equivalently if Eπ[x] ≥ 0, 
where π is a probability distribution obtained by 
multiplying the true probability distribution p pointwise 
by the marginal utility vector U ′(z) and then re-
normalizing, i.e., π(s) ∝ p(s)U ′(z(s)).   This is the risk 
neutral probability distribution of the agent at z, because 
she evaluates small bets in a seemingly risk neutral way 
using π rather than her true subjective probability 
distribution p.  The risk neutral distribution of the agent 
is not uniquely determined by beliefs:  it also depends on 
her background risk and her attitude toward it.6 
 
In a financial market, the necessary and sufficient 
condition for asset prices to create no arbitrage 
opportunities is that there should exist a probability 
distribution under which every asset’s expected payoff 
(discounted at the risk-free rate of interest if time is a 
factor), lies between its bid and ask prices.  This result is 
known as the “fundamental theorem of asset pricing,” 
and it is merely de Finetti’s fundamental theorem of 
probability applied to asset prices offered by the whole 
market rather than by a single individual.  The 
probability distribution that prices the assets is called the 
risk neutral probability distribution of the market, 
because it prices them in a seemingly risk neutral way, 
and it can be determined from prices of options or Arrow 
securities.7 Because of friction and incompleteness, the 
market’s risk neutral distribution is usually not unique.   
Rather, there is a convex set of risk neutral distributions 
determined by bid and ask prices for assets. 
 
In equilibrium, the marginal prices that agents are willing 
to pay for financial assets must agree with market prices, 
which means that the risk neutral probability 
distributions of all the agents must agree with the risk 
neutral probability distribution of the market.  More 
precisely, the set of risk neutral distributions that is 
determined by bid and ask prices in the market is the 
intersection of all the sets of risk neutral distributions that 
are determined by bid and ask prices of individual 
agents, which is non-empty if and only if there are no 
arbitrage opportunities.  Thus, rational behavior in 
markets requires the agents to “agree” on risk neutral 
probabilities in the sense that their sets of personal risk 
neutral probabilities must overlap to some extent.  In the 
special case where the agents have complete preferences 
and the market is also complete and frictionless, the risk 
neutral probabilities of the agents and the market are 
uniquely determined and must be identical. 
                                                           
6 The role of risk neutral probabilities in modeling a single agent’s 
aversion to risk—and also ambiguity—is discussed in more detail by 
Nau (2001, 2003, 2011). 
7 The literature on arbitrrage pricing and risk neutral probabilities in 
finance traces back to the seminal work of Black and Scholes, Merton, 
Cox, Ross, Rubinstein, and many others in the 1970’s, although the 
connection with de Finetti’s use of the no-arbitrage principle in 
subjective probability, dating to the 1930’s,  was not noticed until later. 

6  Risk neutral equilibria 
 
When agents are risk averse with significant prior stakes 
in events, their lower and upper previsions determined by 
offers to accept small bets must be interpreted as lower 
and upper expectations with respect to convex sets of risk 
neutral probabilities, rather than true subjective 
probabilities, as discussed above.  The same 
consideration applies to the analysis of games.  A game’s 
own payoffs are a source of background risk with respect 
to bets on its outcome, and if the players are sufficiently 
risk averse, this will give rise to distortions when the 
rules of the game are revealed through betting.  The 
result will be that a rational solution of the game is 
characterized by a convex set of equilibria whose 
parameters are risk neutral probabilities. 
 
Suppose that each player has strictly risk averse 
subjective-expected-utility preferences with respect to 
profiles of monetary payoffs in the game, and let Ui 
denote the strictly-concave von Neumann-Morgenstern 
utility function of player i.  Then the payoff profiles 
{xi(s)} translate into utility profiles {Ui (xi(s))}. Let G* 
denote the “true” game that is determined by the utility 
profiles.   If Ui′ denotes the first derivative of Ui, strict 
concavity requires that Ui′(x) < Ui′(y) whenever x > y.  
Let ui denote the utility payoff vector for player i, whose 
value in outcome s is Ui (xi(s)), and let ui′ denote the 
corresponding marginal utility vector whose value in 
outcome s is Ui′(xi(s)).  Also, let uij denote the vector 
constructed from ui in the same way that xij was 
constructed from xi, namely uij(s) = Ui (xij(s)).  In other 
words, uij(s) is the utility that player i would receive by 
playing her jth strategy when all others play according to 
s.  Let uij′ denote the corresponding profile of marginal 
utilities for money, i.e., uij′(s) = Ui′(xij(s)).  As in the case 
of xij, there is some duplication of information insofar as 
uij(s) and uij′(s) do not depend on the value of si.   
 
By an argument analogous to the one used in the risk 
neutral case, player i will choose strategy j in preference 
to strategy k only if her beliefs are such that she would be 
willing to exchange the utility profile uik, for the utility 
profile uij, hence a small monetary bet yielding a profile 
of changes in marginal utility that is proportional to  
uij − uik should be acceptable if the event eij is observed 
to occur.  When strategy j is chosen, the agent’s profile 
of marginal utilities for money is uij′, and a monetary bet 
that yields a profile of marginal utilities proportional to 
uij − uik can be obtained by dividing the utilities by the 
corresponding marginal utilities.  Thus, agent i should be 
willing to accept a small bet whose monetary payoffs are 
proportional to  (uij − uik)/uij′ conditional on the 
occurrence of eij.   Such a bet has an unconditional payoff 
vector of ((uij − uik)/uij′)eij in units of money. 
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Let G* now denote the matrix whose rows are indexed 
by ijk and whose columns are indexed by s and whose 
ijkth row is the vector ((uij − uik)/uij′)eij. This is the 
revealed-rules matrix for the game G*, representing the 
information about the game that can be made common 
knowledge through unilateral offers to accept small bets 
when the players are risk averse.  An observer may 
choose a small non-negative vector α of multipliers for 
these bets, and the players as a group will receive the 
vector of payoffs  α ∑ G*, with the opposite payoffs for 
the observer.  The same rationality criterion that was 
applied in the risk neutral case also applies here in the 
risk averse case:  an outcome s is jointly coherent if and 
only if there is no non-negative α such that α ∑ G* ≤ 0 
and [α ∑ G*](s) < 0.8   The definition of correlated 
equilibrium and the fundamental theorem of games can 
now be generalized accordingly.  The proof is the same. 
 
DEFINITION:  π is a risk neutral equilibrium of G* if 
and only if G*π ≥ 0, which means that for every player i 
and every strategy j and alternative strategy k of that 
player, either Pπ(eij) = 0 or else Pπ((uij − uik)/uij′)|eij) ≥ 0.   
 
THEOREM 3:  In a game among risk averse players, a 
strategy is jointly coherent if and only if there is a risk 
neutral equilibrium in which it has positive probability. 
 
To provide a story to go with this solution concept, 
suppose that the players employ a mediator who will use 
a possibly-correlated randomization device to 
recommend  strategies to them privately, but in this more 
general case they do not necessarily agree on the true 
prior probabilities of the outputs of the device.  For 
example, the device may take some of its input data from 
financial markets or from political or sporting or weather 
events.   Suppose that through side bets with each other 
or through participation in a public betting market for the 
input events, they have arrived at a common prior risk 
neutral probability distribution π  for the outputs of the 
device.  Finally, suppose they will not have the 
opportunity to directly observe any of the input or output  
data prior to making their moves except for the private 
recommendations they receive from the mediator, who 
will have observed the data.  Under these conditions, for 
all i, j, and k, the constraint Pπ((uij − uik)/uij′)|eij) ≥ 0 

                                                           
8 When the utility functions of the players are strictly concave rather 
than linear, the bet with payoff vector ((uij − uik)/uij′)eij  is technically 
only “marginally” acceptable to player i, so a bet with an aggregate 
payoff vector of α ∑ G* may not be quite acceptable to the players for 
finite α.  In such a case the observer may need to make a small side 
payment to the players to get them to agree to the deal, which makes 
the observer’s position not entirely riskless.   However, if α ∑ G*  ≤ 0 
and [α ∑ G*](s) < 0, then by choosing α sufficiently small,  the 
magnitude of the required side payment can be made arbitrarily small in 
relative terms in comparison to the aggregate loss the players will suffer 
if they play s, which will be considered here as sufficient grounds for 
not playing s.  This could be made precise by using the concept of ε-
acceptable bets introduced in  Nau (1995), but it will not be pursued 
here in the interest of brevity. 

implies pij ∑ (uij − uik)  ≥ 0, i.e., according to player i’s 
own private beliefs, strategy j yields an expected utility 
greater than or equal to that of the alternative strategy k 
when j is recommended to her, so it is optimal for each 
player to follow the mediator if all others do, and this is 
common knowledge.   Thus, a game among risk averse 
players is played coherently if and only if it is played “as 
if” with the help of a mediator who uses an incentive-
compatible device with respect to whose outputs the 
players have  a common prior risk neutral distribution, 
although their unobserved true distributions may differ. 
 
A risk neutral equilibrium is a special case of a subjective 
correlated equilibrium (Aumann 1974, 1987), one that 
can be implemented with the use of a randomizing device 
about whose properties the players may hold differing 
beliefs.  Such a device would be welcome in playing a 
zero-sum game—all players might believe their expected 
payoffs to be positive!  Aumann (1987) remarks that 
such a result depends on “a conceptual inconsistency 
between the players.” By permitting such 
inconsistencies, subjective correlated equilibrium places 
only weak restrictions on solutions of many games. A 
risk neutral equilibrium adds the nontrivial restriction 
that  the players’ risk neutral prior probabilities should be 
mutually consistent, as in an equilibrium of a financial 
market.  When players are risk averse, their true 
probabilities may be unobservable, and inconsistencies 
among them are neither surprising nor problematic. 
 
As in the risk neutral case, there is more to be said about 
the rational solution of the game than to identify the 
outcomes that are jointly coherent.  It is also possible to 
place bounds on risk neutral probabilities of events or 
risk neutral expectations of financial assets that depend 
on the outcome of the game, namely whatever bounds 
are determined by the system of inequalities G*π ≥ 0 that 
defines the convex polytope of risk neutral equilibria.  
These bounds are bid-ask spreads for assets that the 
players are jointly offering to the observer through their 
bets that reveal information about the rules of the game. 
 
A simple example of the concept of risk neutral 
equilibrium is provided by the zero-sum game of 
“matching pennies,” whose payoff matrix is: 

 Left Right 
Top  1, −1 −1,  1 

Bottom −1,  1  1, −1 

When played by risk neutral players, the revealed-rules 
matrix G, scaled to a maximum value of 1, is: 

 TL TR BL BR 
1TB 1 -1 0 0 
1BT 0 0 -1 1 
2LR 1 0 -1 0 
2RL 0 -1 0 1 
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This game has a unique correlated/Nash equilibrium in 
which the players use independent 50-50 randomization, 
so the graph of the set of equilibria consists of the single 
point (¼, ¼, ¼, ¼) in the center of the saddle. 
 
Now suppose that both players are risk averse and, in 
particular, assume that they both have exponential utility 
functions, U(x) = 1 − exp(−ρx), where the risk aversion 
parameter is ρ = LN(√2).   In units of utility, the payoff 
matrix of the matching-pennies game is then: 
 

 Left Right 
Top a, b b, a 

Bottom b,  a a, b 
 
where a =  1 − √½  ≈ 0.293 and b = 1 − √2 ≈ −0.414.  
The corresponding marginal utilities of money under the 
outcomes  a and b are 0.245 and 0.49, respectively, 
which conveniently differ by a factor of exactly 2. 
 
This game is constant-sum and strategically equivalent to 
the original one, having the same unique correlated/Nash 
equilibrium.  However, the rules matrix of the 
corresponding revealed game, G*, is not equivalent 
because of the distortions of nonlinear utility for money.  
It looks like this when scaled to a maximum value of 1: 
 

 TL TR BL BR 
1TB 1 −1/2 0 0 
1BT 0 0 −1/2 1 
2LR −1/2 0 1 0 
2RL 0 1 0 −1/2 

  
The polytope of risk neutral equilibria determined by the 
inequalities G*π ≥ 0 is a tetrahedron with these vertices: 

 TL TR BL BR EV>0? 
Vertex 1 2/15 4/15 1/15 8/15 1BT 
Vertex 2 8/15 1/15 4/15 2/15 1TB 
Vertex 3 4/15 8/15 2/15 1/15 2RL 
Vertex 4 1/15 2/15 8/15 4/15 2LR 

None of them lies on the saddle of distributions that are 
independent between {T,L} and {B,R}, so none is a 
Nash equilibrium of a game with these strategy sets.9  
Each of these probability distributions satisfies 3 out of 
the 4 incentive constraints with equality, i.e., assigns an 

                                                           
9 These distributions are the unique Nash equilibria of the game: 

 L* R* 
T* 2, -1 -1, 1 
B* -2, 4 1, -4 

under different mappings of {TL, TR, BL, BR} to {T*L*, T*R*, B*L*, 
B*R*}.  They lie on the two other saddles that can be drawn within the 
original simplex:   the one that omits the edges BL-BR and TL-TR and 
the one that omits the edges TL-BL and TR-BR 

expected value of zero to 3 out of the 4 rows of G*.  (The 
label of the row whose expected value is positive is 
shown in the rightmost column.). A graph of their 
configuration is shown below.  The polytope of risk 
neutral equilibria is suspended in the middle of the 
probability simplex, and the saddle of independent 
distributions cuts through its interior, a situation that 
would be impossible for a set of correlated equilibria. 

 
The uniform distribution that is the unique equilibrium of 
the game when the true utility functions of the players 
are common knowledge lies in the interior of the 
polytope of risk neutral equilibria. When players are risk 
averse, the small side bets they are willing to accept do 
not fully reveal the between-strategy differences in utility 
profiles that they face in the game, so the set of risk 
neutral equilibria is larger than the set of correlated 
equilibria.  This is true in general, as summarized by: 
 
THEOREM 4:  The set of correlated equilibria of a game 
with monetary payoffs played by risk neutral players is a 
subset of the set of risk neutral equilibria of the same 
game played by risk averse players. 
 
Proof:  If player i is risk neutral, she will accept a bet 
with payoff vector (xij − xik)eij, while if she is risk averse, 
she will accept a bet with payoff vector ((uij − uik)/uij′)eij, 
where uij(s) = Ui(xij(s)), and uij′(s) = Ui′(xij(s)).  The term 
eij will be ignored henceforth because it zeroes-out the 
same elements of both vectors.  By the subgradient 
inequality, U(z) < U(y) − U′(y)(y − z), because the value 
of a strictly concave function U at z must lie below the 
tangent to its graph at any other point y.  Letting y = xij(s) 
and z = xik(s) yields uik(s)  ≤ uij(s)  − uij′(s) (xij(s) − xik(s)), 
which rearranges to (uij(s) −uik(s))/uij′(s)  ≥ xij(s) − xik(s), 
with strict inequality if xij(s) ≠ xik(s).  Hence, the bet that 
player i is willing to accept when she chooses strategy j 
in preference to k if she is risk neutral is weakly 
dominated by the bet she will accept in the same game if 
she is risk averse.  This means G*  ≥ G pointwise, from 
which it follows that G  π ≥ 0 implies G*π  ≥ 0, so if π is 
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a correlated equilibrium of the game played by risk 
neutral players, then it is a risk neutral equilibrium of the 
same game when it is played by risk averse players.  É 
 
Hence, risk aversion introduces even more imprecision 
into the probabilistic solutions of non-cooperative games 
when their rules must be revealed through credible bets. 
 
7   Rewriting the rules of the game 
 
It was pointed out earlier, in the discussion of the battle-
of-sexes game, that players could accept additional bets 
with an observer, beyond those that determine the rules 
of the game, in order to reveal more precise information 
about their joint beliefs.  However, if they are risk neutral 
and have in fact implemented a Nash or correlated 
equilibrium, which induces a common prior distribution 
over outcomes of the game, they cannot both be made 
strictly better off through bets with each other.  When 
players are risk averse, this is not necessarily true, and 
the matching-pennies game provides a good example.  
When played by risk averse players, it is a negative-sum 
game in units of utility, and for both players the unique 
Nash equilibrium (coin-flipping) has an expected utility 
that is below their status quo utility.  Risk averse players 
would rather not play this game at all.   Furthermore, 
player 1’s marginal utility of money is greater in 
outcomes TR and BL (her losing outcomes) than in the 
other two, and vice versa for player 2.  The Nash 
equilibrium is therefore not a competitive equilibrium of 
a financial market in which it is possible for the players 
to make additional bets that reveal their solution of the 
game in addition to the bets that reveal the rules of the 
game (the latter being the rows of G*).  In the context of 
the Nash equilibrium, it is desirable to both players to 
make a bet in which player 1 wins $x if TR or BL occurs 
and player 2 wins $x if TL or BR occurs, for any positive 
x ≤ 1.  Such a bet changes the rules of the game to a 
finite extent, but coin-flipping remains a Nash 
equilibrium.   By choosing x = 1 they can even zero-out 
their payoffs, dissolving the game altogether.  If they do 
not bet with each other in this fashion, but instead bet 
separately with an observer, there is an arbitrage 
opportunity for the observer that arises from the fact that, 
at the outset, the players’ risk neutral probabilities do not 
agree if their true probability distributions are uniform. 
 
8  Conclusions 
 
The concept of coherent lower and upper previsions 
extends in a natural way to non-cooperative game theory, 
where it can be applied to the process of revealing the 
rules of the game as well as expressing the beliefs of the 
players.  A rational solution of the game, from the 
perspective of an observer, is typically a convex set of 
correlated equilibria rather than a Nash equilibrium.   
The presence of aversion to risk changes the units of 
analysis from “true” subjective probabilities to “risk 

neutral” probabilities, as in asset pricing theory, and it 
typically renders the solutions even more imprecise.   
When risk averse players make bets with each other that 
reflect their beliefs about the solution of the game as well 
as the rules from which they started, they may be able to 
rewrite those rules in a mutually beneficial way, merging 
the concepts of strategic and competitive equilibrium   
 
These results address some of the issues raised by 
Kadane and Larkey (1982) concerning the relation 
between game theory and subjective probability theory.  
The theory of game-playing presented here is a direct 
extension of subjective probability theory à la de Finetti, 
and it exploits the underappreciated common-knowledge 
property of de Finetti’s use of bets to measure beliefs.  
Common knowledge of a game’s rules constrains rational 
beliefs but in general it does  not uniquely determine 
them, leaving room for subjective differences, 
particularly when players are risk averse and/or have 
incomplete knowledge of their own payoff functions. 
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Abstract

By the Choquet theorem, distributions of random
closed sets can be characterized by a certain class
of set functions called capacity functionals. In this
paper a generalization to the multivariate case is pre-
sented, that is, it is proved that the joint distribution
of finitely many random sets can be characterized by a
set function fulfilling certain properties. Furthermore,
we use this result to formulate an existence theorem
for set-valued stochastic processes.
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1 Introduction

Random sets, or set-valued maps, can be used to
model uncertainty. They can be interpreted as im-
precise observations of random variables ([10]) which
assign to each element of the underlying probability
space a set instead of a single value. These sets
(called focal sets) are supposed to contain the true
value of the variable.

We will consider random closed sets, that is, random
maps whose values are closed subsets of a topological
space E, since they have favorable properties. The
family of all closed subsets of E will be denoted by
F which can in turn be topologized by the so-called
Fell topology ([1]). Random closed sets can then
be seen as random elements with values in F and
classical probability theory can be applied. As
already mentioned, they can also be interpreted as
imprecise observations of random variables ([10]).
In this case, one is more interested in events from
the Borel-σ-algebra B(E), than from B(F) and
non-additive set functions (so-called lower and upper
probabilities, see [4]) are introduced to measure if
the focal elements hit or miss a certain set from
B(E). The link between these two interpretations

is given by the so-called Choquet theorem (also
referred to as the Choquet-Matheron-Kendall the-
orem, see [13, 15, 17]), which states a one-to-one
correspondence between probability distributions
on B(F) and a certain class of non-additive set
functions, called capacity functionals, on B(E).

The goal of this paper is to present characterizations
of the joint distribution of finitely many random sets.
More precisely, given n random sets we will link their
joint distribution defined on the product-σ-algebra
B(F)⊗n to set functions defined on the compacts of
the co-product E × {1, . . . , n} or a certain class of
subsets of En.

The plan of the paper is as follows. In Section 2
we review the most important facts on random sets
and their distributions including the classical Cho-
quet theorem. The main part of the paper is Section
3 where joint distributions of random sets are consid-
ered and characterized by multivariate capacities. In
Section 4 the latter is used to formulate a Daniell-
Kolmogorov existence theorem ([5, 7]) for set-valued
stochastic processes. Furthermore, we consider Brow-
nian motion as an example.

2 Random closed sets and Choquet
theorem

In this section we review the most important facts
about random closed sets. As already mentioned in
the introduction we consider maps whose values are
closed subsets of some topological space E. Through-
out the paper, G, F , K will denote the families of
open, closed, compact subsets of E, respectively. Fur-
thermore, we will use the following notation

FA = {F ∈ F : F ∩A ̸= ∅}
FA = {F ∈ F : F ∩A = ∅}

FA
A1,...,Ak

= FA ∩FA1
∩ · · · ∩FAk
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for arbitrary subsets A,A1, . . . , Ak of E. The family
F is endowed with the Fell topology ([1]). Recall that
the latter has as a sub-base {FG}G∈G ∪ {FK}K∈K,
that is, sets of the form FK

G1,...,Gk
(K ∈ K, Gi ∈ G)

constitute a base. We shall always assume that E is a
locally compact Hausdorff second countable (LCHS)
space. In this case, F together with the Fell topology
becomes a compact Hausdorff second countable space
([1]). In addition, we introduce on F the so-called
Effros-σ-algebra B(F) which is generated by the sets
{FG}G∈G . By virtue of the LCHS property of E, the
Effros-σ-algebra is also generated by {FK}K∈K and is
the Borel-σ-algebra with respect to the Fell topology.
For details and further information about topologies
on F the reader is referred to the monograph [1].

A map X : Ω → F on a probability space (Ω,Σ, P )
will be called Effros-measurable if

X−(G) = {ω : X(ω) ∩G ̸= ∅} = X−1(FG) ∈ Σ

for allG ∈ G whereasX will be called random (closed)
set if it is strongly measurable ([18]), i.e., X−(B) ∈ Σ
for all B ∈ B(E). Note that in general the two condi-
tions are not equivalent unless (Ω,Σ, P ) is complete
(see [2, 8]). The distribution of an Effros-measurable
map X is then the image measure PX of P on B(F).
For the generating sets FK (K ∈ K) of B(F) the prob-
abilities PX(FK) = P (X−(K)) can be expressed by
a set function φ : K → [0, 1],K 7→ PX(FK). This
set function corresponds to the upper probability of a
random set introduced by Dempster and Shafer ([4])
and has (among others) the following properties:

(CF1) 0 ≤ φ ≤ 1 and φ(∅) = 0,

(CF2) For K,K1, . . . ,Kn ∈ K, n ≥ 0, the probabil-
ities PX(FK

K1,...,Kn
) can be written in terms of φ

as

PX(FK
K1,...,Kn

) = ∆nφ(K;K1, . . . ,Kn)

where ∆0φ(K) = 1− φ(K) and for n ≥ 1

∆nφ(K;K1, . . . ,Kn)
= ∆n−1φ(K;K1, . . . ,Kn−1)
−∆n−1φ(K ∪Kn;K1, . . . ,Kn−1).

Thus, ∆nφ ≥ 0 for n ≥ 0.

(CF3) φ is continuous from above, that is, for a
decreasing sequence {Kn}n∈N with limit K =∩

n∈N Kn it holds that φ(Kn) ↘ φ(K).

Note that a set function fulfilling Condition (CF2) is
called completely alternating. Furthermore, for n ≥ 1

the successive differences can be expressed as follows:

∆nφ(K;K1, . . . ,Kn)

= −
∑

I⊆{1,...,n}
(−1)|I| φ

(
K ∪

∪

i∈I

Ki

)
(1)

where the union over ∅ is set to ∅. A set function on K
fulfilling these three properties is called capacity func-
tional. The following theorem known as the Choquet
theorem (see [13, 15, 17]) says that there is a one-to-
one correspondence between capacity functionals and
probability measures on B(F).

Theorem 1. Let E be an LCHS space and let φ :
K → [0, 1] be a capacity functional. Then there exists
a unique probability measure Π on B(F) such that
φ(K) = Π(FK) for all K ∈ K.

For later reference we give a sketch of the proof ([13]):
First, note that a capacity functional φ can be ex-
tended to the power set P of E by setting

φ∗(G)=sup{φ(K) : K ⊆ G,K ∈ K} if G ∈ G,
φ∗(A) = inf{φ∗(G) : G ⊇ A,G ∈ G} if A ∈ P.

(2)
The extension φ∗ is a completely alternating Choquet-
K-capacity, that is, φ∗ is continuous from above on
K and continuous from below on P ([3, 14]). Fur-
thermore, the extension is consistent, i.e., on K the
extension yields the same results as if φ is directly
applied. To obtain the desired probability measure
on B(F) the set function φ∗ is considered on V =
{G ∪K : G ∈ G,K ∈ K} and a set function Π is de-
fined on H = {FV

V1,...,Vk
: V, Vj ∈ V, k ≥ 0, 1 ≤ j ≤ k}

by Π(FV
V1,...,Vk

) = ∆kφ
∗(V ;V1, . . . , Vk). Π is proved

to be (finitely) additive and extended to a measure
on B(F) (which is generated by H) by using [16,
Prop. I.6.2] and continuity properties of φ∗. More-
over, one can show (cf. [6], Appendix, 2, Satz 2) that
for all B ∈ B(E) it holds that FB ∈ B(F)0 and
φ∗(B) = Π0(FB) where (F ,B(F)0,Π0) denotes the
completed probability space with respect to Π.

3 The multivariate case

Let n ≥ 2 and Ei be LCHS spaces with Gi, Fi, Ki

denoting the families of open, closed, compact subsets
of Ei, respectively, 1 ≤ i ≤ n. As already outlined in
the introduction the goal is to characterize probability
measures on the Borel sets of

Fn = F1 × · · · ×Fn = {(F1, . . . , Fn) : Fi ∈ Fi}

by set functions. Fn will be endowed with the product
Fell topology which is generated by the cylindrical sets

FK1
G11,...,G1k1

× · · · ×FKn

Gn1,...,Gnkn
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where Giji ∈ Gi, Ki ∈ Ki. From the one-dimensional
case one can infer that the product-Effros-σ-algebra
B(Fn) = B(Fi)

⊗n = B(F1) ⊗ · · · ⊗ B(Fn) is generated
by the sets

FK1
× · · · ×FKn

where Ki ∈ Ki. For n Effros-measurable maps (ran-
dom sets)Xi : Ω →Fi on a probability space (Ω,Σ, P )
their joint distribution is then given by

PX1,...,Xn(FK1
× · · · ×FKn

)
= P ({ω : (X1(ω), . . . , Xn(ω)) ∈ FK1

× · · · ×FKn
})

= P ({ω : X1(ω) ∩K1 ̸= ∅, . . . , Xn(ω) ∩Kn ̸= ∅})

= P
( n∩

i=1

X−
i (Ki)

)
. (3)

The latter can be expressed by using K1 × · · · ×Kn

which is a subset of En = E1 × · · · × En:

PX1,...,Xn(FK1
× · · · ×FKn

)
= P ({ω : X1(ω)×· · ·×Xn(ω)∩K1×· · ·×Kn ̸= ∅})

(4)

Motivated by this, we use the following notation for
arbitrary V, V1, . . . , Vk ⊆ En

nFV = {(F1, . . . , Fn) ∈ Fn : F1 × · · · × Fn ∩ V ̸= ∅}
nFV = {(F1, . . . , Fn) ∈ Fn : F1 × · · · × Fn ∩ V = ∅}

nFV
V1,...,Vk

= nFV ∩ nFV1
∩ · · · ∩ nFVk

which implies FK1
× · · · × FKn

= nFK1×···×Kn
. The

event (X1, . . . , Xn)−1(nFV ) corresponds to the event
that the set-valued map

X : ω 7→ X1(ω)× · · · ×Xn(ω) (5)

hits V . Note that the values of X are closed sub-
sets of En, more precisely closed cylindrical sets, and
not elements of Fn. One can prove ([19]) that X
is Effros-measurable by using selections and the so-
called Fundamental measurability theorem for multi-
functions ([2, 8]). Consequently, the map

K 7→ P (X−(K))

is a capacity functional on the compact subsets of
En denoted by K(En). One could thus think of
characterizing joint distributions of n random sets
by capacity functionals on K(En). But applying the
Choquet theorem leads to a probability measure on
the Borel sets of F(En) denoting the family of closed
subsets of En. The latter is clearly different from
Fn which can only be identified with the cylindrical
closed subsets of En, that is, {F1× · · ·×Fn : Fi ∈ Fi}
which is a proper subset of F(En).

Hence, there is the need for a different concept. In
the following, we will consider the co-product of the
spaces Ei, that is,

En
⨿ =

n∪

i=1

Ei × {i}

which is a union of nmutually disjoint sets. We endow
En
⨿ with the sum topology, that is, we take

Gn
⨿ =

n∩

i=1

{G ⊆ En
⨿ : ι−1

i (G) ∈ Gi}

as the family of open sets. The latter is the small-
est topology on En

⨿ such that the canonical injections
ιi : Ei → En

⨿, x 7→ (x, i) are continuous. Moreover,
Gn
⨿ = {∪n

i=1Gi × {i} : Gi ∈ Gi} and the analogous
relations hold for the families of closed, compact and
Borel subsets of En

⨿, respectively. It easy is to see that
all topological properties of the Ei carry over to the
co-product and so En

⨿ is an LCHS space, too.

The question is how the co-product can be used
to characterize probability distributions on B(Fn).
Obviously, each subset A of En

⨿ can be written in
the form A = ⨿Ai =

∪n
i=1Ai × {i} where the Ai are

the sections of A, i.e. Ai = {x ∈ Ei : (x, i) ∈ A},
and consequently A can be identified with the tuple
(A1, . . . , An). Hence, we have a one-to-one corre-
spondence between subsets of the co-product En

⨿ and
tuples of subsets of the Ei. But this means that we
have a one-to-one correspondence between Fn

⨿ and
Fn and similarly between Kn

⨿ and Kn = K1×· · ·×Kn.

Consequently, each set function φ on Kn
⨿ is related to

a set function ψ on Kn by

φ(⨿Ki) = ψ(K1, . . . ,Kn). (6)

The following lemma shows that φ is a capacity func-
tional if and only if ψ is completely alternating and
continuous from above in each component. From now
on a set function on Kn fulfilling Conditions (MCF1)
- (MCF3) of the following lemma shall be called mul-
tivariate capacity functional.

Lemma 1. Let φ : Kn
⨿ → [0, 1] and ψ : Kn → [0, 1]

satisfying Equation (6) for all (K1, . . . ,Kn) ∈ Kn.
Then φ is a capacity functional if and only if ψ fulfills
the following conditions:

(MCF1) ψ(∅, . . . , ∅) = 0

(MCF2) For all k ≥ 0, 1 ≤ j ≤ k, K =
(K1, . . . ,Kn), Kj = (Kj

1 , . . . ,K
j
n) ∈ Kn it holds

that
∆kψ(K;K1, . . . ,Kk) ≥ 0
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where ∆0ψ(K) = 1− ψ(K1, . . . ,Kn),

∆kψ(K;K1, . . . ,Kk)

= ∆k−1ψ(K;K1, . . . ,Kk−1)

−∆k−1ψ(K ∪Kk;K1, . . . ,Kk−1)

and K ∪Kk = (K1 ∪Kk
1 , . . . ,Kn ∪Kk

n).

(MCF3) For all decreasing sequences {Kk
i }k∈N ⊆

Ki, 1 ≤ i ≤ n, it holds that ψ(Kk
1 , . . . ,K

k
n) ↘

ψ(K1, . . . ,Kn) for k →∞ where Ki =
∩

k∈N K
k
i .

Proof. The equivalence follows from the relation
φ(

∪n
i=1Ki × {i}) = ψ(K1, . . . ,Kn). Indeed, we get

ψ(∅, . . . , ∅) = φ(
∪n

i=1 ∅ × {i}) = φ(∅). Furthermore,
by Formula (1) we have

∆kψ(K;K1, . . . ,Kk)

= −
∑

J⊆{1,...,k}
(−1)|J|ψ

(
K ∪

∪

j∈J

Kj
)

= −
∑

J⊆{1,...,k}
(−1)|J|ψ

(
K1∪

∪

j∈J

Kj
1 , . . . ,Kn∪

∪

j∈J

Kj
n

)

= −
∑

J⊆{1,...,k}
(−1)|J|φ

( n∪

i=1

(
Ki ∪

∪

j∈J

Kj
i

)
× {i}

)

= −
∑

J⊆{1,...,k}
(−1)|J|φ

((
⨿Ki

)
∪

∪

j∈J

(
⨿Kj

i

))

= ∆kφ
(
⨿Ki;⨿K1

i , . . . ,⨿Kk
i

)
.

The equivalence of (MCF3) and (CF3) follows from
the fact that Kk

i ↘ Ki for all 1 ≤ i ≤ n if and only if
⨿Kk

i =
∪n

i=1K
k
i × {i} ↘

∪n
i=1Ki × {i} = ⨿Ki.

Given a multivariate set function ψ : Kn → [0, 1] ful-
filling conditions (MCF1) - (MCF3) of the foregoing
lemma, the Choquet theorem (Theorem 1) can be ap-
plied to the capacity functional φ : Kn

⨿ → [0, 1] de-
fined by ⨿Ki 7→ ψ(K1, . . . ,Kn). This yields a prob-
ability measure Q : B(Fn

⨿) → [0, 1] such that for all
⨿Ki ∈ Kn

⨿ it holds that

φ(⨿Ki) = Q({⨿Fj ∈ Fn
⨿ : ⨿Fj ∩ ⨿Ki ̸= ∅}). (7)

The right-hand side of Equation (7) can further be
written in the following form:

Q({⨿Fj ∈ Fn
⨿ : ⨿Fj ∩ ⨿Ki ̸= ∅})

= Q
({
⨿Fj ∈Fn

⨿ :
( n∪

j=1

Fj×{j}
)
∩

( n∪

i=1

Ki×{i}
)
̸= ∅

})

= Q
( n∪

i=1

{
⨿Fj ∈Fn

⨿ :
( n∪

j=1

Fj×{j}
)
∩(Ki×{i}) ̸= ∅

})

= Q
( n∪

i=1

{⨿Fj ∈ Fn
⨿ : Fi ∩Ki ̸= ∅}

)

= Q
( n∪

i=1

{⨿Fj ∈ Fn
⨿ : (F1, . . . , Fn) ∈ F̂Ki

}
)

= Q
({

⨿ Fj ∈ Fn
⨿ : (F1, . . . , Fn) ∈

n∪

i=1

F̂Ki

})
(8)

where F̂Ki
= {(F1, . . . , Fn) ∈ Fn : Fi ∩Ki ̸= ∅}.

As already mentioned we have a one-to-one correspon-
dence between Fn

⨿ and Fn. This can be used to define
a probability measure Π on B(Fn) from the proba-
bility measure Q on B(Fn

⨿) as the following lemma
shows.

Lemma 2. It holds that

B(Fn
⨿)=

{
{⨿Fi ∈Fn

⨿ : (F1, . . . , Fn)∈B} :B ∈B(Fn)
}
.

Furthermore, if Q : B(Fn
⨿) → [0, 1] is a probability

measure then Π : B(Fn) → [0, 1] defined by

Π(B) = Q({⨿Fi ∈ Fn
⨿ : (F1, . . . , Fn) ∈ B}) (9)

is a probability measure, too.

Proof. Let

A1 =
{
{⨿Fi ∈ Fn

⨿ : (F1, . . . , Fn) ∈ B} : B ∈ B(Fn)
}
.

The σ-algebra B(Fn
⨿) is generated by sets of the form

{⨿Fi ∈ Fn
⨿ : ⨿Fi ∩ ⨿Ki ̸= ∅}, ⨿Ki ∈ Kn

⨿. As in
Equation (8) we obtain

{⨿Fj ∈ Fn
⨿ : ⨿Fj ∩ ⨿Ki ̸= ∅}

=
{
⨿ Fj ∈ Fn

⨿ : (F1, . . . , Fn) ∈
n∪

i=1

F̂Ki

}

which lies in A1 since
∪n

i=1 F̂Ki
∈ B(Fn). It is easy

to see that A1 is a σ-algebra and thus B(Fn
⨿) ⊆ A1.

On the other hand, B(Fn) is generated by sets of the
form FK1

× · · · ×FKn
, Ki ∈ Ki. We obtain

{⨿Fj ∈ Fn
⨿ : (F1, . . . , Fn) ∈ FK1

× · · · ×FKn
}

=
n∩

i=1

{⨿Fj ∈ Fn
⨿ : (F1, . . . , Fn) ∈ F̂Ki

}

=
n∩

i=1

{⨿Fj ∈ Fn
⨿ : ⨿Fj ∩ (Ki × {i}) ̸= ∅}

which lies in B(Fn
⨿) sinceKi×{i} ∈ Kn

⨿. Furthermore,
it is easy to see that

A2 = {B ∈B(Fn) : {⨿Fi : (F1, . . . , Fn)∈B} ∈B(Fn
⨿)}

is a σ-algebra. Thus B(Fn) = A2 which further im-
plies A1 ⊆ B(Fn

⨿). It can be easily checked that Π is
a probability measure.
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From Equations (6), (7), (8) and (9) we obtain the
following relation between the multivariate capacity
functional ψ and the probability measure Π:

ψ(K1, . . . ,Kn) = φ(⨿Ki)

= Q({⨿Fj ∈ Fn
⨿ : ⨿Fj ∩ ⨿Ki ̸= ∅} = Π

( n∪

i=1

F̂Ki

)

We are now ready to formulate the following proposi-
tion which can be viewed as a multivariate version of
the Choquet theorem.

Proposition 1. Let ψ : Kn → [0, 1] be a multivari-
ate capacity functional (that is a set function ful-
filling Conditions (MCF1) - (MCF3) of Lemma 1).
Then there exists a unique probability measure Π :
B(Fn) → [0, 1] such that

ψ(K1, . . . ,Kn) = Π
( n∪

i=1

F̂Ki

)

for all (K1, . . . ,Kn) ∈ Kn.

This means that the probability of events of the form∪n
i=1 F̂Ki

can be directly computed by ψ. Probabili-
ties of other events like FK1 × · · · ×FKn can be com-
puted by using the exclusion-inclusion principle and
the complete alternation property:

Π(FK1 × · · · × FKn) = Π
( n∩

i=1

F̂Ki

)

= −
∑

I⊆{1,...,n}
(−1)|I|Π

( ∪

i∈I

F̂Ki

)

= −
∑

I⊆{1,...,n}
(−1)|I|φ

( ∪

i∈I

Ki × {i}
)

= ∆nφ(∅;K1 × {1}, . . . ,Kn × {n})
= ∆nψ(∅; Ǩ1, . . . , Ǩn) (10)

where Ǩi = (∅, . . . , ∅,Ki, ∅, . . . , ∅) ∈ Kn. We can
state an additional result concerning the probability
of F ′n = F ′1 × · · · × F ′n, that is, the set of tuples of
non-empty closed subsets.

Corollary 1. In the situation of Proposition 1, if ψ
fulfills in addition for all 1 ≤ i ≤ n

sup{ψ(Ǩi) : Ki ∈ Ki} = 1

then Π(F ′n) = 1, that is, a tuple of closed sets almost
surely consists of non-empty sets.

Proof. Let {Lk
i }k∈N ∈ Ki be increasing sequences

such that Lk
i ↗ Ei for all 1 ≤ i ≤ n, let {Mk

i }k∈N ⊆
Ki be increasing sequences such that ψ(M̌k

i ) ↗ 1 for

all 1 ≤ i ≤ n and let Kk
i = Lk

i ∪Mk
i for all 1 ≤ i ≤ n

and k ∈ N. Consequently,

F ′n =
∪

k∈N
FKk

1
× · · · ×FKk

n

=
∪

k∈N

n∩

i=1

F̂Kk
i

=
n∩

i=1

∪

k∈N
F̂Kk

i
.

By the exclusion-inclusion principle we obtain

Π(F ′n) = Π
( n∩

i=1

∪

k∈N
F̂Kk

i

)

= −
∑

∅̸=I⊆{1,...,n}
(−1)|I|Π

( ∪

i∈I

∪

k∈N
F̂Kk

i

)

= −
∑

∅̸=I⊆{1,...,n}
(−1)|I|Π

( ∪

k∈N

∪

i∈I

F̂Kk
i

)

= −
∑

∅̸=I⊆{1,...,n}
(−1)|I| sup

k∈N
Π

( ∪

i∈I

F̂Kk
i

)
.

For all I ̸= ∅, i ∈ I and k ∈ N we have

ψ(Ǩk
i ) = Π(F̂Kk

i
) ≤ Π

( ∪

i∈I

F̂Kk
i

)
≤ 1

and thus

sup
k∈N

ψ(Ǩk
i ) = sup

k∈N
Π

( ∪

i∈I

F̂Kk
i

)
= 1.

Hence,

Π(F ′n) = −
∑

∅̸=I⊆{1,...,n}
(−1)|I| = 1.

Note that if we consider n almost surely non-
empty random sets X1, . . . , Xn on a probability space
(Ω,Σ, P ) then the multivariate capacity functional of
the product random set defined by Equation (5) is
given by

ψ(K1, . . . ,Kn) = P
( n∪

i=1

X−
i (Ki)

)
.

Hence, if the Ei are σ-compact spaces (which is the
case if the Ei are LCHS spaces) and {Kk

i }k∈N ⊆ Ki

are increasing sequences converging to Ei, respec-
tively, we obtain

lim
k→∞

ψ(Ǩk
i ) = lim

k→∞
P (X−

i (Kk
i )) = P (Xi ̸= ∅) = 1

and thus the condition of Corollary 1 is fulfilled.
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We will now relate multivariate capacity functionals
to set functions on special classes of subsets of the
product space En. Up to now we have used the fact
that a tuple (A1, . . . , An) of subsets of the Ei can be
identified with the set ⨿Ai =

∪n
i=1Ai × {i} which is

a subset of the co-product En
⨿. On the other hand,

a tuple (A1, . . . , An) can be identified with
∪n

i=1 Âi

where

Âi = {(x1, . . . , xn) ∈ En : xi ∈ Ai}.
Consequently, we have a one-to-one correspondence
between Kn and

K̂n
∪ =

{ n∪

i=1

K̂i : Ki ∈ Ki

}

and each set function ψ on Kn is related to a set
function ϕ on K̂n

∪ by

ψ(K1, . . . ,Kn) = ϕ
( n∪

i=1

K̂i

)
. (11)

Similar to Lemma 1 one has the following lemma.
Lemma 3. Let ψ : Kn → [0, 1] and ϕ : K̂n

∪ → [0, 1]
satisfying Equation (11) for all (K1, . . . ,Kn) ∈ Kn.
Then ϕ is a capacity functional (that is, ϕ fulfills Con-
ditions (CF1), (CF2) and (CF3) for sets from K̂n

∪)
if and only if ψ is a multivariate capacity functional
(that is, ψ fulfills Conditions (MCF1) - (MCF3) of
Lemma 1).

Proof. The equivalence follows from the relation
ϕ(

∪n
i=1 K̂i) = ψ(K1, . . . ,Kn). Indeed, we have∪n

i=1 K̂i = ∅ if and only if Ki = ∅ for all i and
thus ϕ(∅) = ψ(∅, . . . , ∅). Furthermore, by Formula (1)
we have for all K = (K1, . . . ,Kn) ∈ Kn, Kj =
(Kj

1 , . . . ,K
j
n) ∈ Kn

∆kψ(K;K1, . . . ,Kk)

= −
∑

J⊆{1,...,k}
(−1)|J|ψ

(
K ∪

∪

j∈J

Kj
)

= −
∑

J⊆{1,...,k}
(−1)|J|ψ

(
K1∪

∪

j∈J

Kj
1 , . . . ,Kn∪

∪

j∈J

Kj
n

)

= −
∑

J⊆{1,...,k}
(−1)|J|ϕ

( n∪

i=1

(
Ki ∪

∪

j∈J

Kj
i

)̂ )

= −
∑

J⊆{1,...,k}
(−1)|J|ϕ

( n∪

i=1

K̂i ∪
∪

j∈J

n∪

i=1

K̂j
i

)

= ∆kϕ
( n∪

i=1

K̂i;
n∪

i=1

K̂1
i , . . . ,

n∪

i=1

K̂k
i

)
.

The equivalence of (MCF3) and (CF3) follows from
the fact that Kk

i ↘ Ki for all 1 ≤ i ≤ n if and only if∪n
i=1 K̂

k
i ↘

∪n
i=1 K̂i.

Together with Proposition 1 this implies the following
proposition which gives a characterization of the joint
distribution of n random sets by a set function on K̂n

∪.

Proposition 2. Let ϕ : K̂n
∪ → [0, 1] be a capacity

functional, that is, ϕ fulfills Conditions (CF1), (CF2)
and (CF3) for sets from K̂n

∪. Then there exists a
unique probability measure Π : B(Fn) → [0, 1] such
that

ϕ
( n∪

i=1

K̂i

)
= Π

( n∪

i=1

F̂Ki

)

for all
∪n

i=1 K̂i ∈ K̂n
∪. If, in addition, for all 1 ≤

i ≤ n it holds that sup{ϕ(K̂i) : Ki ∈ Ki} = 1 then
Π(F ′n) = 1 and for all L ∈ K̂n

∪ it holds that

ϕ(L) = Π(nFL).

Proof. The main assertion directly follows from ap-
plying Proposition 1 to ψ : Kn → [0, 1] defined by
ψ(K1, . . . ,Kn) = ϕ(

∪n
i=1 K̂i) which is a multivari-

ate capacity functional by Lemma 3. The additional
statement follows from the fact that ψ(Ǩi) = ϕ(K̂i).
By virtue of Corollary 1 this implies Π(F ′n) = 1 which
further leads to

Π
( n∪

i=1

F̂Ki

)
= Π

(
F ′n ∩

n∪

i=1

F̂Ki

)

for all Ki ∈ Ki. Furthermore, we obtain

F ′n ∩
n∪

i=1

F̂Ki

=
n∪

i=1

{(F1, . . . , Fn) ∈ F ′n : Fi ∩Ki ̸= ∅}

=
n∪

i=1

{(F1, . . . , Fn) ∈ Fn : F1 × · · · × Fn ∩ K̂i ̸= ∅}

= nF n∪
i=1

K̂i

.

Hence, ϕ(L) = Π(nFL) for all L ∈ K̂n
∪.

One can think of extending the various set functions
to wider classes of sets. In case of a capacity func-
tional φ : Kn

⨿ → [0, 1] the extensions from Equa-
tion (2) can be used to obtain a completely alter-
nating Choquet-Kn

⨿-capacity φ∗ : Pn
⨿ → [0, 1] on

the power set of En
⨿. In case of a multivariate ca-

pacity functional ψ : Kn → [0, 1] or a capacity
functional ϕ : K̂n

∪ → [0, 1] one can define a corre-
sponding capacity functional φ on Kn

⨿ by the relation
φ(⨿Ki) = ψ(K1, . . . ,Kn) or φ(⨿Ki) = ϕ(

∪n
i=1 K̂i)

and use φ∗ to obtain ψ∗ or ϕ∗. On the other hand,
the extension procedure given by Equation (2) can be
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directly applied to ψ or ϕ which yields the same ψ∗

or ϕ∗ since ⨿Ai ⊆ ⨿Bi if and only if Ai ⊆ Bi for all
i if and only if

∪n
i=1 Âi ⊆

∪n
i=1 B̂i.

We have seen how a capacity functional ϕ defined on
K̂n
∪ can be extended to a Choquet-K̂n

∪-capacity on

P̂n
∪ =

{ n∪

i=1

Âi : Ai ∈ Pi

}
.

We point out that a further extension to all subsets
of En = E1 × · · · × En would not make much sense
since this extension would not be unique. Indeed,
consider the following two (deterministic) sets X1 =
[0, 1]2 and X2 = {(x, y) ∈ [0, 1]2 : x + y ≥ 1}. They
can be seen as random compact sets in R2 on a one
point probability space. The corresponding capacity
functionals ϕ1 and ϕ2 are given by

ϕi(A) =

{
1 if Xi ∩A ̸= ∅
0 if Xi ∩A = ∅

for each A ⊆ R2. Obviously, ϕ1 and ϕ2 coincide on
K̂2
∪ but they have different values on other sets, for

example, ϕ1(A) = 1 and ϕ2(A) = 0 for A = [0, 1/3]2.

4 Application to set-valued processes

Let T denote a time set, let (M,M) be a measurable
space and let (Ω,Σ, P ) be a probability space. Then
a map x : T × Ω → M is a stochastic process if for
each t ∈ T the partial map xt : Ω → M is measurable,
that is, x−1

t (B) ∈ Σ for all B ∈ M. Denoting by T
the set of all finite subsets of T , the process x induces
a family {µt}t∈T of probability measures where

µt : M⊗n→ [0, 1],
B 7→ P ({ω ∈ Ω : (xt1(ω), . . . , xtn(ω)) ∈ B}),

t = (t1, . . . , tn), M⊗n = M⊗ · · · ⊗M. The latter is
called the family of finite-dimensional distributions of
x and obviously fulfills the following two conditions:

(i) For all t = (t1, . . . , tn) ∈ T , B1, . . . , Bn ∈M and
each permutation σ of {1, . . . , n} it holds that

µt(B1 × · · · ×Bn) = µσ(t)(Bσ(1) × · · · ×Bσ(n))

where σ(t) = (tσ(1), . . . , tσ(n)).

(ii) For all t = (t1, . . . , tn) ∈ T , tn+1 ∈ T , B ∈ M⊗n

it holds that

µt1,...,tn+1(B ×M) = µt(B).

A family of finite-dimensional distributions is said to
be consistent if these two conditions are fulfilled. Un-
der the assumption that M is a complete separable
metric space endowed with its Borel sets B(M), the
well-known Daniell-Kolmogorov theorem [5, 7] says
that for any consistent family of finite-dimensional
distributions there exists a stochastic process whose fi-
nite dimensional distributions coincide with that fam-
ily. More precisely, consider the set of maps from T
to M denoted by MT which is endowed with the σ-
algebra B(MT ) generated by sets of the form {ω ∈
MT : (ω(t1), . . . , ω(tn)) ∈ B}, B ∈ B(Mn), ti ∈ T ,
n ≥ 1. Then there exists a probability measure µ on
B(MT ) such that for all t = (t1, . . . , tn) ∈ T (n ≥ 1)
and B ∈ B(Mn) it holds that

µt(B) = µ({ω ∈ MT : (ω(t1), . . . , ω(tn)) ∈ B}).
The desired process is then given by (t, ω) → ω(t).

By set-valued stochastic processes we mean stochastic
processes where M = F , that is, maps of the form

X : T × Ω → F
where Xt : Ω → F is Effros-measurable for all t ∈ T .
With the aid of Proposition 1 we can now formulate
an existence theorem for set-valued processes by using
multivariate capacity functionals.
Proposition 3. Let {ψt : t ∈ T } be a family of
multivariate capacity functionals (i.e. set functions
fulfilling Conditions (MCF1) - (MCF3) of Lemma 1).
Assume that the following consistency conditions are
fulfilled:

(i) For all n ≥ 1, t = (t1, . . . , tn) ∈ T , K1, . . . ,Kn ∈
K and each permutation σ of {1, . . . , n} it holds
that

ψt(K1, . . . ,Kn) = ψσ(t)(Kσ(1), . . . ,Kσ(n))

where σ(t) = (tσ(1), . . . , tσ(n)).

(ii) For all n ≥ 1, t = (t1, . . . , tn) ∈ T , tn+1 ∈ T ,
K1, . . . ,Kn ∈ K it holds that

ψt1,...,tn+1(K1, . . . ,Kn, ∅) = ψt(K1, . . . ,Kn).

Then the family {Πt : t ∈ T } obtained from Propo-
sition 1 is a consistent family of probability measures
and there exists a probability measure Π on B(FT )
such that for all t = (t1, . . . , tn) ∈ T (n ≥ 1) and
(K1, . . . ,Kn) ∈ Kn it holds that

ψt(K1, . . . ,Kn)

= Πt

({
ω ∈ FT : (ω(t1), . . . , ω(tn)) ∈

n∪

i=1

F̂Ki

})
.

(12)
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In addition, the condition sup{ψt(K) : K ∈ K} = 1
implies Πt({ω ∈ FT : ω(t) ̸= ∅}) = 1 for all t ∈ T .

Proof. Since E is an LCHS space, F is a compact
Hausdorff second countable space. Thus, F is also a
Polish space, that is, separable and completely metriz-
able. Hence, if we show that {Πt : t ∈ T } is a
consistent family of probability measures the classical
Daniell-Kolmogorov theorem can be applied directly
and Equation (12) is obtained from Proposition 1:

ψt(K1, . . . ,Kn) = Πt

( n∪

i=1

F̂Ki

)

= Π
({
ω ∈ FT : (ω(t1), . . . , ω(tn)) ∈

n∪

i=1

F̂Ki

})

It is enough to prove that the consistency conditions
for {Πt : t ∈ T } are fulfilled for cylindrical sets of the
form

FK11,...,K1k1
× · · · ×FKn1,...,Knkn

,

Kiji ∈ K, since they constitute a generating class of
B(Fn) = B(F)⊗n which is closed under finite inter-
sections. Similarly as in Equation (10) we obtain the
following formula

Πt(FK11,...,K1k1
× · · · ×FKn1,...,Knkn

)

= Πt

( n∩

i=1

F̂Ki1,...,Kiki

)
= Πt

( n∩

i=1

ki∩

ji=1

F̂Kiji

)

= −
∑

J∈J
(−1)|J|Πt

( n∪

i=1

∪

ji∈Ji

F̂Kiji

)

= −
∑

J∈J
(−1)|J|Πt

( n∪

i=1

F̂ ∪
ji∈Ji

Kiji

)

= −
∑

J∈J
(−1)|J|ψt

( ∪

j1∈J1

K1j1 , . . . ,
∪

jn∈Jn

Knjn

)

where J = {(J1, . . . , Jn) : Ji ⊆ {1, . . . , ki}} and |J | =∑n
i=1 |Ji|. Together with (i) this implies

Πt(FK11,...,K1k1
× · · · ×FKn1,...,Knkn

)

= Πσ(t)(FKσ(1)1,...,Kσ(1)kσ(1)
×· · ·×FKσ(n)1,...,Kσ(n)kσ(n)

)

In a similar manner as before we obtain

Πt1,...,tn+1(FK11,...,K1k1
× · · · ×FKn1,...,Knkn

×F)

= −
∑

J∈J
(−1)|J|ψt1,...,tn+1

(∪

j1∈J1

K1j1 , . . . ,
∪

jn∈Jn

Knjn , ∅
)
.

and thus (ii) implies

Πt1,...,tn+1(FK11,...,K1k1
× · · · ×FKn1,...,Knkn

×F)

= Πt(FK11,...,K1k1
× · · · ×FKn1,...,Knkn

).

The additional statement that sup{ψt(K) : K ∈ K} =
1 implies Πt({ω ∈ FT : ω(t) ̸= ∅}) = 1 directly fol-
lows from Corollary 1.

It should be mentioned that in [9] a Daniell-
Kolmogorov theorem for supremum preserving (also
called maxitive) upper probabilities has been proved.

With the aid of the foregoing proposition we can now
try to construct something like a set-valued Brownian
motion. Brownian motion is a real-valued stochas-
tic process in continuous time which is defined via a
consistent family of Gaussian distributions. More pre-
cisely, it is a process with continuous sample functions
starting at time 0 with value 0, and it has indepen-
dent, Gaussian distributed increments with mean 0.
We denote by {βt}t∈T (T = [0,∞)) its family of finite
dimensional distributions which is clearly consistent.
According to Equation (11) and Lemma 3 we get a
family of multivariate capacity functionals {ψt}t∈T
which can be easily seen to be consistent. In addi-
tion, we have for all t = (t1, . . . , tn) ∈ T and for all
1 ≤ i ≤ n that

sup{ψt(Ǩi) : Ki ∈ K} = sup{βt(K̂i) : Ki ∈ K}
= sup{βti(Ki) : Ki ∈ K} = 1.

By applying Propositions 2 and 3 we get a proba-
bility measure Π on B(F [0,∞)) such that for each
t = (t1, . . . , tn) ∈ T it holds that Πt(F ′n) = 1 and
for each (K1, . . . ,Kn) ∈ Kn we get

Π
({
ω ∈ F [0,∞) : (ω(t1), . . . , ω(tn)) ∈ nF n∪

i=1
K̂i

})

= Πt

( n∪

i=1

F̂Ki

)
= ψt(K1, . . . ,Kn) = βt

( n∪

i=1

K̂i

)
.

By defining

B : [0,∞)×F [0,∞) → F , (t, ω) 7→ Bt(ω) = ω(t)

we get a set-valued process with finite dimensional dis-
tributions {Πt}t and finite dimensional capacity func-
tionals {ψt}t. For time t ∈ [0,∞) and G ∈ G we get

Π({ω : Bt(ω) ∩G ̸= ∅}) = Πt(FG) = Πt

( ∪

n∈N
FKn

)

= lim
n→∞

Πt(FKn
) = lim

n→∞
βt(Kn) = βt(G)

where {Kn}n∈N ⊆ K is an increasing sequence such
that

∪n
i=1Kn = G. On the other hand, if we approx-

imate Gc by an increasing sequence {Kn}n∈N ⊆ K we
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obtain

Π({ω : Bt(ω) ⊆ G}) = Πt(FGc

) = 1−Πt(FGc)
= 1− lim

n→∞
Πt(FKn

) = 1− lim
n→∞

βt(Kn)

= 1− βt(Gc) = βt(G).

Consequently, the lower and the upper probability of
Bt coincide and thus, Bt is almost surely a singleton.
This means that although B has values in F it is
actually not a set-valued process but a version of
classical Brownian motion.

Note that there are other approaches to define a set-
valued Brownian motion via support functions (see
[11, 12]), but at least in the real-valued case they also
lead to set-valued processes that almost surely consist
of singletons.

5 Summary and conclusion

The goal of this paper was to give a characterization
of probability measures on the Borel subsets of Fn

(n ≥ 2) by set functions. The first approach was
to use a set function φ defined on the compact sub-
sets of the co-product En

⨿ and to apply the (classical)
Choquet theorem leading to a probability measure Q
on the Borel-σ-algebra of the closed subsets of En

⨿.
It has been shown that instead of φ one can equiv-
alently use a set function ψ defined on the cartesian
product Kn = K1 × · · · × Kn (Lemma 1). Moreover,
it has been demonstrated how to obtain a probabil-
ity measure Π on B(Fn) from Q (Lemma 2). This
resulted in a characterization of probability measures
on B(Fn) by set functions on Kn called multivari-
ate capacity functionals (Proposition 1). In addition,
Proposition 2 stated a characterization using set func-
tions on K̂n

∪ which is a special class of subsets of the
product space En = E1 × · · · × En. Figure 1 gives an
overview of the proposed characterizations.

φ : Kn
⨿ → [0, 1] -Thm. 1 Q : B(Fn

⨿) → [0, 1]

6

?
Lemma 1

?
Lemma 2

ψ : Kn → [0, 1] -Prop. 1 Π : B(Fn) → [0, 1]

6

?
Lemma 3

ϕ : K̂n
∪ → [0, 1]

�
�

�
��>

Prop. 2

Figure 1: Overview over characterizations of proba-
bility measures by set functions.

In Section 4, we have stated a Daniell-Kolmogorov
theorem for set-valued stochastic processes, that is,
we have demonstrated that for a consistent family
of multivariate capacity functionals there exists a
set-valued process whose finite dimensional upper
probabilities coincide with these multivariate capac-
ity functionals.
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Abstract 

We review de Finetti’s two coherence criteria for 

determinate probabilities: coherence1 defined in terms of 

previsions for a set of random variables that are 

undominated by the status quo – previsions immune to a 

sure-loss – and coherence2 defined in terms of forecasts 

for events undominated in Brier score by a rival forecast.  

We propose a criterion of IP-coherence2 based on a 

generalization of Brier score for IP-forecasts that uses 1-

sided, lower and upper, probability forecasts.  However, 

whereas Brier score is a strictly proper scoring rule for 

eliciting determinate probabilities, we show that there is 

no real-valued strictly proper IP-score.  Nonetheless, 

with respect to either of two decision rules – Γ-Maximin

or (Levi’s) E-admissibility-+-Γ-Maximin – we give a 

lexicographic strictly proper IP-scoring rule that is based 

on Brier score. 

Keywords. Brier score, coherence, dominance, E-

admissibility, Γ-Maximin, proper scoring rules. 

1. Introduction 

Starting in about 1960, de Finetti emphasized two 

coherence criteria – coherence1 for previsions and 

coherence2 for forecasts assessed by Brier score.   He 

established [2, 4] that these two criteria are equivalent for 

purposes of distinguishing between sets of previsions or 

sets of forecasts that are undominated versus those that 

are dominated.  Coherence is the common requirement 

that a decision maker avoids dominated alternatives.  

That is, a set of previsions are coherent1 i.e., they are 

undominated by the alternative of the status-quo – there 

is no “Book” – if and only if those same quantities, when 

used as forecasts evaluated by Brier score, are coherent2,

i.e., they are undominated by any rival set of forecasts.   

In his later presentations de Finetti favored coherence2

over coherence1 because, in addition to providing an 

equivalent criterion for coherence, also proper scores 

provide a method for incentive compatible elicitation, 

unlike the situation with coherence1 and the prevision 

game, as we call it.  In section 2, we make precise and 

explain these claims. 

De Finetti’s theory of coherent previsions, coherence1,

serves as the basis for numerous IP generalizations – see 

[7, 18, 19] for examples.  However, we know of no 

parallel development of IP theory based on proper 

scoring rules.  It is our purpose in this essay to report 

basic findings about scoring-rule based IP theory.  In 

section 3 we explain one approach to an IP version of 

coherence2.  In section 4 we present an impossibility 

result for a real-valued proper IP scoring rule.  By 

contrast, we illustrate a strictly proper, lexicographic 

(vector-valued) IP version of Brier score.  In section 5 we 

conclude with remarks about the approach begun here. 

2. De Finetti’s two criteria for coherence

2.1 Coherence1 and coherence2. The prevision game, is 

formulated for a class of bounded variables, X = {Xi: i ∈
I} each of which is measurable with respect to a space 

{Ω, B}, where I serves an index set.   

One player, the bookie, posts a fair, or 2-sided prevision 

P(Xi) for each Xi ∈ X.    The bookie’s opponent, the 

gambler, may choose finitely many non-zero real 

numbers {αi} where, when the state ω ∈ Ω obtains,  

the bookie’s payoff is   Σi αi( Xi(ω) – P(Xi) ), and the 

gambler’s payoff is the negative, -Σi αi( Xi(ω) – P(Xi) ).

That is, the bookie is obliged either to buy (if α > 0), or 

to sell (if α < 0) |α|-many units of X at the price, P(X).

Hence, the previsions are described as being 2-sided or 

fair buy/sell prices. 

The bookie’s previsions are incoherent1 if the gambler 

has a strategy that insures a uniformly negative payoff 

for the bookie, i.e., if there exist a finite set {αi} and ε > 

0 such that, for each ω ∈ Ω, Σi αi( Xi(ω) – P(Xi) ) < -ε.

Otherwise, the bookie’s previsions are coherent1.

De Finetti’s Fundamental Theorem of Previsions:

The bookie’s previsions {P(X): X ∈ X} are coherent1

if and only if  there is a finitely additive probability 

P whose expected value for X, EP[X], is the bookie’s

prevision:     

• Coherence1 if and only if EP[X] = P(X).

This result extends to include coherence1 for conditional 

expectations given non-null events, using the device of 

called-off previsions.   Let F be an event with F(ω) its 

indicator function.  The bookie’s called-off prevision, 
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PF[X], for X given event F has payoff in state ω to the 

bookie:    F(ω)α( X(ω) - PF(X) ), 

which equals 0 – the transaction is called-off – in case 

event F fails.  Assuming that the conditioning event is 

not null, i.e., P(F) ≠ 0, then 

• Coherence1 for called-off previsions requires: 

EP[X | F] = PF[X].

When the conditioning event F is null, coherence1 places 

no substantive constraints on the called-off prevision 

PF[X].  That is EP[F(ω)α( X(ω) - PF(X) )] = 0 regardless 

the real-value of PF[X].  This defect in de Finetti’s 

formulation has been discussed many times in the 

literature, and with a variety of different proposals to 

remedy the situation.  For three different corrections to 

this defect in coherence1 see [8, 10, and 20].  However, 

the problem with conditioning on null events does not 

arise for the questions addressed in this essay.  So we use 

de Finetti’s version of coherence1.

De Finetti [3] noted that strategic aspects of betting may 

affect elicitation of a bookie’s fair previsions.  For 

example, when the bookie (believes he/she) knows the 

gambler’s betting odds, then announcing a prevision is 

subject to strategic play in the game and may fail to 

reveal the bookie’s fair prevision. 

Example 1: Suppose the bookie’s fair (2-sided) prevision 

for an event G is .50.  But suppose the bookie is 

confident the gambler’s fair prevision for G is .75.   

So the bookie announces P(G) = .70, anticipating that the 

gambler will find it profitable to buy units of G at the 

inflated price.  Elicitation using the prevision game fails 

to identify the bookie’s fair price for G. ◊

Aside: There are other issues concerning elicitation in the 

prevision game.  Among these is the challenge of state-

dependent utilities [13], which we mention in section 5. 

To mitigate strategic aspects of the prevision game, de 

Finetti turned to a different coherence criterion: 

probabilistic forecasting subject to Brier score.  Hereafter 

we focus on forecasting events, represented by their 

indicator functions. E(ω) = 1 if ω ∈ E and E(ω) = 0 if 

ω ∉ E.

The bookie’s previsions serve as probabilistic forecasts 

subject to Brier score: squared-error loss.  The penalty 

for the forecast P(E) when ω ∈ Ω is given by two 

functions {g1, g0} depending upon the state:      

g1(P(E), ω) = (1 – P(E))
2
   if event ω ∈ E obtains; 

g0(P(E), ω) = (0 − P(E))
2   

 if event ω ∈ Ec
 obtains, 

which is summarized by the squared-error penalty score 

(E(ω) – P(E))
2

For the conditional (called-off) forecast PF(E), on 

condition that event F obtains, the score is   

F(ω)(E(ω) – P(E))
2
.

And just as in the prevision game, the score for a finite 

set of forecasts is the sum of the separate scores.   

Definition: A forecast set {P(X): X ∈ X} is coherent2 if, 

for each finite subset of X, there is no rival forecast set 

{P′(X): X ∈ X} whose scores uniformly dominates in Ω.

The two senses of coherence are equivalent, as de Finetti 

established. 

Proposition 1: A set of previsions is coherent1 in the 

prevision-game if and only if those same previsions are a 

coherent2 set of forecasts under Brier score.  

Proof:  Here is a geometric version of de Finetti’s 

projection argument for establishing that coherence1 = 

coherence2 with unconditional previsions/forecasts.  We 

use these ideas in Section 3 to extend coherence2 to an IP 

setting. 

 Let X = {X1, X2} where X1 is the indicator for an event A

and X2 is the indicator for the complementary event Ac
.

In Figure 1, below, a pair of forecasts, {Q(A), Q(Ac
)}

with 0 ≤ Q(A), Q(Ac
) ≤ 1, is depicted by the point (Q(A),

Q(Ac
) in the unit square.  Note: If either forecast is 

outside the unit interval, then it is outside the range for 

the variable being forecasted.  And then it is trivial to 

dominate that forecast with a rival forecast chosen to be 

closer to the nearest endpoint of the range of the variable 

in question. 

The coherent1 forecasts lie along the reverse diagonal, 

the simplex on two states, where Q(A) + Q(Ac
) = 1. No 

such point is dominated by any other coherent1 forecast, 

since moving along this line segment increases the 

distance, and hence increases the squared error relative to 

one endpoint or the other.   

Example 2: Consider, the incoherent1 previsions: P(A) = 

.6 and P(Ac
) = .7.   A Book is achieved against these 

previsions with the gambler’s strategy α1 = α2 = 1.  Then 

the net payoff to the bookie is -0.3 regardless which state 

ω obtains.   In order to see that these are also incoherent2

forecasts, review Figure 1. ◊

If the forecast previsions are not coherent1, they lie 

outside the probability simplex.  Project these 

incoherent1 forecasts into the simplex.  As in Example2,

(.60, .70) projects onto the coherent1 previsions depicted 

by the point (.45, .55).  By elementary properties of 

Euclidean projection, the resulting coherent1 forecasts are 

closer to each endpoint of the simplex.  Thus, the 

projected forecasts have a dominating Brier score 

regardless which state obtains. This establishes that the 

initial forecasts are incoherent2.  Since no coherent1

forecast set can be so dominated, we have coherence1 of 

the previsions if and only coherence2 of the 

corresponding forecasts.
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Figure 1 

Just as coherence1 fails to regulate called-off previsions 

given a null event, coherence2 does not regulate called-

off forecasts given a null event.   See [5] for a parallel 

revision to coherence2.

2.2 Incentive Compatible Scoring   

Brier score is just one of an infinite class of (strictly)

proper scoring rules: A coherent forecaster (uniquely) 

minimizes expected score by announcing previsions.  

Thus, forecasting with a (strictly) proper scoring rule 

avoids the problem of strategic behavior present in the 

prevision game: there is no opponent.  Even allowing 

different proper scoring rules for different forecasts, by 

taking the combined score for a finite set of forecasts as 

the sum of the individual scores, the result is again 

(strictly) proper.   Savage [11] and Schervish [12] 

characterize the (g0, g1) pairs for proper scoring rules.  In 

[14] we establish that all (proper) scoring rules produce 

the same distinction between coherent1 and incoherent1

forecasts as with Brier score, both for unconditional 

forecasts and for conditional forecasts given a non-null 

event. 

Proposition 2 [14]:   

2.1 When the scoring rule is proper, finite, and 

continuous, each incoherent1 forecast set is dominated by 

some coherent1 forecast set. 

2.2 When the scoring rule is proper, finite, but not 

continuous, each incoherent1 forecast set is dominated, 

but not necessarily by a coherent1 forecast set. 

Note: Result 2.1 can be established by a 

generalization of de Finetti’s geometric argument, 

where the projection depends upon the scoring rule. 

See [9].  The demonstration in [14] uses game-

theoretic reasoning.  

3.  Coherence2 with a Brier IP scoring rule.

Recall C.A.B.Smith’s [17] modification of de Finetti’s 

prevision game that provides a criterion of IP-coherence1

for (closed, convex) IP sets.  Rather than requiring a 2-

sided, fair price, permit the bookie to fix a pair of 1-sided 

previsions for each X ∈ X:

• The bookie announces one rate P(X) as a buying 

price for use when α > 0, and a possibly different 

selling price P (X) for use when α < 0.

The result is a generalized Book argument. See [19, 

chapter 2] for some history and basic results. 

Proposition 3:

(3.1) A bookie’s 1-sided previsions avoid sure loss if and 

only if there is a maximal, non-empty (closed, convex) 

set of finitely additive probabilities P where    

P(X)  < infemumP∈P EP[X]

And P (X)  > supremumP∈P EP[X].

When these inequalities are equalities, the 1-sided 

previsions are said to be IP-coherent1.

(3.2) By requiring lower and upper previsions for 

sufficiently many variables (from the linear span of X),

the 1-sided previsions avoid sure loss if and only if they 

are also IP-coherent1.  See Theorem 1.ii of [15]. 

We offer a parallel version for defining IP-coherence2

based on Brier score for 1-sided forecasts, as follows:  

 Use a lower forecast to assess a penalty score when 

the event forecasted fails;

 Use an upper forecast to assess a penalty score when 

the event forecasted obtains.

Let {Ei: i = 1, …, m} be m events defined over a finite 

partition Ω = {ωj: j = 1, …, n}.  The forecaster gives 

lower and upper probability forecasts {pi, qi} for each 

event Ei.

Scoring forecasts with a Brier-styled IP scoring rule:

Fix a state ω ∈ Ω.

If ω ∈ Ei the score for the forecast of Ei is  

(1-qi)
2
 = g1(qi, ω)

If ω ∉ Ei the score for the forecast of Ei is        

pi
2
   = g0(pi, ω)

That is, use the most favorable forecast value from the 

pair {pi, qi} for determining the score.  Just as with the 

other coherence criteria discussed here, the score for a set 

of forecasts is the sum of the individual forecast scores. 

Dominance:  A forecast set G (strictly) dominates another 

F if, for each ω ∈ Ω, the score for G is (strictly) less than 

the score for F.

But, since the vacuous {0 = pi, qi = 1} forecast dominates 

each rival {0 < pi′, qi′ < 1}, we require an additional 

restriction on the class of competing forecasts in order to 

avoid triviality of the resulting theory of IP-coherence. 

Aside: This is analogous to a problem that is usually 

ignored within traditional IP theory.  With 1-sided 

previsions, it remains coherent to be strategic: announce 

a lower buying (and/or a higher selling) price than one is 

prepared to accept.  That is, knowing who is the Gambler

(.60, .70)

(.45, .55) 

( Q(A)

Q(Ac)

de Finetti  

projection

(1,0) 

(0,1
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in the 1-sided Prevision Game, the Bookie may play 

strategically and mimic having a less determinate IP-

coherent1 set of previsions in order to secure strictly 

favorable gambles. 

We propose that IP-coherence2 takes into account both a 

rival model class M of coherent1 forecasts and the

relative imprecision in a forecast set.  Stated informally, 

a set of 1-sided forecasts F are incoherent2 when: 

(i) there exists a dominating set of forecast G that are  

(ii) at least as precise/determinate as F and  

(iii) where G belongs to the IP-coherent1 model class M.

We illustrate this idea by filling in the details of the two 

concepts: the rival model class M and relative 

informativeness between forecast sets. 

Example 3: M is the ε-contamination class.  Let P be a 

particular probability distribution over Ω = {ω1, …, ωn}.

Fix 0 ≤ ε ≤ 1.  Let Q be the simplex of all probability 

distributions on Ω.  The ε-contamination model with 

focus P, Pε, is the set of probability distributions on Ω

defined by Pε = {(1-ε)P + εQ: Q ∈ Q}.  For our 

purposes, it is useful to know that this class is 

characterized by specifying (IP-coherent1) lower 

probabilities for atomic events, and using the largest 

closed convex set of distributions satisfying those 

bounds.◊

In what follows we illustrate one index of relative

indeterminacy associated with our Brier-styled IP-

scoring rule. 

IP-forecasts over a finite partition for Brier-styled,

ε-contamination coherence2:   

Let F = { {pi, qi}: i = 1, …, n} be forecasts for each state 

ωi ∈ Ω ={ω1, ..., ωn}.

Define F’s score set S  by an ordered n-tuple of  n-

dimensional points:   

S = {(q1, p2, …, pn), (p1, q2, …, pn), …, (p1, p2, …, qn)}.

Thus, S  contains at most n-many distinct points. Each 

point in S has n-many coordinates.    

Observe that the IP-Brier-style score for F evaluated at 

state ωj is the square of the Euclidean distance from the 

jth
 point of S to the jth

 corner of the probability simplex 

on Ω.  Clearly, the IP-score for a forecast set can be 

improved merely by moving a lower forecast closer to 0, 

or by moving an upper forecast closer to 1. So, consider 

dominating forecast sets only when the dominating 

forecast has a score set that is less indeterminate than the 

score set for the dominated forecast.  Here is a candidate 

for relative indeterminacy which, when combined with 

our Brier-style IP-score, allows a characterization of ε-
contamination IP-coherence2.   

Definition: Forecast set F2 is at least as indeterminate as

forecast set F1 (or F1 is at least as determinate as F2) if 

the convex hull of score set S1, H(S1), is isomorphic 

under rigid movements (where both shape and sized are 

held fixed) to a subset of the convex hull of score set S2,

H(S2).

Note that this relation of relative imprecision, or relative 

indeterminacy, is merely a partial order.  We opt for such 

a concept so that relative indeterminacy may be extended 

to a variety of different real-valued indices of 

imprecision, e.g., by using generalized volume of the 

score set to quantify indeterminacy. 

We use these notions to define IP-coherence2 generally, 

and then continue with our illustration of IP-coherence2

with respect to the ε-contamination model. 

Definition:  Given an IP-scoring rule, a set F of IP-

forecasts is IP-incoherent2 with respect to the IP-model 

M provided that there is a dominating set of rival 

forecasts G from the model M where the set G is at least 

as determinate than the set F.  Say that F is IP-coherent2

with respect to M if it is not IP-incoherent2 with respect 

to M.  For convenience we will write these as M-

coherent2 and M-incoherent2

Observe that IP-incoherence2 reduces to de Finetti’s 

incoherence2 when all forecasts in F are determinate, i.e., 

when pi = qi for each forecasted event Ei (i ∈ I), and 

when M is the class of determinate, coherent1 forecasts.   

To see this, assume that |Ω| = k.  Then the score set S is 

the ordered set with k-many repetitions of the same |I|-

dimensional point.  Since the lower and upper F forecasts 

for an event are identical, the k-many points in S do not 

vary with ω.  So a dominating rival forecast set G = {p’i,

q’i} must also assign the same lower and upper values to 

each event Ei (that is, for each i ∈ I, p’i = q’i}, in order 

for G to be at least as determinate as F.  By Proposition

2.1, then if G dominates F the rival forecast set {pi’}

establish that F is incoherent2 and incoherent1.

Next, we provide two basic results for IP-coherence2

with respect to the ε-contamination model. 

Proposition 4:  Let 0 ≤ pi ≤ qi ≤ 1, with n-many forecasts 

F solely for atoms in a finite algebra Ω = {ω1, …, ωn}.

(4.1)  The score set S for F lies entirely within the 

probability simplex on Ω if and only if  the lower and 

upper forecasts F match an ε-contamination model.  And 

then F cannot be dominated by rival forecasts from a 

more determinate ε-contamination model. 

(4.2)  If all the elements of a score set S, associated with 

forecast set F, lie outside the probability simplex on Ω,

there is a dominating ε-contamination forecast model F*

with greater determinacy than F. F is IP-incoherent2

against rivals from the ε-contamination model.  
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Proof:    

(4.1) is established by elementary calculations.   If and 

only if each point of the score set S belongs to the 

probability simplex then, when state ωj obtains, 

corresponding to the jth
 point of S,  1 = qj + ∑i≠j pi, and 

this equality obtains for each j = 1, …, n.  Then there 

exists an ε ≥ 0 such that for each i = 1, …, n, qi = pi + ε,

which defines an ε-contamination model.  In the opposite 

direction, if forecasts for the atoms are based on an ε-

contamination model, for i = 1, …, n, qi = pi + ε, and then 

1 = qj + ∑i≠j pi so that all of the score set S lies in the 

probability simplex.  

Last, if S belongs to the probability simplex and a rival 

ε-contamination model F’ (with corresponding score set 

S’) dominates, then H(S) is a proper subset of H(S’) 

because for each j = 1, …, n, the jth
 point of S’ is closer 

to the jth
 extreme point of the probability simplex than is 

the jth
 point of S.  So, F’ is less determinate than F.  Thus 

F is IP-coherent2 with respect to the ε-contamination 

model. 

(4.2) follows by the Brouwer Fixed-Point Theorem. 

Begin with a forecast set F = F0, whose score set S0 has 

each of its n-many ordered points outside the simplex of 

coherent1 forecasts.  Recursively create rival forecast sets 

as follow.  Apply the (de Finetti) projection to each of 

these n-many ordered points of S0 taking them into the 

probability simplex of coherent1 forecasts.  This creates 

(at most) n-points  T1 = {t1, …, tn} where each t ∈ T1 is a 

probability distribution P(•) over Ω.  Form the new 

forecast set F1 = {{p1i, q1i}: i = 1, …, n} where p1i = 

mint∈T1{P(ωi)} and q1i = maxt∈T1{P(ωi)}.  This 

determines a new score set S1.  Since none of the points 

in S0 belongs to the probability simplex, by the same 

reasoning used in de Finetti’s analysis for Proposition 1, 

F1 dominates F0.

Just in case S1 lies in the simplex, when result (4.1) 

applies, the recursive procedure halts.  Otherwise 

forecast set F2 is created from a projection of score set S1

into the probability simplex, etc. (See Appendix 2 for an 

illustration.)   

Since Euclidean projections are continuous functions and 

the probability simplex is compact, the recursive process 

with forecast sets F0, F1, F2, …. has a fixed point F* in 

the class of  ε-contamination models.  By a simple 

adaptation of de Finetti’s argument for Proposition 1, the 

forecast set Fi+1 (weakly) dominates the forecast set Fi

unless Fi is a fixed point of the process.   

Note: It may be that Fi+1 merely weakly dominates Fi for i

≥ 1, since some but not all the points in S1 may lie in the 

probability simplex.  However, since all the points of S0

lie outside the probability simplex, F1 dominates F0.

Last, the projection of a closed, convex set, e.g., the 

projection of H(S) into the probability simplex, is 

isomorphic to a subset of H(S).  Thus, assuming that the 

each of the points of S0 is outside the probability simplex 

on Ω, the fixed point F* of the process F0, F1, F2, …, 

which belongs to the ε-contamination model class, 

strictly dominates F0 , and is at least as determinate as F0.

Hence, F0 is IP-incoherent2 with respect to the ε-

contamination class.  

Example4:  Here is an illustration of Proposition 4, IP-

coherence2 with respect to the ε-contamination model, 

using 5 different forecast sets.  Let Ω = {ω1, ω2, ω3}.

Forecasts are for the three atoms only.  The five forecast 

sets Fj
 (j = 1, …, 5) are given in the form {{pi, qi} for ωi:

i = 1, 2, 3}. The respective score sets have three points 

with coordinates {(q1, p2, p3), (p1, q2, p3), (p1, p2, q3)}, as 

described above.  Figure 2 diagrams the convex hull of 

each score set and shows the shaded 2-dimensional, 

triangular simplex of probability functions on Ω.

Figure 2 (for Example 4) 

The convex hull of the five score sets are color coded.  The 

simplex of probability distributions is shaded.  Each score set 

projects onto S2, the score set for forecast set F2, corresponding 

to an ε-contamination model. 

F1
 = { {.55, .80}, {.55, .80}, {.55, .80}}   

S1
 = {(.80, .55, .55), (.55, .80, .55), (.55, .55, .80)} 

F2
= { {.25, .50}, {.25, .50}, {.25, .50}}   

S2
 = {(.50, .25, .25), (.25, .50, .25), (.25, .25, .50)} 

F3
 = { {.20, .45}, {.20, .45}, {.20, .45}}   

S3
 = {(.45, .20, .20), (.20, .45, .20), (.20, .20, .45)} 

F4
 = { {.10, .35}, {.10, .35}, {.10, .35}}   

S4
 = {(.35, .10, .10), (.10, .35, .10), (.10, .10, .35)} 

F5
 = { {.05, .30}, {.05, .30}, {.05, .30}}   

S5
 = {(.30, .05, .05), (.05, .30, .05), (.05, .05, .30)} 
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The two forecast sets F1
 and F5

 are IP-incoherent1 in 

accord with Proposition 3.  Their 1-sided previsions lead 

to sure losses as, respectively, their lower (upper) 

forecasts are too great (too small). There is no 

determinate probability distribution agreeing with either 

set’s lower and upper forecasts. 

Forecast set F2
 corresponds to an ε-contamination model 

with focus the uniform probability P = (1/3, 1/3, 1/3) and 

ε =  1/6.  The convex hull of the score set S2
 lies in the 

probability simplex, as per Proposition (4.1). It is IP-

coherent1 and IP-coherent2 with respect to the ε-

contamination model class. 

Forecast set F3
 is IP-coherent1 as it has lower and upper 

forecasts agreeing with a closed convex set of 

probabilities.   Those values agree with an ALUP model, 

but not with an ε-contamination model.  That is, F3
 is IP-

coherent2 with respect to an IP-model class defined by 

specifying atomic lower and upper probabilities [ALUP], 

but not so with respect to the ε-contamination class, 

which is an IP-model class determined solely by atomic 

lower probabilities.  (See Appendix 1 for details.) 

Forecast set F4
 has lower and upper forecasts that do not 

match those from a closed convex set of probabilities.  Its 

intervals are too wide.  However, the uniform probability 

agrees with these forecasts, i.e., the probability values 

(1/3, 1/3, 1/3) fall inside the forecast intervals from F4
.

Thus, in accord with Proposition 3, the forecasts from F4

do not suffer a sure-loss in the 1-sided prevision game; 

however, F4
 is IP-incoherent1 and IP-incoherent2 with 

respect to the ε-contamination model class. 

As indicated by Figure 2, each of the other four convex 

hulls projects to H(S2
).  That is, the process described in 

the proof of Proposition (4.2) has F2
 as its fixed point for 

each of the five forecast sets, and the process terminates 

after (at most) one projection.◊
See Appendix 2 for an illustration of Proposition (4.2) 

where the fixed point is merely a limit of the process. 

4.  Incentive compatible IP-elicitation 

Recall that de Finetti favored coherence2 over coherence1

because, in addition to serving as an equivalent criterion 

of coherence, Brier score provides a strictly proper score.  

It provides incentive compatible elicitation for 

determinate probabilities.  For a forecaster whose 

degrees of belief about events are represented by a single 

probability function P(•) and who maximizes expected 

utility, she/he has a unique strategy for announcing 

forecasts (and called-off forecasts) that minimize 

expected Brier score.  Announce the probability P(E) for 

the forecast of event E.  If H is not-null, then announce 

the conditional probability P(E |H) for the called-off 

forecast of event E, on condition that H obtains.  Recall 

that when H is null, coherence2 places no restrictions on 

the called-off forecasts given H.  There is no difference 

to the expected score contributed by any conditional 

forecast of E, called-off if H fails, regardless whether that 

forecast is or is not coherent2.  See [5] for an improved 

version of coherence2.

What can be done to extend Brier score to an incentive 

compatible IP-scoring rule?  The question is ill-formed 

without a decision rule that extends maximizing expected 

utility to IP contexts.  We consider only decision rules 

that reduce to the rule of maximizing expected utility 

when those IP sets collapse onto the special case of a 

singleton set, where upper and lower probabilities are 

identical and a single probability distribution represents 

uncertainty.  Also, we require that decision rules respect 

the following weak form admissibility.  Let S(F, ω) be a 

real-valued IP-scoring rule for forecast set F in state ω.

Recall that scores are given in the form of a loss so that 

smaller is better. 

Admissibility Principle: If for each ω ∈ Ω S(F, ω) ≤

S(F’, ω), then F is admissible in a pairwise choice 

between rival forecasts F and F’.  Moreover, if for 

each ω this inequality is strict then F’ is inadmissible 

whenever F is an option. 

In this section we report two results about eliciting upper 

and lower probabilities for events when the forecaster’s 

opinion is represented by a closed, convex sets of 

probabilities on a finite state space.  

Proposition 5: There is no real-valued (strictly) proper IP 

continuous scoring rule. 

By contrast, however, 

Proposition 6: Under either the Γ-Maximin decision rule, 

or using one of Levi’s [8] lexicographic decision rules – 

E-admissibility followed by Γ-Maximin security – there 

is a strictly proper lexicographic IP-Brier scoring rule. 

The IP-decision rules we investigate in Proposition 6 are 

summarized as follows, with details given in Section 4.2:   

Γ-Maximin:  The admissible options in D are those that 

maximize their lower expected value. 

E-admissibility: An option X ∈ D is E-admissible if for 

some P ∈ P and each Y ∈ D,  EP[X] ≥ EP[Y].

E-admissibility-followed-by-Γ-Maximin:  Apply Γ-

Maximin to the set of E-admissible options in D.

Next, we establish and explain these findings. 

4.1 Proof of Proposition 5  The impossibility reported in 

this result is made evident by considering the demands 

on a real-valued strictly proper IP-scoring rule S(F’, ω),

for forecasting one event, E.

322 Teddy Seidenfeld & Mark J. Schervish & Joseph B. Kadane



Let the interval [p, q], 0 ≤ p ≤ q ≤ 1, represent the 

forecaster’s uncertainty for E.  In general, the IP-scoring 

rule may be written 

  g1([p, q], ω)    if ω ∈ E obtains, 

and  g0([p, q], ω)    if ω ∈ Ec
 obtains.  

When p = q, in order to be strictly proper and real-

valued, the scoring rule must satisfy Theorem 4.2 of 

Schervish [12].   Specifically, with 0 ≤ x ≤ 1, the loss for 

the point forecast S([x, x], ω), x satisfies  

 g1(x)  = g1(1) + (1− q)λ(dq)x
1∫    if ω ∈ E obtains; 

 g0(x)  = g0(0) + qλ(dq)0
x∫      if ω ∈ Ec

 obtains, 

where g1(1) and g0(0) are finite, and λ(dq) is a measure 

on [0, 1) that gives positive measure to every non-

degenerate interval.   Continuity of the scoring rule 

results from a continuous measure λ with no point 

masses.  For example, Brier score results by letting λ
have the constant density 2 on the unit interval. 

When p < q, the impossibility of a strictly proper IP-

scoring rule is a consequence of the fact that, since λ is 

positive on non-degenerate sub-intervals of the unit 

interval [0,1] and continuous, there will be rival interval 

forecasts [p, q] and [p’, q’] with   

 g1([p, q]) – g1([p’, q’])  ≥  0,  

and g0([p, q]) – g0([p’, q’])  ≥  0. 

Then the interval forecast [p’, q’] is admissible against 

the rival interval forecast [p, q].  When the interval [p, q]

is the forecaster’s IP-uncertainty for event E, she/he will 

not have reason to announce that as her/his forecast 

rather than the rival forecast [p’, q’] and the IP-scoring 

rule is not strictly proper.  If for each ω the inequality is 

strict, then the IP-scoring rule is not proper.

Example 5.  We illustrate Proposition 5 using the ideas 

about IP-coherence2 presented in section 4.  Consider 

Brier score adapted to a forecast interval [p, q].  That is, 

let b([p,q], ω) = g1([p, q], ω) = (1-q)
2
   if ω ∈ E,

and b([p,q], ω) = g0([p, q], ω) =   p2
       if ω ∈ Ec

.

Introduce a real-valued index of indeterminacy for a 

forecast set F, I(F), where I agrees with the partial order 

of relative imprecision used to define IP-coherence2.  For 

instance, let I([p, q]) = q-p.  For real values x, y, let 

H(x,y) be a real-valued function increasing in each of its 

arguments, e.g., H(x,y) = x + y.   Define an IP-Brier score 

for forecast set F by B(F,ω) = H(b(F,ω), I(F)).  Then by 

Proposition 5, B is an improper-IP scoring rule.  To 

complete the example, consider event E and compare the 

two interval forecasts [.25, .75] and [.50, .50].  Then  

B([.25, .75], ω)   =  1/16 + 1/2  =  9/16  

and  B([.50, .50], ω)   =   1/4 + 0 = 1/4. 

Hence, the interval forecast [.25, .75] is inadmissible 

under this IP-Brier scoring rule B.◊

4.2 Proof of Proposition 6  First we review the two 

decision rules mentioned in the result.  Let P be a closed, 

convex set of probabilities P on the space {Ω, B}.  Let χ
be the class of bounded random variables, X, each 

measurable with respect to this space.  For each X, write 

X for the infemum over P of the expected value of X,

X  = infP∈P EP[X],

which identifies the lower expected value for X with 

respect to P.  Identify a decision problem, D, with a 

closed subset of χ. That is, the options in a decision 

problem form a closed set of bounded variables.   

The two IP-decision rules we investigate in Proposition 6 

are defined as follows:   

Γ-Maximin:  The admissible options in D are those that 

maximize their lower expected value. 

Note:  By making both P and D closed sets, this max-min

operation is well defined. 

E-admissibility: An option X ∈ D is E-admissible if for 

some P ∈ P and each Y ∈ D,  EP[X] ≥ EP[Y].

E-admissibility-followed-by-Γ-Maximin:  Apply Γ-

Maximin to the set of E-admissible options in D.

In general, these decision rules have very different 

axiomatic characterizations.  Γ-Maximin is represented 

by a real-valued ordering of χ using X-values to index 

each option.  But that ordering violates the independence 

axiom for preferences.  E-admissibility is not represented 

by an ordering.  In fact, it does not even reduce to 

pairwise comparisons.  (See [16] for related discussion.)  

Nonetheless, next we construct a lexicographic IP-Brier 

score that is strictly proper under either of the two 

decision rules mentioned in Proposition 6. 

Proposition 5 precludes a proper IP-scoring rule that 

elicits both endpoint of the interval forecast [p,q] for 

event E.  However, we may elicit either endpoint alone.   

Define the lower-Brier scoring rule, b([x,y], ω) = b(x,ω)

as:  g1(x) =  (1-x)
2
   if ω ∈ E

g0(x) =  1 + x2
   if ω ∈ Ec

.

and the upper-Brier scoring rule, b ([x,y], ω) = b (y,ω)

as:  

1g (y) = (1-y)
2
 + 1 if ω ∈ E

0g (x) = x2
   if ω ∈ Ec

.

Each of these is a strictly proper scoring rule for eliciting 

determinate forecasts.  This follows immediately from 

Schervish’s representation (above,) where g1(1) = 0g (0)

= 0, g1(0) = 1g (1) = 1, and λ = 2 is the uniform (Brier) 

score density for both rules.  

Lemma 1: Under the Γ-Maximin decision rule, 

respectively, the lower- (upper-) Brier score is strictly 

proper for the lower (upper) endpoint of the IP-forecast 

[p,q] of event E.

Proof of Lemma 1: We give the argument for the lower-

Brier score.  The reasoning for the upper-Brier score is 
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similar. Let p = minP∈P P[E] and q = maxP∈P P[E], so that 

∀P ∈ P p ≤ P(E) ≤ q, and these bounds are tight.  The 

lower-Brier score of the forecast [r, s] for E depends 

solely on r.  The P-Expected score for forecast [r,s] is: 

EP[b[r,s]] = P(E)(1-r)
2
 + (1-P(E))(1+r2

)

   = (1-r)
2
 + 2r(1-P(E)).

By simple dominance, 0 ≤ r ≤ 1.  For a given forecast r,

this expected penalty score is greatest at P(E) = p, when 

the expected score is (1-r)
2
 + 2r(1-p).    But since lower-

Brier score is strictly proper, this worst value is best, i.e., 

the worst of these expected scores is smallest uniquely 

for a forecast with r = p.  Lemma 1

Lemma 2: Under the E-admissibility-followed-by-Γ-

Maximin decision rule, respectively, the lower- (upper-) 

Brier score is strictly proper for the lower (upper) 

endpoint of the IP-forecast [p,q] of event E.

Proof of Lemma 2: Again, we give the argument only for 

the lower-Brier score.  Since lower-Brier score is a 

strictly proper scoring rule for determinate forecasts, the 

E-admissible forecasts are those of the form  [r, s] where 

p ≤ r ≤ q. Then, by Lemma 1, the Γ-Maximin solution 

from this set is uniquely solved at r = p.  Lemma 2

By Proposition 5, unfortunately, the real-valued 

composite score obtained by adding together these two 

scores,  b ([r,s]) = b([r,s]) + b ([r,s],  is not IP-proper, 

which we illustrate with the following example. 

Example 6: We illustrate the impropriety of the real-

valued IP-score, b ([r,s]), in accord with Proposition 5. 

Consider an extreme case where the forecaster is 

maximally uncertain of event E, so that the vacuous 

probability interval [0, 1] represents her/his uncertainty. 

The forecast [.5, .5] has constant b -score, i.e.,  

b ([.5, .5], ω) =  1 + ¼ + ¼ = 1.5,  

independent of ω.

The straightforward forecast [0,1] has the constant score   

b ([0, 1], ω) =  1+1 = 2,

independent of ω.  So forecast [.5, .5] strictly dominates 

forecast [0,1] under the b -scoring rule.◊

Therefore, we use a 2-tier lexicographical composite 

scoring to combine these two rules in a manner that 

create a strictly proper IP-Brier score. 

Definition: The two-tier, lexicographic IP-Brier score for 

the interval forecast [p, q] of event E, which we write as 

bLU([r,s]), is the 2-tier lexicographic loss function  

bLU([r,s], ω)  = < b([r,s], ω), b ([r,s], ω) >. 

That is, lexicographically, first apply the loss function 

b([r,s]), and among those forecasts have equal b-value, 

then apply the b ([r,s]) loss function.  By the preceding 

two lemmas, under the two decision rules named in 

Proposition 6, only the interval [p,q] is bLU-optimal for 

forecasting event E when the forecaster’s uncertainty for 

that event is the IP-interval [p,q].  

Aside:  It is evident that the order of the components is 

irrelevant in this 2-tiered, lexicographic IP-Brier score.  

To elicit an IP-forecast set F = { {pi, qi}: i = 1, …, n} for 

the events {E1, E2, …, En} use, e.g., the 2n tiered 

lexicographic IP-Brier score  

< b1([r1,s1]), b 1([r1,s1]), …, bn([rn,sn]), b n([rn,sn]) >.

Then the following is immediate from Proposition 6. 

Corollary. The 2n-tiered, lexicographic IP-Brier score is 

strictly proper under either the Γ-Maximin or E-

admissibility-followed-by-Γ-Maximin decision rules.   

As above, the order of the 2n-terms is irrelevant. 

5. Summary

When coherence1 of 2-sided previsions is not enough, 

and elicitation also matters, then Brier score offers an 

incentive compatible scoring rule with an equivalent 

coherence criterion: coherence2 – avoid dominated 

forecasts.  This is de Finetti’s analysis, Proposition 1.

We extend Brier scoring to IP-coherence2 of interval-

valued forecasts, analogous to the familiar use of 1-sided 

(lower and upper) previsions for defining IP-coherence1.

Subject to an IP-scoring rule for forecasting events, the 

coherent forecaster gives lower and upper probabilistic 

forecasts for a particular set of events that characterize 

elements of an IP-model class M – e.g., the ε-

contamination class is characterized by IP-forecasts for 

the atoms of the measure space – Proposition 4.  

Coherence2 of the set of IP-forecasts requires that these 

lower and upper forecasts are not dominated by any more 

determinate IP model within the model class M, subject 

to the same IP scoring rule.  

However, a distinguishing feature between coherence1

and coherence2, namely that Brier score is incentive 

compatible for elicitation of 2-sided (real-valued) 

forecasts for events, does not extend to 1-sided forecasts.  

That is, according to Proposition 5, there is no strictly 

proper, real-valued IP-scoring rule for events.  However, 

by relaxing the conditions on scoring rules to permit 

lexicographic utility, subject to either of two IP-decision 

rules, there do exist strictly proper IP-scoring rules for 

eliciting closed, interval-valued probability forecasts. 

There are numerous open questions relating to the 

preliminary work reported in this paper.  We list three 

topics on which we are currently at work. 

1) A different challenge to elicitation, even when 

probability is determinate, is the problem posed by state-

dependent utilities.  This arises in the choice of the 
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numeraire that is to be used, either with outcomes of 

previsions for coherence1, or in scoring forecasts for 

coherence2.  (See [13] for discussion of the problem in 

the setting of coherence1.)

Does forecasting afford any advantage over betting 

in this context and is there a difference also with IP-

elicitation? 

2) As noted in Section 2, neither coherence1 nor 

coherence2 constrains, respectively, a called-off prevision 

for an event or a called-off forecast for an event, given a 

null event. However, lexicographic expected utility [8] is 

one approach among several others available [5, 10, 20] 

for improving the treatment of 2-sided conditional 

probability with called-off previsions given a null event.  

(See [1] for a review of some of the open issues.)  

Proposition 6 relies on a lexicographic scoring rule to 

establish propriety with respect to interval valued 

forecasts.   

Can we use lexicographic scoring rules also to elicit 

called-off forecasts given a null event? 

3) De Finetti’s theory of coherence is designed to 

accommodate all finitely additive probabilities.  That is, 

countable additivity is not a requirement of coherence1 or 

coherence2.  This is achieved by insisting that 

incoherence, i.e., a failure of simple dominance, is 

achieved using only finitely many previsions or only 

finitely many forecasts at one time.  In other words, a 

coherent set of previsions or forecasts may be dominated 

when more than finitely many are combined at once, 

even though they cannot be dominated when only finitely 

many are combined.  It is interesting, we find, that even 

with determinate probabilities, coherence1 and 

coherence2 are not equivalent in this regard.  There are 

settings where countably many coherent2 forecasts may 

be combined and remain undominated by all rival 

forecasts, though these same previsions may result in a 

sure-loss when countably many are combined into a 

single option [17].   

In order to accommodate all finitely additive 

probabilities, when does IP-coherence2 depend upon 

the restriction that violations of dominance matter 

only when finitely many forecasts are scored at the 

same time? 
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Appendix 1 

The Atomic Lower-Upper Probability [ALUP] class.   

This IP-class consists of closed, convex sets of 

probabilities defined by lower and upper probabilities for 

atomic events.  That is an ALUP model is the largest 

(closed) convex set of distributions that satisfy such 

bounds, where the bounds are achieved by the lower and 

upper probability values given for the atoms of the space.  

See [6] for discussion about this IP-class of models.   

IP-coherence2, where rival forecasts are taken from the 

ALUP class, arises when the forecaster is called upon to 

give lower-and-upper forecasts for each atom, ω, and for 

the complement to each atom, ωc
, in the space.  That is, 

in order to duplicate Proposition 4 for the ALUP class 

the forecaster is called upon to give 2n-many forecasts 

when Ω = {ω1, …, ωn}.  Example 7 illustrates this. 

Example 7 (a continuation of Example 4):  An illustration 

of ALUP-coherence2.  We provide 3 forecast sets for the 

atoms, and the their complements in a space defined by  

Ω = {ω1, ω2, ω3}.   That is, each forecast set includes IP-

forecasts for 6 events.  Forecast sets Fj
(j = 2, 3, 4) are 

given as 6 pairs: {pi, qi} for ωi, ωi
c i = 1, 2, 3.  Each of 

the corresponding 3 score sets is comprised by 3 points, 

corresponding to the 3 states in Ω.  Each point in a score 

set has 6 coordinates, corresponding to the scores for 

forecasts of (ω1, ω1
c
, ω2, ω2

c
, ω3, ω3

c
).

F2 =  

        ω1              ω1
c                  ω2              ω2

c            ω3         ω3
c

{{.25, .50} {.50, .75} {.25, .50} {.50, .75} {.25, .50} {.50, .75}}  

S2    =     (.50, .50, .25, .75, .25, .75)  for ω1

    (.25, .75, .50, .50, .25, .75)   for ω2

     (.25, .75, .25, .75, .50, .50)    for ω2

F3 =  

          ω1            ω1
c                  ω2              ω2

c            ω3          ω3
c

{ {.20, .45} {.55, .80} {.20, .45} {.55, .80} {.20, .45} {.55, .80} }   

S3    =   (.45, .55, .20, .80, .20, .80)  for ω1

  (.20, .80, .45, .55, .20, .80)  for ω2

  (.20, ,80, .20, .80 .45, .55)} for ω3

F4 =  

          ω1             ω1
c                  ω2             ω2

c             ω3          ω3
c

{ {.10, .35} {.65, .90} {.10, .35} {.65, .90} {.10, .35} {.65, .90} }  

S4    =   (.35, .65, .10, .90, .10, .90) for ω1

  (.10, .90 .35, .65, .10, .90)  for ω2

  (.10, .90, .10, .90, .35, .65)} for ω3

Forecast sets F2 and F3 are ALUP-coherent.  There do not exist 

more precise forecast sets from the ALUP-model that dominate 

either of these sets of forecasts. Their score sets lie in the 

probability simplex for these 6 events. 

Forecast set F4 is ALUP-incoherent.  A de Finetti projection of 

S4 produces a more determinate rival ALUP forecast with 

dominating IP Brier score.  In fact, the projection produces a 

more informative ε-contamination model that dominates.  The 

respective IP-Brier scores for F4 and for F2 are independent of 
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ω:  For F4 the score is a constant penalty of 0.885.  For F2 it is a 

constant penalty of 0.750. 

Appendix 2 

Example 8 – This construction provides a more complicated 

illustration of Proposition 4 where the fixed point F* of the 

process is a limit of the recursive procedure given in the proof 

of (4.2).  Let Ω = {ω1, ω2, ω3}.  Forecast sets Fj are of the form  

{{pi, qi} : for events ωi: i = 1, 2, 3}.  

 F = F0 = { {.25, .60}, {.20, .50}, {.10, .40} }   

 S = S0 = {(.60, .20, .10), (.25, .50, .10), (.25, .20, .40)} 

(Step 1)  Project score set S0 to form set  

T1 = { (.6 3 , .2 3 ,, .1 3 ,), (.30, .55, .15), (.30, .25, .45)} 

Form the new forecast and score sets F1, S1 based on the 

probabilities in set T1

F1 = { {.30, .6 3 } {.2 3 , .55} {.1 3 , .45} }   

S1 = {(.6 3  .2 3  .1 3 ) (.30, .55, .1 3 ) (.30, .2 3 , .45)} 

(Step 2) Project set S1 to form set  

T2 = { (.6 3 , .2 3 , .1 3 ) (.30 5 , .5 5 , .1 5 ) (.30 5 , .2 5 , .4 5 )}

Form the new forecast and score sets F2, S2 based on the 

probabilities in set T2

F2 = { {.30 5 , .63 3 } {.23 3 , .55 5 } {.13 3 , .45 5 } }

S2 = {(.6 3 , .2 3 , .1 3 ) (.30 5 , .5 5 , .1 3 ) (.30 5 , .2 3 , .4 5 )}

(Step 3) Project S2 to form set 

T3 = { (.6 3 , .2 3 , .1 3 ) (.30 047 , .55 047 , .13 047 )

        (.30 047 , .23 047 , .45 047 )}

Form the new forecast and score sets F3, S3 based on the 

probabilities in set T3

F3 = { {.30 047 , .6 3 } {.2 3 , .55 047 } {.1 3 , .45 047 } }

S3 = {(.6 3 , .2 3 , .1 3 ) (.30 047 , .55 047 , .1 3 )

         (.30 047 , .2 3 , .45 047 )}

(Step 4) Project S4 to form set  

T4 ≈ { (.6 3 , .2 3 , .1 3 ) (.308, .558, .134) (.308, .234, .458)} 

Form the new forecast and score sets F4, S4 based on the 

probabilities in set T4

F4 = { {.308, .6 3 } {.2 3 , .558} {.1 3 , .458} }  

S4 = {(.6 3 , .2 3 , .1 3 ) (.308, .558, .1 3 ) (.308, .2 3 , .458)} 

Iterate the process which converges to forecast set    

F* = { {.308 6 , .6 3 } {.2 3 , .558} {.1 3 , .458} } 

and score set    

S* = {(.6 3 , .2 3 , .1 3 ) (.308 6 , .558, .1 3 )

           (.308 6 , .2 3 , .458)} 

F* is an ε-contamination model whose IP-Brier score 

dominates F’s score.  F* has greater informativeness (greater 

determinacy) than forecast F as the hull H(S*) is isomorphic to 

a proper subset of the hull H(S).
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Abstract

A reanalysis of Budescu et al.’s (2009) data on numer-
ical interpretations of the Intergovernmental Panel
on Climate Change (IPCC 2007) fourth report’s ver-
bal probability expressions (PE’s) revealed that neg-
ative wording has deleterious effects on lay judge-
ments. Budescu et al. asked participants to inter-
pret PE’s in IPCC report sentences, by asking them
to provide lower, “best” and upper estimates of the
probabilities that they thought the authors intended.
There were four experimental conditions, determining
whether participants were given any numerical guide-
lines for translating the PE’s into numbers.

The first analysis presented here focuses on six sen-
tences in Budescu et al. that used the PE “very
likely” or “very unlikely”. A mixed beta regression
(Verkuilen & Smithson, in press) modelling the three
numerical estimates revealed a less regressive mean
and less dispersion for positive than for negative word-
ing in all three estimates. Negative wording therefore
resulted in more regressive estimates and less consen-
sus regardless of experimental condition.

The second analysis focuses on two statements that
were positive-negative duals. Appropriate pairs of
responses were assessed for conjugacy and additiv-
ity. A large majority of respondents were appropri-
ately super- and sub-additive in their lower and upper
probability estimates. A mixed beta regression model
of these three variables revealed that the P (A) and
P (Ac) pairs adhered most closely to conjugacy. Also,
the greatest dispersion occurred for P (A) + P (Ac),
followed by P (A) + P (Ac). These results were driven
by the dispersion in the estimates for the negatively-
worded statement. This paper also describes the ef-
fects of the experimental conditions on conjugacy and
dispersion.

Keywords. subjective probability, probability ex-
pression, elicitation, conjugacy, risk communication,
climate change.

1 Introduction

The Intergovernmental Panel on Climate Change
(IPCC) has provided reports that synthesize and
assess information regarding scientific understand-
ing of climate change phenomena and their poten-
tial impact. The fourth IPCC (2007) report uti-
lizes verbal phrases to describe the uncertainties af-
filiated with its major claims. These phrases in-
clude positively- and negatively-worded probabilistic
expressions (PE’s, e.g., “very likely” and “very un-
likely”). The guidelines for the IPCC fourth report
provided its authors a numerical translation of the
seven PE’s they recommended for use in the report
(Table 1). These guidelines also are included in the
assessments and executive summaries.

Table 1: IPCC Probability Phrase Numerical Guides
Phrase IPCC Range
Virtually certain > 99%
Extremely likely > 95%
Very likely > 90%
Likely > 66%
More likely than not > 50%
About as likely as not 33%− 66%
Unlikely < 33%
Very unlikely < 10%
Extremely unlikely < 5%
Exceptionally unlikely < 1%

Budescu, Broomell, and Por (2009) conducted an ex-
perimental study of lay interpretations of these PE’s,
using 13 relevant sentences from the IPCC report.
Three sentences contained the PE “very likely,” three
others had “likely,” three more had “more likely than
not,” three had “unlikely,” and three used “very un-
likely.” PE’s such as “very likely” are positively-
worded PE’s, whereas PE’s such as “very unlikely”
are negatively-worded PE’s. Four examples are:
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1. It is very likely that hot extremes, heat waves,
and heavy precipitation events will continue to
become more frequent.

2. Global average sea level in the last interglacial
period (about 125,000 years ago) was likely 4 to
6 m higher than during the 20th century, mainly
due to the retreat of polar ice.

3. Temperatures of the most extreme hot nights,
cold nights and cold days are unlikely to have in-
creased due to factors other than anthropogenic
forcing.

4. It is very unlikely that hot extremes, heat waves,
and and heavy precipitation events will not con-
tinue to become more frequent.

Budescu et al. asked 223 participants to interpret
PE’s in these sentences by providing lower, “best” and
upper estimates of the probabilities that they thought
the authors intended. Participants did so by using
numerical sliders on a computer screen. Participants
were randomly assigned to one of four conditions:

• Control: No numerical guide to the PE’s

• Translation: Participants were shown the IPCC
numerical translation guide to the PE’s

• Wide: Each sentence contained its appropriate
IPCC numerical translation guide

• Narrow: Each sentence contained a numerical
translation that was a sub-interval of the IPCC
translation range

Budescu et al. reported that participants’ “best” esti-
mates were more regressive (toward the middle of the
unit interval) than the IPCC guidelines’ stipulations,
although less so in the Narrow and Wide conditions.
The Narrow condition provided the largest improve-
ment in the quality of responses over the Control con-
dition.

Budescu et al. ensured that four of their target sen-
tences included negatively-worded PE’s, but they did
not assess whether the valence of the PE’s had any
effects on participants’ interpretations. Nevertheless,
it is apparent from Figures 2-4 in their paper that
the negatively-worded PE’s yielded a greater spread
of responses (i.e., less consensus) than the positively-
worded phrases, and the median responses were more
regressive. Both possibilities are worthwhile evaluat-
ing because of their implications for eliciting and com-
municating imprecise probability judgments. Indeed
there is empirical evidence that ”positive” and ”nega-
tive” PEs induce different actions and interpretations
(e.g. Teigen & Brun, 1999).

We model the lower (P (A)), best (P (A)), and up-
per (P (A)) probabilities simultaneously, via a mixed
GLM for beta-distributed random variables (Smith-
son & Verkuilen, 2006; Verkuilen & Smithson, in
press). A description of and rationale for this model
are given in the Appendix, along with explanations of
its parameters.

2 Positive Versus Negative Wording
Effects

Responses to the three sentences using “very likely”
and the three using “very unlikely” from Budescu et
al. were modeled, with responses to the “very un-
likely” statements subtracted from 1 to render them
comparable to those from the “very likely” state-
ments. Figure 1 shows boxplots of the resultant data.
They indicate that there are differences in location
and dispersion between the positive versus negative
PE’s, across the lower, best and upper estimates, and
between experimental conditions.

Figure 1: Boxplots of Estimates for Six Questions

We now describe the model of the effects shown in Ta-
ble 2. The dependent vector consists of six sets of sub-
vectors {yij1, yij2, yij3} =

{
P (A)ij , P (A)ij , P (A)ij

}
,

for j = 1, . . . , 6. To respect the ordering yij1 ≤ yij2 ≤
yij3, we define xi2 = 1 for yijk = yij2 or yijk = yij3

and 0 otherwise, and xi3 = 1 for yijk = yij3 and 0
otherwise. We also restrict the regression coefficients
for these dummy variables to be non-negative by ex-
ponentiating them. The “very likely” versus “very
unlikely” predictor is qi = 1 for “very likely” and 0 for
“very unlikely”. The experimental condition predic-
tors are ti1 = 1 for the Translation condition, ti2 = 1
for the Narrow condition, ti3 = 1 for the Wide con-
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dition, and 0 otherwise. Using likelihood-ratio tests
and AIC as guides, the best model is

log
(

µijk

1−µijk

)
= β0 + x2ie

β1+β2qi + x3ie
β3 + β4qi

+β5t1i + β6t2i + β7t3i + bi,
(1)

where bi ∼ N(0, e2u), and

log (φijk) = δ0 + (δ1 + δ2qi) x2i + (δ3 + δ4qi) x3i+
(δ5 + δ6t1i + δ7t2i + δ8t3i) qi + δ9t1i + δ10t2i + δ11t3i.

(2)
The coefficients, standard deviations and confidence
intervals are shown in Table 2.

Table 2: Mixed Model Parameter Estimates
95% Confid. Interval

Param. Estim. S.E. Lower Upper

Location Submodel
β0 -0.202 0.096 -0.391 -0.012
β1 -0.354 0.081 -0.513 -0.196
β2 0.472 0.089 0.297 0.647
β3 -0.160 0.054 -0.266 -0.054
β4 0.369 0.058 0.255 0.482
β5 0.105 0.124 -0.139 0.349
β6 0.768 0.139 0.494 1.042
β7 0.343 0.134 0.078 0.607
u -0.417 0.054 -0.524 -0.311

Precision Submodel
δ0 0.526 0.065 0.397 0.654
δ1 0.319 0.066 0.189 0.448
δ2 0.576 0.100 0.380 0.772
δ3 -0.003 0.070 -0.141 0.135
δ4 -0.272 0.095 -0.458 -0.085
δ5 0.086 0.091 -0.093 0.265
δ6 0.365 0.107 0.155 0.575
δ7 0.707 0.125 0.460 0.953
δ8 0.466 0.116 0.237 0.696
δ9 -0.185 0.074 -0.332 -0.039
δ10 0.459 0.087 0.288 0.629
δ11 0.264 0.083 0.100 0.428

The location submodel’s β4 coefficient indicates that
the positive statement probabilities were more ex-
treme (less regressive) than their negative statement
counterparts. This model’s β2 coefficient also shows
that this effect is boosted for the “best” and upper
estimates. Significant experimental condition effects
occur only in the narrow and wide conditions. In both
of those conditions responses are more extreme than
in the control condition, and of course this effect is
greatest for the narrow condition.

The precision submodel is somewhat more complex.
The δ1 coefficient indicates greater precision for the
“best” probability estimates than for the lower prob-
ability estimates, and δ2 suggests this is amplified for
the positively-worded statements. However, the nega-
tive δ4 coefficient suggests that this amplification does

not hold for the upper estimates.

The positive-negative wording factor moderates the
experimental conditions effects in the precision sub-
model. The interaction effect coefficients δ7 and δ8

amplify the greater precision effects from the narrow
and wide conditions for the positively-worded sen-
tences, while the δ6 coefficient negates the lower preci-
sion in the translation condition for negatively-worded
statements.

The model recovers the mean structure reasonably
well. The observed and predicted means are shown
in Table 3. The largest inaccuracies are a tendency to
under-estimate the lower probability means, and the
means for the negative PE’s tend to have larger er-
rors (RMS error = .045) than the positive PE’s (RMS
error = .029).

Table 3: Mixed Model Predicted and Observed Means
control treatment narrow wide

Negative: “Very Unlikely”
Observed
lower .500 .552 .693 .580
best .652 .686 .775 .702
upper .825 .798 .863 .866
Predicted
lower .450 .476 .638 .535
best .622 .647 .780 .699
upper .794 .811 .893 .845
Error
lower -.051 -.076 -.055 -.048
best -.028 -.039 .006 -.003
upper -.031 .013 .028 -.021
Positive: “Very Likely”
Observed
lower .562 .613 .769 .629
best .809 .816 .856 .828
upper .905 .912 .930 .927
Predicted
lower .542 .568 .718 .625
best .784 .802 .887 .837
upper .895 .905 .948 .923
Error
Lower -.021 -.045 -.051 -.004
best -.024 -.015 .031 .009
upper -.010 -.007 .019 -.003

3 Conjugacy

Two target sentences in Budescu et al. (2009) were
positive-negative duals:

• Q1: It is very likely that hot extremes, heat
waves, and heavy precipitation events will con-
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tinue to become more frequent.

• Q12: It is very unlikely that hot extremes, heat
waves, and heavy precipitation events will not
continue to become more frequent.

This fact provides an opportunity to examine the rela-
tionships among subjective estimates of the lower and
upper probabilities of A its complement Ac. Accord-
ingly, this section assesses the responses to this pair
of sentences for adherence to superadditivity for lower
probabilities, subadditivity for upper proabilities, and
the conjugacy rule for lower and upper probabilities.

The superadditivity requirement is P (A)+P (Ac) ≤ 1,
and the subadditivity requirement is P (A)+P (Ac) ≥
1. A large majority (83.4%) of the respondents’ lower
probabilities summed to less than 1, and an even
larger majority (97.8%) of respondents’ upper proba-
bilities summed to more than 1.

Conjugacy is tested via the sums of appropriate pairs
of responses, the criteria being
P (A) + P (Ac) = 1,
P (A) + P (Ac) = 1, and
P (A) + P (Ac) = 1,
where Ac denotes the complement of event A. Figure
2 shows the boxplots for the three sums and four ex-
perimental conditions. The medians all are quite close
to 1 (conjugacy). However, there appear to be main
effects on dispersion both for experimental conditions
and the sums.

Figure 2: Boxplots of Sums

Turning to a model for the effects, for convenience the
three sums described above were divded by 2, so that
they lie in the unit interval. The dependent vector

{yij1, yij2, yij3} consists of the three sums in the order
listed above, each divided by 2. We define xi2 = 1 for
yijk = yij2 and 0 otherwise, and xi3 = 1 for yijk = yij3

and 0 otherwise. The experimental condition predic-
tors are defined as before. In terms of likelihood-ratio
tests and AIC the best model is

log
(

µijk

1− µijk

)
= β0 + β1x2i + β2x3i + bi, (3)

where bi ∼ N(0, e2u), and

log (φijk) = δ0+δ1x2i+δ2x3i+δ3t1i+δ4t2i+δ5t3i. (4)

The coefficients, standard deviations and confidence
intervals are shown in Table 4.

Table 4: Conjugacy Model Parameter Estimates
95% Confid. Interval

Param. Estim. S.E. Lower Upper

Location Submodel
β0 0.140 0.054 0.035 0.246
β1 0.126 0.036 0.054 0.197
β2 0.060 0.031 -0.001 0.122
u -0.388 0.056 -0.499 -0.278

Precision Submodel
δ0 2.401 0.170 -2.736 -2.066
δ1 0.382 0.191 0.006 0.759
δ2 1.148 0.259 0.638 1.657
δ3 0.301 0.180 -0.053 0.656
δ4 1.862 0.207 1.454 2.269
δ5 0.622 0.189 0.249 0.996

The positive β0 coefficient plus positive β1 and β2

show that the closest adherence to conjugacy in the
means occurs for lower P (A)+P (Ac). β1 is largest so
mean conjugacy is worst for P (A)+P (Ac). The large
positive δ2 and moderate positive δ1 coefficients show
that the greatest precision occurs for P (A) + P (Ac),
followed by P (A)+P (Ac). This result is being driven
by the imprecision in the P (Ac) estimates.

It turns out that there are no significant experimental
condition effects in the location submodel but there
are in the precision submodel. The positive δ4 and δ5

coefficients suggest that the narrow and wide condi-
tions increase the precision of responses, the narrow
condition substantially so.

This model also captures the mean structure well.
The location submodel is slightly upward-biased, with
the model estimates being about .02 higher than the
observed values. However, this bias does not carry
over into the differences between the means.

4 Discussion and Conclusions

In their summary and recommendations, Budescu et
al. (2009) concluded that access to the IPCC numeri-
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Table 5: Conjugacy Model Mean Structure
Conjugacy Sum observed predicted
P (A) + P (Ac) 1.052 1.070
P (A) + P (Ac) 1.120 1.132
P (A) + P (Ac) 1.076 1.100

cal translation table reduced individual differences in
the interpretation of PE’s to some degree. Our re-
analysis reinforces this claim and their ensuing rec-
ommendation. Nevertheless, they also observed that
the variability in respondents’ estimates in all likeli-
hood is greater than the actual amount of disagree-
ment among the scientists whose views are encom-
passed by the relevant PE’s. Budescu et al. based this
assessment on their analysis of the “best” estimates.
The reanalysis of the lower and upper probabilities
in this paper suggests that the picture is even worse
than their summary suggested.

They note, for instance, that 25% of the subjects in-
terpreted “very likely” as having a “best” probabil-
ity below 70%. The boxplots in Figure 1 show that
in three of the four experimental conditions at least
25% of the subjects provided a lower probability of
less than 50%. If we turn to “very unlikely” the pic-
ture is worse still. The Figure 1 boxplots indicate that
in in three of the four experimental conditions about
25% of the subjects returned an upper probability for
“very unlikely” greater than 80%!

Our reanalysis provides additional insights. Chief
among these is the apparently deleterious impact of
negatively-worded PE’s on both the regressiveness of
people’s intuitive numerical translations of these PE’s
and on the consensus of such translations. Because
beta GLMs are naturally heteroscedastic, it is both
feasible to separate the effect of a shift in the mean
from the effect of a shift in precision on variance. In
this setting that separation has important implica-
tions regarding our assessment of the amount of vari-
ation across individuals in their intuitive numerical
translations. More regressive estimates (i.e., further
away from 0 or 1) results in greater variability, but
that is an artifact of a shift in the mean response.
Our results strongly suggest that negatively worded
PE’s also yield less precision, which results in greater
variability that is not attributable to a mean shift.

Two other important findings have emerged regard-
ing precision. First, it is worst for the lower (upper)
probability estimates provided for “very likely” (“very
unlikely”). But these are translations of the very
thresholds identified in the IPCC numerical guides,
as shown in Table 1. The effect also was greater for
“very unlikely.” Second, the narrow and wide con-

ditions not only resulted in less regressive estimates
(as Budescu et al. had originally concluded) but they
also yielded greater precision, i.e., greater consensus
beyond that due to less regressive estimates. This
effect was greater for “very likely” than its negative
counterpart.

The “pleasant surprise” in our analyses is the fairly
strong adherence of subjective estimates to superaddi-
tivity, subadditivity, and the conjugacy rules. To our
knowledge, only one other empirical assessment of ad-
herence to conjugacy has been reported (Example 2
in Smithson, Merkle & Verkuilen, in press). In our
sample, the medians in all conditions and for all three
sums deviated no more than .1 from 1, i.e., conjugacy.
A substantial majority of these sums were within .2
of 1 (from 52% to 86%). Moreover, both sums in-
volving lower and upper probabilities were closer to
conjugacy on average than P (A) + P (Ac), which of
course is just binary complementarity. This is strik-
ing because while many respondents would have been
aware of the binary complementarity rule for classical
probabilities, it is very unlikely that they would know
about conjugacy. This may be a rather unusual in-
stance where rational prescription coincides with hu-
man intuition. However, we urge caution in general-
izing from these findings because they are based on
only one pair of sentences. A systematic investigation
into this matter is needed along the lines suggested
below.

At least three avenues of future research are indicated
by our findings here. First, the IPCC negatively-
worded sentences contained a mixture of negatively-
worded PE’s and events (of the form “it is very un-
likely that A will not occur”). Inspection of the
data suggested that at least some respondents many
have found these double-negatives especially confus-
ing. Thus, the effect of negatively-worded PE’s merits
further investigation, most suitably via IPCC report
sentences manipulated to incorporate positive and
negative wording for various PE’s and events crossed
in a factorial design, as exemplified in Table 6. It
is possible that the greater variability and more re-
gressive means identified with the negatively-worded
IPCC sentences are in good part due to double-
negatives, but this cannot be determined via the study
dealt with here.

Table 6: Factorial Design
Event Probability phrase

A Likely that A Unlikely that A
Ac Likely that Ac Unlikely that Ac

Second, alternative numerical guides could be com-
pared with one another. The IPCC (2007) guides
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specified only one bound, leaving the other implic-
itly at either 0 or 1 as appropriate. For PE’s con-
veying either very high or very low probabilities this
seems natural, but for a middling PE such as “likely”
an interval from .66 to 1 seems counter-intuitive not
only for its width but also because it contains the pre-
scribed interval for “very likely.” The IPCC guidelines
notwithstanding, it would be worthwhile to ascertain
whether there is greater consensus in intuitive trans-
lations when the phrases refer to non-overlapping in-
tervals instead of nested ones. Likewise, guides that
include prescribed “best” probabilities could be com-
pared with those containing only lower and upper val-
ues.

Finally, Budescu et al. suggested several influences
on people’s intuitive translations. For instance, those
convinced about climate change tended to give higher
estimates for PE’s referring to climate change events
or consequences. It is plausible that subjective proba-
bility judgments will be subject to confirmation bias,
but this has yet to be investigated with respect to
subjective imprecise probabilities.

5 Appendix

We begin by describing the mixed GLM employed in
this paper. Let y ∈ (0, 1) be distributed Beta(µφ, (1−
µ)φ), where µ = E(y) and φ is a precision parameter,
such that V ar(y) = µ(1−µ)/(φ+1) so φ = µ(1−µ)

V ar(y)−1.
As Smithson and Verkuilen (2006) argue, the Beta
distribution is appropriate for modeling a random
variable whose support is bounded at both ends, as
in this case where the support is the unit interval.
While it is not the only such distribution, it is very
flexible and also has the attractive property of be-
ing parameterized in terms of a mean and a precision
parameter. This characteristic renders the Beta dis-
tribution especially suitable for modeling the mean
response (location) and dispersion simultaneously.

For a two-level model let i = 1, . . . , I index subjects
and j = 1, . . . , J index observations within the ith
subject, so there are IJ = N total observations. A
mixed beta GLM contains four matrices of regressors,
X,Z,V,W. X and V are associated with the location
and precision, respectively, so that xi,vi are their ith
row vectors of full rank (Typically they have a column
vector 1 for an intercept). Z and W are the regressors
for random effects b and d, respectively. Then the
location and precision submodels are

log
(

µij

1− µij

)
= xijβ + zijb, (5)

log (φij) = vijδ + wijd. (6)

In this paper we restrict the random-effects models to

random-intercept models for the location submodel
with a normal mixing distribution.

Estimation was by maximum likelihood using the
NLMIXED package in SAS 9.2. Maximum likelihood
methods enable the use of both likelihood ratio tests
for comparing models on the basis of goodness of fit,
and Wald t- or z-tests for assessing the significance
of individual coefficients in a model. The coefficients’
standard errors used in the Wald tests may also be
used in constructing confidence intervals for the coef-
ficient estimates.

The location submodel coefficients in this model can
be interpreted in a similar way to coefficients in a
logistic regression, because the logit link typically is
used in both. A positive (negative) βj is the increase
(decrease) in log(µji/(1− µji)) per unit increase (de-
crease) in its covariate xji, so eβj can be interpreted
as a multiplier of odds.

In the precision submodel, a positive (negative) δj

coefficient is the increase (decrease) in log(φji) per
unit increase (decrease) in its covariate vji, so eδj can
be thought of as a multiplier of precision.

The variance of a Beta random variable is
σ2 = µji(1− µji)/(φji + 1),
so the variance is influenced both by the mean and
precision parameters. This simply reflects the fact
that as the mean approaches either 0 or 1, if the pre-
cision remains constant then the variance necessarily
decreases. However, it is important to bear in mind
that modeling precision is not equivalent to model-
ing the variance. Consequently, interpreting the effect
of predictors on the variance may not be straightfor-
ward. A positive βj , for instance, increases variance
if it is shifting µji from values below .5, but decreases
variance if it is shifting µji from values above .5.
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Abstract

In realistic decision problems there is more often than
not uncertainty in the background information. As for
representation of uncertain or imprecise probability
values, second-order probability, i.e. probability dis-
tributions over probabilities, offers an option. With
a subjective view of probability second-order proba-
bility would seem to be impractical since it is hard
for a person to construct a second-order distribution
that reflects his or her beliefs. From the perspective
of probability as relative frequency the task of con-
structing or updating a second-order probability dis-
tribution from data is somewhat easier. Here a very
simple model for updating lower bounds of probabil-
ities is employed.

But the difficulties in choosing second-order distribu-
tions may be further alleviated if structural properties
are considered. Either some of the probability values
are dependent in some way, e.g. that they are known
to be almost equal, or they are not dependent in any
other way than what follows from that the values sum
to one.

In this work we present the unique family of dis-
crete second-order probability distributions that cor-
respond to the case where dependence is limited.
These distributions are shown to have the property
that the joint distributions are equal to normalised
products of marginal distributions. The distribution
family introduced here is a generalisation of a spe-
cial case of the multivariate Pólya distribution and is
shown to be conjugate prior to a compound hyperge-
ometric distribution.

Keywords. Discrete probability, second-order prob-
ability, imprecise probability, multivariate Pólya dis-
tribution, conjugate prior, compound hypergeometric
likelihood.

1 Introduction

In non-trivial decision problems there is often uncer-
tainty about background data. A decision support
system or any system that is meant to work with such
uncertain data needs a form of representation for un-
certain information or else ignore the uncertainty, i.e.
allow for false certainty or false precision. Here we
are concerned with representation of uncertain or im-
precise probability values. Uncertainty and impreci-
sion will be treated the same way, whether a decision
maker believes that there is a precise value but is un-
certain as regards to what it is, or if imprecision is
inherent, the end result is that there is a set of feasi-
ble probability values.

Among models for imprecise probability there are
interval based approaches, [8, 9, 14, 19, 20, 21],
where the probability of an event is represented by
two numbers, the lowest and highest possible value.
There are also hierarchical models such as those in
[11, 10, 23, 6, 4, 2, 22, 18, 17, 5, 12], where each prob-
ability value in the interval is weighed. The poten-
tial for discrimination that is present in hierarchical
models may be utilized to express that some probabil-
ity values are more reasonable than others. However,
this power is difficult to wield since on the one hand
local, one-dimensional, changes have global, multi-
dimensional, effects that might be hard to grasp, and
on the other hand since given some beliefs about im-
precise values there appears to be countless sets of
weights that are consistent with the beliefs.

1.1 Structural Considerations

The solution might lie in adding structural informa-
tion, information that is not asked for in traditional
models for imprecise probability, but is nonetheless
crucially important and not necessarily hard to ex-
tract. The importance of structural information in
general is argued for in [3]. Here we will focus on
one such property, dependency. Dependency is a fun-
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damental concept in probability theory. In this pa-
per we work with one particular hierarchical model,
second-order probability, where the weights are them-
selves probabilities. Since second-order probability is
a concept that resides fully inside probability theory
there is no reason to assume that issues of dependency
would be unimportant in that context.

Now the stochastic variables in a second-order prob-
ability distribution are probabilities of events in the
same outcome space, so the variables are non-negative
and sum to one. This fact alone obviously rules out
independence. But two first-order probabilities might
be dependent beyond the summing to one, it is con-
ceivable that two probability values are almost the
same in all situations, or that if one value increases
by a certain amount, another value decreases even
more. As an example of the first mentioned case we
could take the probabilities of three mutually exclu-
sive events A,B and C. We have that Pr(B ∪ C) =
1 − Pr(A), but assume that Pr(B) = Pr(C) = x.
Then all probability vectors (Pr(A),Pr(B),Pr(C))
have the form (1 − x, x, x) and B and C have a
higher degree of dependency than what is prescribed
by Pr(A) + Pr(B) + Pr(C) = 1. Then again, cases
where there are no such further dependencies are also
conceivable and this is the case that we explore in this
paper since independence usually is less complicated
than dependence.

Below we suggest a notion that is intended to capture
such limited dependency, i.e. that the probabilistic
constraint of non-negative variables summing to one
is the only source of dependency. Further we demon-
strate that such limited dependency means that the
joint second-order probability distribution factors into
its own marginal distributions, almost as a joint dis-
tribution of independent variables. The difference is
that since the variables are not really independent the
joint distribution is equal to the normalised product
of marginal distributions, the product is multiplied
with a factor not equal to one.

A family of continuous second-order probability dis-
tribution with this property is in [16] shown to be a
shifted or contracted variant of the Dirichlet distri-
bution. In fact, the parameters of that version of the
Dirichlet distributions are locked to 1/(n−1), where n
is the number of possible outcomes, instead a new set
of parameters ai, i = 1, . . . , n, are introduced. The
ai are lower bounds of the first-order probability vari-
ables. In other words, the lower bounds determine the
distribution. The topic of this paper is the discrete
counterpart of the contracted Dirichlet distribution
that factors into marginals.

Among the reasons for looking at discrete second-

order probability distributions as opposed to the
shifted Dirichlet distribution are determination and
updating of lower bounds. A lower bound for a prob-
ability in a continuous second-order distribution can
usually not be the result of an observation, but af-
ter seeing one black tulip among 20 in a flower shop
I know that the probability of a random tulip in the
shop being black is at least 1/20. There could also
be computational advantages to discrete distributions
and in practice the limited resolution of a discrete dis-
tribution might be sufficient.

Since an important advantage of discrete second-order
distributions as opposed to their continuous counter-
parts is that they fit nicely into a simple model for
updating we consider the conditions under which the
distribution considered here are conjugate. Conju-
gacy is of interest here since it would be important to
know whether the structural properties represented
by a family of distributions such as that shown here
can remain after updating.

The main result of this paper is then twofold; the
unique family of discrete second-order probability dis-
tributions that factor into marginals and the com-
pound hypergeometric likelihood that is needed for
these distributions to be conjugate.

2 Limited Dependency

We assume that all first-order probability values can
be written as a ratio ki/N , where ki ≥ 0 and∑n
i=1 ki = N . For simplicity we will use the nomina-

tors ki as variables, the denominator N would always
be the same. We want to capture and formalise the
notion that

∑n
i=1 ki = N, ki ≥ 0 is the only source of

dependency among the variables ki. When this is the
case, the value of a variable would depend on other
variables but dependency would only be a function of
the sum of variables. For instance, considering the
value of k1 it is important what value the sum of say,
k3 and k6 holds, but it is irrelevant if k3 increases and
k6 decreases as long as the sum k3+k6 stays the same.

Let X 63 ki be a subset of the set {k1, k2, . . . , kn} of
random variables (

∑n
i=1 ki = N). By definition of

conditional probability pi(ki|X) = pi(ki∪X)
p(X) . The p:s

are probability mass functions, indexed where needed
to indicate marginal functions. If we wish ki:s depen-
dency of X to be limited to a function of the sum of
variables we should be able to describe pi(ki|X) as

pi(ki|X) = pi(ki)
f(ki +

∑
ki∈X kj , |X|+ 1)

f(
∑
ki∈X kj , |X|)

. (1)

In the functions f we need not only sums of variables
but also the number of variables in the sum; the value

336 David Sundgren



of a sum of many variables have more information
than a sum of few variables even if the sums are equal.

Since

p(kπ(1), kπ(2), . . . , kπ(n)) =
pπ(1)(kπ(1))pπ(2)(kπ(2)|kπ(1))
pπ(3)(kπ(3)|kπ(1), kπ(2)) (2)

...
pπ(n)(kπ(n)|kπ(1), kπ(2), . . . , kπ(n−1))

for any permutation π, if

pπ(i)(ki|X) = pπ(i)(ki)
f(ki +

∑
ki∈X kj , |X|+ 1)

f(
∑
ki∈X kj , |X|)

as in Equation (1) we have that

p(k1, . . . , kn) =

pπ(1)(kπ(1))pπ(2)(kπ(2))
f(kπ(1) + kπ(2), 2)

f(kπ(1), 1)

pπ(3)(kπ(3))
f(kπ(1) + kπ(2) + kπ(3), 3)

f(kπ(1) + kπ(2), 2)
... (3)

pπ(n)(kπ(n))
f(kπ(1) + . . .+ kπ(n), n)

f(kπ(1) + . . .+ kπ(n−1), n− 1)
=

n∏

i=1

pi(ki)
f(kπ(1) + . . .+ kπ(n), n)

f(kπ(1), 1)

The numerator f(kπ(1) + . . . + kπ(n), n) is obviously
constant since

∑n
i=1 ki is constant equal to N . But

the denominator is apparently dependent on the per-
mutation π: if f(ki, 1) is not constant it is not
possible to express the joint probability distribution
p(k1, . . . , kn) in this way. On the other hand, if
f(ki, 1) is constant p(k1, . . . , kn) equals the product
of marginal distributions multiplied with a constant.
That is, if the type of limited dependency described
by Equation (1) is achievable the joint probability dis-
tribution must factor into marginals.

3 Factoring into Marginals

We have seen that dependence limited to the sum
of random variables means that the joint probabil-
ity density function is proportional to the product of
marginal distributions. In the case of discrete second-
order probability distributions the limitation is that
random variables ki, 1 ≤ i ≤ n are such that ki ≥ 0
and

∑n
i=1 ki = N . Note that the ki/N are probabili-

ties, not the ki. We could have the rational numbers

ki/N as random variables, but presentation is simpli-
fied by dropping the denominator.

Before delving into the calculations, some words
about the z transform might be in place. Below we
solve the problem at hand by using the convolution
property that Z{p1(k) ∗ p2(k)} = Zp1(k)Zp2(k) so
that the integrals involved in computing marginal dis-
tributions can be computed by eliminating products
in a system of equations of products. That we can
use convolutions is due to the variables having a fixed
sum. The z transform most used below is that of
Γ(k−x+y)
(k−x)!Γ(y) which is 1

(1− 1
z )y

zx
. In turn, the Gamma

function Γ(x) is defined as
∫∞

0
tx−1e−t dt for complex

numbers with positive real parts. For integers it is just
the sg hifted factorial, Γ(n) = (n − 1)!. For more on
the z transform, see [7] and on the Gamma function,
see e.g. [1]

Dependence limited to the sum of ki being constant
equal to N means that

p(k1, k2, . . . , kn) =
1
K

n∏

i=1

pi(ki) ,

where pi is the marginal distribution corresponding
to variable ki. Please observe that

∑n
i=1 ki = N

throughout the paper.

Then the marginal distribution pi(ki) equals

1
K
pi(ki)∗j 6=ipj (N − ki) , (4)

where ∗j 6=i is the n− 1-fold repeated convolution p1 ∗
p2 ∗ · · · ∗ pi−1 ∗ pi+1 ∗ · · · ∗ pn and K = ∗ni=1pi(N).

In the transform domain,

∏

j 6=i
Z {pj(kj)} = Z {KH(ci − ki)} (5)

for all i, i = 1, . . . , n, where H is the Heaviside func-
tion and the support of pi ends at ki = ci. Cancelling
in these n equations in the z domain implies that ex-
cept for different shifts all marginals pi are equal.

Since the z transform of a constant K is Kz
z−1 , if pi(ki)

is any shifted function qi(ki − ai),

Z {pi(ki)} =
(
Kz

z − 1

) 1
n−1 1

zai
(6)

due to the shift property Z{x(n− k)} = Z{x(n)}z−k
and

∏

j 6=i
Z {pj(kj)} =

Kz

z − 1
1

z
∑

j 6=i aj
, (7)
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hence

∗j 6=ipi(ki) = Z−1

{
Kz

z − 1
1

z
∑

j 6=i aj

}
(ki) =

KH


ki −

∑

j 6=i
aj


 , (8)

giving

∗j 6=ipi(N − ki) = KH


N − ki −

∑

j 6=i
aj


 (9)

which equals KH (ci − ki) if ci = N −∑j 6=i aj , i.e.
the upper limit of the support of pi is N −∑j 6=i aj ,
where aj is the lower limit of the support of marginal
distribution pj .

So

pi(ki) = Z−1

{(
Kz

z − 1

) 1
n−1 1

zai

}
(ki) =

K
1

n−1 Γ
(
ki − ai + 1

n−1

)

(ki − ai)!Γ
(

1
n−1

) . (10)

And

K =

∗ni=1pi(N) = Z−1

{
n∏

i=1

Z {pi(ki)}
}

(N) =

Z−1

{
n∏

i=1

(
Kz

z − 1

) 1
n−1 1

zai

}
(N) =

K
n

n−1Z−1

{(
z

z − 1

) n
n−1 1

z
∑n

i=1 ai

}
(N) = (11)

K
n

n−1Z−1

{(
z

z − 1

) n
n−1
}

(N −
n∑

i=1

ai) =

K
n

n−1

(N −∑n
i=1 ai)!Γ

(
1

n−1

)

(n− 1)Γ
(
N + 1−∑n

i=1 ai + 1
n−1

)

That is,

K =




(N −∑n
i=1 ai)!Γ

(
1

n−1

)

(n− 1)Γ
(
N + 1−∑n

i=1 ai + 1
n−1

)



n−1

(12)
and the marginal distributions are

pi(ki) =

(N −∑n
j=1 aj)!Γ

(
ki − ai + 1

n−1

)

(n− 1)Γ
(
N + 1−∑n

j=1 aj + 1
n−1

)
(ki − ai)!

, (13)

i = 1, . . . , n

The joint distribution is

p(k1, . . . , kn) =

(N −∑n
i=1 ai)!

∏n
i=1

Γ(ki−ai+
1

n−1 )

(ki−ai)!

(n− 1)Γ
(

1
n−1

)n−1

Γ
(
N + 1−∑n

i=1 ai + 1
n−1

)

(14)

Going back to Section 2 we have now seen that the
form of limited dependency that implies factoring into
marginals is possible to realise, in fact by consider-
ing the multivariate marginal distributions it can be
shown that the functions in Equation (3) have the
desired properties, that is f(k1, . . . , kn, n) = 1/K and
f(ki, 1) is constant equal to one. The corresponding
reasoning could also justify the constraint of factoring
into marginals for the contracted Dirichlet distribu-
tion of [16].

3.1 Basic Properties

Since Γ(k + x)/k! approaches kx−1 as k grows when
x << k, the discrete distribution described above be-
comes, appropriately normalised, equal to the shifted
Dirichlet distribution of [16] when N tends to infin-
ity. In this, ki/N and ai/N of the discrete distribution
corresponds to the real-valued first-order probability
xi and ai in the continuous distribution.

Just as the continuous distribution in [16] is a gener-
alization of a Dirichlet distribution with parameters
1/(n−1), the discrete probability distribution consid-
ered here is, when the parameters ai = 0, a multivari-
ate Pólya distribution [13] with parameters 1/(n−1).

The mean of a marginal probability density function
pi(ki) of the type described here is

ai +
N −∑n

i=1 ai
n

, (15)

c.f. the mean ai + 1−∑n
i=1 ai

n of the shifted Dirichlet
distribution.

The variance is

(n− 1)2(N −∑n
i=1 ai)

2

n2(2n− 1)
+

(n− 1)(N −∑n
i=1 ai)

n(2n− 1)
(16)

which approaches N2 times the variance of the shifted
Dirichlet distribution with lower bounds ai/N .

The multivariate Pólya distribution is obtained by
drawing the underlying probabilities pi from a Dirich-
let distribution and integrating out p = (p1, . . . , pn)
from the multinomial distribution. In the same way, if
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we compound the Dirichlet distribution with param-
eters 1/(n− 1) with the shifted multinomial distribu-
tion

(N −∑n
i=1 ai)!

∏n
i=1 p

ki−ai
i∏n

i=1(ki − ai)!
(17)

that is used in [15], we have

∫

p

1

(n− 1)nΓ(n/(n− 1))n−1
∏n
i=1 p

n−2
n−1
i

(N −∑n
i=1 ai)!

∏n
i=1 p

ki−ai
i∏n

i=1(ki − ai)!
dp = (18)

(N −∑n
i=1 ai)!

(n− 1)Γ(1/(n− 1))n−1Γ(N + 1 + 1/(n− 1))
n∏

i=1

Γ(ki − ai + 1/(n− 1))
(ki − ai)!

That is, the joint discrete distribution that factors
into marginals.

4 Example

Let n = 4, N = 8 and a1 = 0, a2 = 1, a3 = 3, a4 = 0.
Then

p(k1, k2, k3) =
4!Γ(k1 + 1/3)Γ(k2 − 1 + 1/3)

3Γ(1/3)3Γ(5 + 1/3)k1!(k2 − 1)!
Γ(k3 − 3 + 1/3)Γ(8− k1 − k2 − k3 + 1/3)

(k3 − 3)!(8− k1 − k2 − k3)!

k1 0 1 2 3 4
0.534 0.178 0.119 0.0923 00769

k2 1 2 3 4 5
0.534 0.178 0.119 0.0923 0.0769

k3 3 4 5 6 7
0.534 0.178 0.119 0.0923 0.0769

Table 1: Marginal probability density values for
p1(k1), k1 = 0, . . . , 4, p2(k2), k2 = 1, . . . , 5 and
p3(k3), k3 = 3, . . . , 7.

and the marginal distributions are

p1(k1) =
5−k1∑

k2=1

8−k1−k2∑

k3=3

p(k1, k2, k3) =

4!Γ(k1 + 1/3)
3Γ(5 + 1/3)k1!

, (19)

p2(k2) =
5−k2∑

k1=0

8−k1−k2∑

k3=3

p(k1, k2, k3) =

4!Γ(k2 − 1 + 1/3)
3Γ(5 + 1/3)(k2 − 1)!

, (20)

p3(k3) =
7−k3∑

k1=0

8−k1−k3∑

k2=1

p(k1, k2, k3) =

4!Γ(k3 − 3 + 1/3)
3Γ(5 + 1/3)(k3 − 3)!

, (21)

p4(k4) = p4(8− k1 − k2 − k3) =
4−k4∑

k1=0

5−k1−k4∑

k2=1

p(k1, k2, 8− k1 − k2 − k4) =

4!Γ(k4 + 1/3)
3Γ(5 + 1/3)k4!

=
4!Γ(8− k1 − k2 − k3 + 1/3)

3Γ(5 + 1/3)(8− k1 − k2 − k3)!
(22)

The means of p1, p2, p3 and p4 are 1, 2, 4 and 1, respec-
tively, corresponding to mean first-order probabilities
of 1/8, 1/4, 1/2 and 1/8. Since k1 and k4 share the
same conditions, their respective marginal probabil-
ity density functions are equal. We see a table with
values of the marginal distribution functions in Table
1. The values reveal that the distributions are essen-
tially equal but differently shifted according to their
respective lower bounds of support.

5 Updating

One advantage of treating relative frequencies as first-
order probabilities is that updating of lower bounds
of probabilities may come about in a natural way.
See [15], where this is discussed and exemplified with
(shifted) multinomial distributions as prior and poste-
rior distributions and a hypergeometric likelihood. In
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this paper we are concerned with a shifted version of
the multivariate Pólya distribution where the param-
eters of the Pólya distribution are locked at 1/(n− 1)
but a new vector

(
a1 a2 . . . an

)
of parameters

is introduced, where the ai are lower bounds, i.e. for
whatever reason we know that there are at least ai
objects of type i among the total N objects.

As described above in Section 3 this variant of the
multivariate Pólya distribution represents a situation
where the variables ki, the number of objects of re-
spective type, are in a sense minimally dependent.
This property does not necessarily remain after up-
dating and since the case of further dependencies than
those incurred by

∑n
i=1 ki = N remains to be inves-

tigated we choose to consider the conditions under
which updating must be done for the shifted multino-
mial Pólya distribution to be a conjugate distribution.
First though, the model for updating deserves some
explanation.

5.1 The Urn and the Plate

Since the lower bounds ai are the only parameters it
is these values that can be affected by updating. The
idea behind the model proposed in [15] is that if I
observe ai objects of type i I know with absolute cer-
tainty that there were at least ai such objects to begin
with. In terms of the ubiquitous urn, we have N balls
with n different colours in an urn and the question
is as usual how many balls there are of each colour
in the urn. Updating consists of picking a handful
(
∑n
i=1 ai) of balls from the urn and observing that ai

of them have colour i.

Then we know that there were at least ai balls with
colour i in the urn to begin with. But in terms of
probabilities and relative frequencies we are only in-
terested in these numbers in relation to the original
number N of balls in the urn, e.g. after observing
three green balls from an urn with 20 balls I know
that the relative frequency of green balls in the urn
was at least 3/20. Thus one might think that replace-
ment is in order so that there remains N balls in the
urn. However, if I after replacement pick three green
balls again in the next round I have no justification
for claiming that there at least six green balls out of
20 since some of the balls might be the same as in the
previous updating. One solution could be to mark
the already observed balls and ignore them in future
updating but then I would not know the results of
previous experiments without taking notes. Putting
the observed balls on a plate on the side in full sight
saves ink and paper and reminds us that observed
balls are not simply not replaced in the sense of being
discarded. The balls on the plate count but updating
is only done by probing the urn.

5.2 Shifted Pólya as Conjugate Prior

First let us observe that since the discrete second-
order distributions that are topic of this paper fac-
tor into marginals, if prior and posterior are both
from this family, the likelihood must also factor into
marginals. We look at the one-variable marginal case
first for ease of presentation. W.l.o.g. we assume
that the prior distribution have parameters ai = 0, i.e.
nothing has been observed and apart from a structural
assumption of minimal dependency we know nought
but N , the total number of objects in the urn, and
n, the number of different colours. As described in
Section 5.1 above the experiment consists of drawing∑n
i=1 ai balls from the urn and thus rule out the pos-

sibility that the number ki of balls with colour i would
be less than ai.

The i:th marginal of the prior is Beta-binomial with
parameters α = 1

n−1 and β = 1. i.e.

(
N

ki

)B
(
ki + 1

n−1 , N − ki + 1
)

B
(

1
n−1 , 1

) , (23)

the i:th marginal of the posterior is Beta-binomial
with the same parameters α = 1

n−1 , β = 1 as in the
prior but ki replaced with ki − ai and N substituted
for N −∑n

j=1 aj :

(
N −∑n

j=1 aj

ki − ai

)

B
(
ki − ai + 1

n−1 , N −
∑
j 6=i ai − ki + 1

)

B
(

1
n−1 , 1

) . (24)

The corresponding likelihood is achieved by a
weighted hypergeometric distribution

(N−∑n
j=1 aj

ki−ai

)
(
N
ki

) p−ai(1− p)ai−
∑n

j=1 aj , (25)

where p is drawn from Beta
(
ki + 1

n−1 , N − ki + 1
)

so that the likelihood is the compound distribution
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∫ 1

0

(N−∑n
j=1 aj

ki−ai

)(
N
ki

) p−ai(1− p)ai−
∑n

j=1 aj

pki−n−2
n−1 (1− p)N−ki

B
(
ki + 1

n−1
, N − ki + 1

) dp =

(N−∑n
j=1 aj

ki−ai

)(
N
ki

) (26)

B
(
ki − ai + 1

n−1
, N −∑n

j=1 aj + ai − ki + 1
)

B
(
ki + 1

n−1
, N − ki + 1

)

The multivariate likelihood is the weighted hypergeo-
metric distribution

n∏

i=1

(N−∑n
j=1 aj

ki−ai

)
(
N
ki

) p−ai
i , (27)

where p is drawn from the Dirichlet distribution with
parameters ki + 1

n−1 . That is,

n∏
i=1

(N−∑n
j=1 aj

ki−ai

)(
N
ki

) Γ
(∑n

i=1 ki + 1
n−1

)
∏n

i=1 Γ
(
ki + 1

n−1

)
∫
p

n∏
i=1

p
ki−ai+

1
n−1−1

i dp = (28)

Γ

(
N +

1

n− 1

)
((N −

n∑
j=1

aj)!)n

n∏
i=1

ki!(N − ki)!Γ
(
ki − ai + 1

n−1

)
N !
(
N −∑n

j=1 aj − ki + ai

)
!(ki − ai)!Γ

(
ki + 1

n−1

)

Admittedly this likelihood function appears rather ex-
otic, particularly in the factors p−ai

i which mean that
it is more likely to draw a larger number of balls of a
certain colour. In contrast, as seen in Section 4 the
prior and posterior distributions are such that lower
values of the number of objects of type i have higher
probability. The full implications of this are yet to
be considered but one possible interpretation is that
such likelihood functions would rarely be seen in na-
ture as it were. In that case the limited dependency
of the original proportions in the urn is fragile and
easily disturbed when removing objects.

6 Conclusions

Structural properties such as dependency might be
worth considering when choosing a second-order dis-
tribution for the purpose of expressing imprecise prob-
abilities. Second-order probability distributions have

probability values as variables, hence independence
is impossible. We have however suggested that joint
second-order probability distributions that are equal
to the normalised products of their own marginal dis-
tributions capture the property of a form of minimal
dependency. A continuous family of second-order dis-
tributions has been found earlier but here a corre-
sponding discrete family is discovered. This family
can be described as a generalisation of a special case
of the multivariate Pólya distribution where the pa-
rameters are fixed but new parameters in the form of
lower bounds on the variables are introduced.

The raison d’être of discrete second-order distribu-
tions is that they allow for interpreting relative fre-
quencies as first-order probabilities in a natural way.
Such a context makes the interpretation of the mean-
ing of second-order probability values easier in that
concrete examples in the form of urn models etc. are
readily available. An example is updating where a so-
called urn-and-plate model gives a simple description
of updating of lower bounds. Discrete second-order
distributions are also versatile since they apart from
relative frequencies also lend themselves to subjective
probabilities. That is as long as the subjective prob-
abilities do not involve statements about irrational
numbers such as “I am sure that the probability is
at least 1/π”. Reasonably the lower bound could be
given as 8/25 or some other rational number instead,
infinite precision is meaningless in subjective proba-
bility judgements.

The family of distributions discussed here represents
a form of limited dependency. We have seen that the
family being conjugate requires a rather special like-
lihood function which suggests that the property of
limited dependency is sensitive to the removal of ob-
jects that occurs in updating of lower bounds in the
plate-and-urn model. Full understanding of the mean-
ing of the parameters of the compound likelihood is
however a matter for further investigation.
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probabilités. Ann. Inst. Poincaré, 1:117–161,
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Abstract

Probability boxes (pairs of cumulative distribution
functions) are among the most popular models used in
imprecise probability theory. In this paper, we pro-
vide new efficient tools to construct multivariate p-
boxes and develop algorithms to draw inferences from
them. For this purpose, we formalise and extend the
theory of p-boxes using lower previsions. We allow
p-boxes to be defined on arbitrary totally preordered
spaces, hence thereby also admitting multivariate p-
boxes. We discuss the construction of multivariate p-
boxes under various independence assumptions. An
example demonstrates the practical feasibility of our
results.

Keywords. p-box, natural extension, multivariate,
elicitation, independence, Fréchet, lower prevision

1 Introduction

Imprecise probability [18] refers to uncertainty models
applicable in situations where the available informa-
tion does not allow us to single out a unique probabil-
ity measure for the random variables involved. They
require more complex mathematical tools, such as
non-linear functionals. It is therefore of interest to
consider models that yield simpler mathematical de-
scriptions, at the expense of generality, but gaining
ease of use, elicitation, and representation.

We consider one such model: pairs of lower and upper
distribution functions, also called probability boxes, or
p-boxes [9, 10]. They are often used in risk stud-
ies, where cumulative distributions are central. Many
theoretical properties and practical aspects of p-boxes
have already been studied in the literature. Previ-
ous work includes probabilistic arithmetic [20], which
provides a very efficient numerical framework for par-
ticular inferences with p-boxes (and which we gener-
alise in this paper). In [11], p-boxes are connected to
info-gap theory [1]. The relation between p-boxes and

random sets was investigated in [14]. Finally, an ex-
tension of p-boxes to arbitrary finite spaces [8] yields
potential applications to much more general problems.

In this paper, we study p-boxes using lower previsions
[19, 18]. From the point of view of lower previsions,
p-boxes were studied briefly in [18, Section 4.6.6] and
[17]. This has at least two advantages. Firstly, they
can be defined on arbitrary spaces. Secondly, they
come with a powerful inference tool, called natural
extension. We will study the natural extension of a
p-box, and we derive a number of useful expressions
for it, whence providing new numerical tools for exact
inferences on arbitrary random quantities and events.

As mentioned, [8] extended p-boxes to finite totally
preordered spaces. In this paper, we extend p-boxes
further to arbitrary totally preordered spaces, lead-
ing to many useful features that classical p-boxes do
not have. Firstly, we encompass, in one sweep, p-
boxes defined on finite spaces and on closed real in-
tervals. Secondly, as we do not impose anti-symmetry
on the ordering, we can also handle product spaces by
considering an appropriate total preorder, and thus
also admit multivariate non-finite p-boxes, which have
not been considered before.1 Whence, we can spec-
ify p-boxes directly on the product space. Contrast
this with the usual multivariate approach to p-boxes,
such as probabilistic arithmetic [20], that consider one
marginal p-box per dimension and draw inferences
from a joint model built around some information
about variable dependencies. Finally, our approach
is also useful in elicitation, as it allows uncertainty to
be expressed as probability bounds over any collection
of (possibly multivariate) nested sets, because we can
always find a total preorder that is compatible with
any collection of nested sets.

The paper is organised as follows: Section 2 provides
a brief introduction to the theory of coherent lower

1We still require the preorder to be total. P-boxes for par-
tially preordered spaces might be interesting, but are not con-
sidered in this paper.
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previsions. Section 3 introduces and studies the p-
box model from the point of view of lower previsions.
Section 4 provides an expression for the natural ex-
tension of a p-box to all events, and Section 5 studies
the natural extension to all gambles. Section 6 stud-
ies an important special case of p-boxes whose pre-
order is induced by a real-valued mapping, as this is a
convenient way to specify a multivariate p-box. Sec-
tion 7 discusses the construction of such multivariate
p-boxes from marginal coherent lower previsions un-
der arbitrary dependency models. Section 8 demon-
strates the theory with an example.

2 Preliminaries

This section introduces lower previsions, see [2, 19,
18, 15] for details.

The possibility space is Ω. A gamble on Ω is a
bounded real-valued map on Ω. The set of all gambles
on Ω is L(Ω), or L if Ω is evident. A subset of Ω is an
event. The indicator of A is the gamble that is 1 on
A and 0 elsewhere: write IA, or A if confusion fails.

A lower prevision P is a real-valued map on an arbi-
trary subset K of L: for any f in K, P (f) represents
a subject’s supremum buying price for f (see [18] for
actual explanation). A lower prevision on a set of
indicators of events is a lower probability.

P denotes the conjugate upper prevision of P : for
every −f ∈ K, P (f) = −P (−f); it represents a sub-
ject’s infimum selling price for f .

A real-valued map P on L satisfying P (f) ≥ inf f
and P (f + g) = P (f) + P (g) for all f and g ∈ L is a
linear prevision on L [18, p. 88, Sec. 2.4.8]. The set
of all linear previsions on L is denoted by P. A linear
prevision is essentially an expectation operator.

Of particular interest is the set

M(P ) = {Q ∈ P : (∀f ∈ K)(Q(f) ≥ P (f))}.

If M(P ) 6= ∅, then P is said to avoid sure loss, in
which case the natural extension of P [18, Sec. 3.4.1]

E(f) = min
Q∈M(P )

Q(f) for all f ∈ L

extends P to L. Finally, P is called coherent [19,
p. 18] when it coincides with E on K.

A lower prevision P defined on a lattice of gambles
K, i.e., a set of gambles closed under point-wise max-
imum and point-wise minimum, is called n-monotone
if for all p ∈ N, p ≤ n, and all f , f1, . . . , fp in K [5]:

∑

I⊆{1,...,p}
(−1)|I|P

(
f ∧

∧

i∈I
fi

)
≥ 0.

A lower prevision which is n-monotone for all n ∈ N
is called completely monotone.

3 P-Boxes

Next, we introduce the formalism of p-boxes defined
on totally preordered spaces. In contrast to [9], we do
not restrict p-boxes to intervals on the real line.

Let (Ω,�) be a total preorder: so � is transitive and
reflexive and any two elements are comparable. We
write x ≺ y for x � y and x 6� y, x � y for y ≺ x,
and x ' y for x � y and y � x. For any two x, y ∈ Ω
exactly one of x ≺ y, x ' y, or x � y holds. We also
use the following common notation for intervals in Ω:

[x, y] = {z ∈ Ω: x � z � y}
(x, y) = {z ∈ Ω: x ≺ z ≺ y}

and similarly for [x, y) and (x, y].

For simplicity, we assume that Ω has a smallest ele-
ment 0Ω and a largest element 1Ω (we can always add
them to Ω).

A cumulative distribution function is a mapping F :
Ω→ [0, 1] which is non-decreasing and satisfies more-
over F (1Ω) = 1. For each x ∈ Ω, we interpret F (x)
as the probability of the interval [0Ω, x]. We do not
impose F (0Ω) = 0, so we allow {0Ω} to carry non-
zero mass, which happens commonly if Ω is finite. No
continuity assumptions are made.

By Ω/ ' we denote the quotient set of Ω with respect
to the equivalence relation ' induced by �, that is:

[x]' = {y ∈ Ω: y ' x} for any x ∈ Ω
Ω/ ' = {[x]' : x ∈ Ω}

Because F is non-decreasing, F is constant on ele-
ments [x]' of Ω/ '.

Definition 1. A probability box, or p-box, is a pair
(F , F ) of cumulative distribution functions from Ω to
[0, 1] satisfying F ≤ F .

A p-box is interpreted as a lower and an upper cumu-
lative distribution function. In Walley’s framework,
this means that a p-box is interpreted as a lower prob-
ability PF,F on the set of events

K = {[0Ω, x] : x ∈ Ω} ∪ {(y, 1Ω] : y ∈ Ω}

by

PF,F ([0Ω, x]) = F (x) and PF,F ((y, 1Ω]) = 1− F (y).

P-boxes on a totally preordered space (Ω,�) are co-
herent (the proof is virtually identical to the one given
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in [17, p. 93, Thm. 3.59], which considered p-boxes on
[a, b] ⊆ R). We denote by EF,F the natural extension
of PF,F to all gambles.

When F = F , we say that (F , F ) is precise, and we
denote the corresponding lower prevision on K by PF
and its natural extension to L by EF (with F := F =
F ).

We end with a useful approximation theorem:

Theorem 2. Let P be any coherent lower prevision
defined on L. The least conservative p-box (F , F ) on
(Ω,�) whose natural extension is dominated by P is

F (x) = P ([0Ω, x])), F (x) = P ([0Ω, x]), ∀x ∈ Ω.

4 Natural Extension to All Events

The remainder of this paper is devoted to finding con-
venient expressions for the natural extension EF,F of
PF,F . We start by giving the form of the natural
extension on the field of events generated by K.

4.1 Extension to the Field Generated by the
Domain

Let H be the field of events generated by the domain
K of the p-box, i.e., events of the type

[0Ω, x1] ∪ (x2, x3] ∪ · · · ∪ (x2n, x2n+1]

for x1 ≺ x2 ≺ x3 ≺ · · · ≺ x2n+1 in Ω (if n is 0 we
simply take this expression to be [0Ω, x1]) and

(x2, x3] ∪ · · · ∪ (x2n, x2n+1]

for x2 ≺ x3 ≺ · · · ≺ x2n+1 in Ω. Clearly, these events
form a field: the union and intersection of any two
events in H is again in H, and the complement of any
event in H also is again in H.

To simplify the description of this field, and the ex-
pression of natural extension, we introduce an element
0Ω− such that 0Ω− ≺ x for all x ∈ Ω and:

F (0Ω−) = F (0Ω−) = F (0Ω−) = 0

So, (0Ω−, x] = [0Ω, x]. With Ω∗ = Ω ∪ {0Ω−},

H = {(x0, x1] ∪ (x2, x3] ∪ · · · ∪ (x2n, x2n+1] : (1)
x0 ≺ x1 ≺ · · · ≺ x2n+1 in Ω∗}.

To calculate the natural extension of PF,F to all gam-
bles, we first consider the extension from K toH, then
to all events, and finally to all gambles.

A precise p-box PF has a unique extension to a
finitely additive probability measure on H:

Proposition 3. EF restricted to H is a finitely ad-
ditive probability measure. Moreover, for any A ∈ H,
that is A = (x0, x1] ∪ (x2, x3] ∪ · · · ∪ (x2n, x2n+1] with
x0 ≺ x1 ≺ · · · ≺ x2n+1 in Ω∗, it holds that

EF (A) =
n∑

k=0

(F (x2k+1)− F (x2k)) (2)

Proposition 3 extends to p-boxes as follows:
Proposition 4. For any A ∈ H, that is A = (x0, x1]∪
(x2, x3]∪· · ·∪(x2n, x2n+1] with x0 ≺ x1 ≺ · · · ≺ x2n+1

in Ω∗, it holds that EF,F (A) = PH
F,F

(A), where

PH
F,F

(A) =
n∑

k=0

max{0, F (x2k+1)− F (x2k)}. (3)

For EF,F , use EF,F (A) = 1− EF,F (Ac).

4.2 Inner Measure

The inner measure PH
F,F ∗

of the coherent lower prob-

ability PH
F,F

defined in Eq. (3) coincides with EF,F
on all events [18, Cor. 3.1.9, p. 127]:

EF,F (A) = PH
F,F ∗

(A) = sup
C∈H,C⊆A

PH
F,F

(C). (4)

For ease of notation, from now onwards, we denote
EF,F by E when no confusion about the functions F
and F determining the p-box can arise.

In principle, the problem of natural extension to all
events is solved: simply calculate the inner measure
as in Eq. (4), using Eq. (3) to calculate PH

F,F
(C) for

elements C in H. However, the inner measure still
involves calculating a supremum. What we show next
is that Eq. (3) can be extended to arbitrary events, by
first taking the topological interior with respect to a
very simple topology, followed by a (possibly infinite)
sum over the so-called full components of this interior.

4.3 The Partition Topology

Consider the partition topology on Ω generated by
τ := {[x]' : x ∈ Ω}. The open sets in this topology are
all unions of equivalence classes (or, subsets of Ω/ ',
if you like). Hence, every open set is also closed. In
particular, every interval in (Ω,�) is clopen.

The topological interior of a set A is given by the
union of all equivalence classes contained in A:

int(A) =
⋃
{[x]' : [x]' ⊆ A} (5)

and the topological closure is given by the union of
all equivalence classes which intersect with A:

cl(A) =
⋃
{[x]' : [x]' ∩A 6= ∅}. (6)
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Lemma 5. For any subset A of Ω, E(A) = E(int(A))
and E(A) = E(cl(A)).

4.4 Additivity on Full Components

Next, we determine a constructive expression of the
natural extension E on the clopen subsets of Ω.

Definition 6. [16, §4.4] A set S ⊆ Ω is called full if
[a, b] ⊆ S for any a � b in S.

What do these full sets look like?

Lemma 7. Every full set is clopen.

Under an additional completeness assumption, the
full sets are precisely the intervals.

Lemma 8. If Ω/ ' is order complete, that is, if ev-
ery subset of Ω/ ' has a supremum (minimal upper
bound) and infimum (maximal lower bound), then ev-
ery full set is an interval, that is, it can be written as
[x, y], [x, y), (x, y], or (x, y), for some x, y in Ω.

Note that Ω/ ' can be made order complete via the
Dedekind completion [16, §4.34].

Definition 9. [16, §4.4] Given a clopen setA ⊆ Ω and
an element x of A, the full component C(x,A) of x in
A is the largest full set S which satisfies x ∈ S ⊆ A.

Lemma 10. The full components of any clopen set
A form a partition of A.

We can prove that the natural extension E is additive
on full components. Recall that the sum of a family
(xλ)λ∈Λ of non-negative real numbers is defined as

∑

λ∈Λ

xλ = sup
L⊆Λ
L finite

∑

λ∈L
xλ

If the above sum is a finite number, at most countably
many of the xλ’s are non-zero [16, 10.40].

Theorem 11. Let B be a clopen subset of Ω. Let
(Bλ)λ∈Λ be the full components of B, and let (Cλ)λ∈Λ′

be the full components of Bc. Then

E(B) =
∑

λ∈Λ

E(Bλ) and E(B) = 1−
∑

λ∈Λ′

E(Cλ)

In other words, the natural extension E of a p-box is
arbitrarily additive on full components (but obviously
not additive on arbitrary events). Interestingly, addi-
tivity on full components is not sufficient for a lower
probability to be equivalent to a p-box.

4.5 Practical computations over events

Let us explain how Proposition 4 can be generalized
to all events (at least when Ω/ ' is order complete).

Consider an arbitrary event A. By Lemma 5, it suf-
fices to find the natural extension of int(A) or cl(A).
Calculating the interior or closure with respect to the
partition topology will usually be trivial (see exam-
ples further on). Because the topological interior or
closure of a set is always clopen, we only need to know
the natural extension of clopen sets.

Now, by Theorem 11, we only need to calculate the
natural extension of the (clopen) full components
(Bλ)λ∈Λ of int(A) or the (clopen) full components
(Cλ)λ∈Λ of cl(A)c = int(Ac). Finding the full compo-
nents will often be a trivial operation. By Lemma 8,
if Ω/ ' is order complete, then each full component
is an interval. And for intervals, we immediately infer
from Proposition 4 and Eq. (4) that (i.p. standing for
immediate predecessor):

E((x, y])=max{0, F (y)− F (x)} (7a)

E((x, y))=max{0, F (y−)− F (x)} (7b)

E([x, y])=

{
max{0, F (y)− F (x)} if x has no i.p.
max{0, F (y)− F (x−)} if x has an i.p.

(7c)

E([x, y))=

{
max{0, F (y−)− F (x)} if x has no i.p.
max{0, F (y−)− F (x−)} if x has an i.p.

(7d)

for any x ≺ y in Ω,2 where F (y−) denotes
supz≺y F (z) and similarly for F (x−). The equalities
hold because, if x ≺ y in Ω, and x− is an immediate
predecessor of x, then [x, y] = (x−, y] and [x, y) =
(x−, y). Recall also that F (0Ω−) = F (0Ω−) = 0 by
convention. If Ω/ ' is finite, then one can think of
z− as the immediate predecessor of z in Ω/ '.

In other words, we have a simple constructive means
of calculating the natural extension of any event.

4.6 Special Cases

The above equations hold for any (Ω,�) with order
complete quotient space. In most cases in practice,
either Ω/ ' is finite, or Ω/ ' is connected, meaning
that for any two elements x ≺ y in Ω there is a z in
Ω such that x ≺ z ≺ y,3 (this is the case for instance
when Ω is a closed interval in R and � is the usual
ordering of reals). Moreover, if Ω/ ' is connected,
then, in practice, F will satisfy F (y−) = F (y) for all
y in Ω. For example, in case Ω is a closed interval
in R, this happens precisely when F (0) = 0 and F is
left-continuous in the usual sense.

2In case x = 0Ω, evidently, 0Ω− is the i.p.
3This terminology stems from the fact that, in this case,

Ω/ ' is connected with respect to the order topology [16,
§15.46(6)].
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If Ω/ ' is finite, then every element of Ω has an imme-
diate predecessor (remember, we take the immediate
predecessor of 0Ω to be 0Ω−), and if Ω/ ' is con-
nected, then no element except 0Ω has an immediate
predecessor. So:

Corollary 12. If Ω/ ' is finite, then every full set
B ⊆ Ω is of the form [a, b] and for every event A ⊆ Ω,

E(A) =
∑

λ∈Λ

max{0, F (bλ)− F (aλ−)}

E(A) = 1−
∑

λ∈Λ′

max{0, F (b′λ)− F (a′λ−)}

where ([aλ, bλ])λ∈Λ are the full components of int(A),
and ([a′λ, b

′
λ])λ∈Λ′ are the full components of int(Ac) =

cl(A)c.

Corollary 13. If Ω/ ' is order complete and con-
nected, and F (y−) = F (y) for all y in Ω, then

E(A) =
∑

λ∈Λ

max{0, F (supBλ)− F (inf Bλ)}

E(A) = 1−
∑

λ∈Λ′

max{0, F (supCλ)− F (inf Cλ)}

where (Bλ)λ∈Λ are the full components of int(A) and
(Cλ)λ∈Λ′ are the full components of int(Ac) = cl(A)c.

Beware of F (0Ω) = F (0Ω−) = 0 in the last corollary.

4.7 Example

Let’s investigate a particular type of p-boxes on the
unit square [0, 1]2. First, we must specify a pre-
order on Ω. A natural yet naive way of doing so
is, for instance, saying that (x1, y1) � (x2, y2) when-
ever x1 + y1 ≤ x2 + y2. Consider a p-box (F , F ) on
([0, 1]2,�). Since F is required to be non-decreasing
with respect to �, it follows that F (x, y) is con-
stant on elements of [0, 1]2/ ', which means that
F (x1, y1) = F (x2, y2) whenever x1 + y1 = x2 + y2.
Thus, we may think of F (x, y) as a function of a sin-
gle variable z = x + y, and we write F (z). Similarly,
we write F (z).

So, our p-box specifies bounds on the probability of
right-angled triangles (restricted to [0, 1]2) whose hy-
pothenuses are orthogonal to the diagonal:

F (z) ≤ p({(x, y) ∈ [0, 1]2 : x+ y ≤ z}) ≤ F (z) (8)

Observe that the p-box is given directly on the two-
dimensional product space, without the need to define
marginal p-boxes for each dimension. The base τ for
our partition topology is given by

τ = {{(x, y) ∈ [0, 1]2 : x+ y = z} : z ∈ [0, 2]}

x+ y ≤ 0.5
0.5 ≤ x+ y ≤ 1.2
x+ y ≥ 1.2

b

d

x+ y ≤ min{b, d}

a

c

x+ y ≥ 1 + max{a, c}

Figure 1: Shape of intervals induced by �, and calcu-
lation of the topological interior.

For example, the topological interior of a rectangle
A = [a, b] × [c, d] is empty, unless a = c = 0 or b =
d = 1, because in all other cases, no element of τ is
a subset of A. In the cases where a = c = 0 and
min{b, d} < 1, or max{a, c} > 0 and b = d = 1 (if
a = c = 0 and b = d = 1 then the interior is Ω),
respectively, we have:

int([0, b]×[0, d])={(x, y)∈ [0,1]2 :x+y≤min{b, d}}
int([a, 1]×[c, 1])={(x, y)∈ [0,1]2 :x+y≥1+max{a, c}}

Consequently, E(A) = 0 for all rectangles A, except

E([0, b]× [0, d]) = F (min{b, d})
E([a, 1]× [c, 1]) = 1− F (1 + max{a, c})

Fig. 1 illustrates the situation. So, for the purpose
of making inferences about the lower probability of
events that are rectangles, the ordering � was obvi-
ously poorly chosen. In general, one should choose �
in a way that Ω/ ' contains good approximations for
all events of interest.

For example, a strategy would be to start from a refer-
ence point (e.g., an elicited modal value) and then to
choose the ordering � such that intervals correspond
to concentric regions of interests around the reference
point. Again, all of this is possible because our the-
ory concerns p-boxes on arbitrary totally preordered
spaces, and is not limited to the real line with its nat-
ural ordering. More realistic examples in which such
concentric regions are used are given in Section 8.

5 Natural Extension to All Gambles

Next, we establish that the natural extension of p-
boxes to all gambles can be expressed as a Choquet
integral. We further simplify the calculation of this
Choquet integral via the lower and upper oscillation
of gambles with respect to the partition topology in-
troduced earlier.
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5.1 Choquet Integral Representation

Extending previous results [8] where the relation be-
tween p-boxes and complete monotonicity was estab-
lished for finite spaces, we can show that the natural
extension of p-boxes on totally pre-ordered spaces are
completely monotone. Let PH

F,F
denote the restric-

tion of EF,F to H, given by Proposition 4:

Theorem 14. PH
F,F

is completely monotone.

This allows us to characterise the natural extension
on all gambles:
Theorem 15. The natural extension E of PF,F is
given by the Choquet integral

E(f) = inf f +
∫ sup f

inf f

E({f ≥ t}) dt

for every gamble f . Moreover, E is completely mono-
tone on all gambles. Similarly,

E(f) = inf f +
∫ sup f

inf f

E({f ≥ t}) dt.

5.2 Lower and Upper Oscillation

By Lemma 5, to turn Theorem 15 in an effective al-
gorithm, we must calculate int({f ≥ t}) for every t.
Fortunately, there is a very simple way to do this.

For any gamble f on Ω and any topological base τ ,
define its lower oscillation as the gamble

osc(f)(x) = sup
C∈τ : x∈C

inf
y∈C

f(y)

For the partition topology which we introduced ear-
lier, this simplifies to

osc(f)(x) = inf
y∈[x]'

f(y) (9)

The upper oscillation is:

osc(f)(x) = −osc(−f)(x) = sup
y∈[x]'

f(y) (10)

For a subset A of Ω, the lower oscillation of IA is
Iint(A), so the lower oscillation is the natural gener-
alisation of the topological interior to gambles. Simi-
larly, the upper oscillation of IA is Icl(A).
Proposition 16. For any gamble f on Ω,

int({f ≥ t}) = {osc(f) ≥ t}
cl({f ≥ t}) = {osc(f) ≥ t}

so, in particular,

E(f) = inf osc(f) +
∫ sup osc(f)

inf osc(f)

E({osc(f) ≥ t}) dt

E(f) = inf osc(f) +
∫ sup osc(f)

inf osc(f)

E({osc(f) ≥ t}) dt

Concluding, to calculate the natural extension of any
gamble, in practice, we must simply determine the
full components of the cut sets of its lower or upper
oscillation, and calculate a simple Riemann integral
of a monotonic function.

Examples will be given in Section 8.

6 P-Boxes Whose Preorders are
Induced by a Real-Valued Function

In practice, a convenient way to specify a preorder �
on Ω such that Ω/ ' is order complete and connected
is by means of a bounded real-valued function Z : Ω→
R. For instance, in the example in Section 4.7, we
used Z(x, y) = x+ y. Also see [1, 12]. Let us assume
from now onwards that Z is a surjective mapping from
Ω to [0, 1].

For any x and y in Ω, define x � y whenever Z(x) ≤
Z(y). Because Z is surjective, Ω/ ' is order complete
and connected. In particular, Ω has a smallest and
largest element, for which Z(0Ω) = 0 and Z(1Ω) = 1.
Moreover, we can think of any cumulative distribution
function on (Ω,�) as a function over a single variable
z ∈ [0, 1]. Consequently, we can think of any p-box on
(Ω,�) as a p-box on ([0, 1],≤). In particular, for any
subset I of [0, 1] we write E(I) for E(Z−1(I)). For
example, for a, b in [0, 1], and A = Z−1((a, b]) ⊆ Ω,
we have that

E(A) = E((a, b]) = max{0, F (a)− F (b)}

by Proposition 4. Similar expressions for other types
of intervals follow from Eq. (7).

The topological interior and closure can be related to
the so-called lower and upper inverse of Z−1. Indeed,
consider the multi-valued mapping Γ := Z−1 : [0, 1]→
℘(Ω). Because for every x in Ω, it holds that
[x]' = Γ(Z(x)), it follows that, for any subset A of
Ω, int(A) = Γ(Γ∗(A)), and cl(A) = Γ(Γ∗(A)), where
Γ∗ and Γ∗ denote the lower and upper inverse of Γ
respectively, that is [7]

Γ∗(A) = {z ∈ [0, 1] : Γ(z) ⊆ A}, and
Γ∗(A) = {z ∈ [0, 1] : Γ(z) ∩A 6= ∅}.

Theorem 17. Let A be any subset of Ω. Then

E(A) =
∑

λ∈Λ

E(Iλ)

E(A) = 1−
∑

λ∈Λ′

E(Jλ)

where (Iλ)λ∈Λ are the full components of Z(int(A)) =
Γ∗(A) and (Jλ)λ∈Λ′ are the full components of
Z(int(Ac)) = Z(cl(A)c) = Γ∗(Ac) = (Γ∗(A))c.
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If, in addition, F is left-continuous as a function of
z ∈ [0, 1] and F (0) = 0, then

E(A) =
∑

λ∈Λ

max{0, F (sup Iλ)− F (inf Iλ)}

E(A) = 1−
∑

λ∈Λ′

max{0, F (sup Jλ)− F (inf Jλ)}

For gambles, the lower oscillation is constant on equiv-
alence classes. So, we may also consider osc(f) and
osc(f) in Proposition 16 as functions of z ∈ [0, 1].

7 Constructing Multivariate P-Boxes
from Marginals

Next, we construct a multivariate p-box from
marginal lower previsions under arbitrary rules of
combination. We then focus on two special joint mod-
els: the first without any assumptions about depen-
dence between variables (using the Fréchet-Hoeffding
bounds [13]), and the second assuming epistemic in-
dependence between all variables (using the factoriza-
tion property [3]). Finally, we derive Williamson and
Downs’s [20] probabilistic arithmetic as a special case
of our framework.

Specifically, consider n variables X1, . . . , Xn assum-
ing values in X1, . . . , Xn, and marginal lower pre-
visions P 1, . . . , Pn for each variable. Each P i is a
coherent lower prevision on L(Xi).

7.1 Multivariate P-Boxes

First, we must define a mapping Z to induce a pre-
order � on Ω = X1 × · · · × Xn. The following choice
works perfectly for our purpose:

Z(x1, . . . , xn) =
n

max
i=1

Zi(xi)

where each Zi is a surjective mapping from Xi to [0, 1]
and hence, also induces a marginal preorder �i on Xi.
Each P i can be approximated by a p-box (F i, F i) on
(Xi,�i), defined by

F i(z) = P i(Z
−1
i ([0, z])) F i(z) = P i(Z−1

i ([0, z]))

This approximation is the best possible one, by The-
orem 2.

Beware that even though different choices of Zi may
induce the same total preorder �i, they might lead to
a different total preorder � induced by Z. Roughly
speaking, the Zi specify how the marginals scale rela-
tive to one another. This means that our choice of Zi
affects the precision of our inferences: a good choice
will ensure that any event of interest can be well ap-
proximated by elements of Ω/ '. Of course, nothing

prevents us, at least in theory, to consider the set of all
Zi which induce some given marginal total preorders
�i, and whence to work with a set of p-boxes. In Sec-
tion 7.4, we will see an example where this approach
is feasible.

Anyway, with this choice of Z, we can easily find the
p-box which represents the joint as accurately as pos-
sible, under any rule of combination of coherent lower
previsions:

Theorem 18. Consider any rule of combination �
of coherent lower and upper previsions, mapping the
marginals P 1, . . . , Pn to a joint coherent lower previ-
sion

⊙n
i=1 P i on all gambles. Suppose there are func-

tions ` and u for which:

n⊙

i=1

P i

(
n∏

i=1

Ai

)
= `(P 1(A1), . . . , Pn(An)) and

n⊙

i=1

P i

(
n∏

i=1

Ai

)
= u(P 1(A1), . . . , Pn(An)),

for all A1 ⊆ X1, . . . , An ⊆ Xn. Then, the couple
(F , F ) defined by

F (z)=`(F 1(z), ..., Fn(z));F (z)=u(F 1(z), ..., Fn(z))

is the least conservative p-box on (Ω,�) whose natu-
ral extension EF,F is dominated by the combination⊙n

i=1 P i of P 1, . . . , Pn.

7.2 Natural Extension: The Fréchet Case

The natural extension �n
i=1P i of P 1, . . . , Pn is

the lower envelope of all joint distributions whose
marginal distributions are compatible with the given
marginal lower previsions. So, the model is com-
pletely vacuous about the dependence structure. We
refer to for instance [4, p. 120, §3.1] for a rigorous def-
inition. In this paper, we only need to use the Fréchet
bounds (see [21, p. 131]), in which case the functions `
and u of Theorem 18 are respectively the Lukasiewicz
and the minimum t-norms.

Theorem 19. The p-box (F , F ) defined by

F (z)=max

{
0, 1− n+

n∑

i=1

F i(z)

}
F (z)=

n
min
i=1

F i(z)

is the least conservative p-box on (Ω,�) whose natural
extension EF,F is dominated by the natural extension
�n
i=1P i of P 1, . . . , Pn.

It is easily seen that the joint lower prevision �n
i=1P i

is in general not completely monotone, hence the joint
p-box of Theorem 19 is in general only an outer ap-
proximation.
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7.3 Independent Natural Extension

In contrast, the independent natural extension
⊗ni=1P i of P 1, . . . , Pn models epistemic independence
betweenX1, . . . , Xn. We refer to [3] for a rigorous def-
inition and properties. In this paper we only need the
factorization property, which implies that the func-
tions ` and u of Theorem 18 are the product rule.

Theorem 20. The p-box (F , F ) defined by

F (z) =
n∏

i=1

F i(z) F (z) =
n∏

i=1

F i(z)

is the least conservative p-box on (Ω,�) whose nat-
ural extension EF,F is dominated by the indepedent
natural extension ⊗ni=1P i of P 1, . . . , Pn.

Again, the joint p-box will only be an outer approxi-
mation of the actual joint lower prevision.

7.4 Special Case: Probabilistic Arithmetic

Let Y = X1 + X2 with X1 and X2 real-valued ran-
dom variables. Probabilistic arithmetic [21] estimates
PY ([−∞, y]) = FY (y) and PY ([−∞, y]) = FY (y) for
any y ∈ R under the assumptions that the uncer-
tainty on X1 and X2 is given by p-boxes (F 1, F 1)
and (F 2, F 2), with �1 and �2 the natural ordering of
real numbers, and the dependence structure is com-
pletely unknown. Williamson and Downs [20] provide
explicit formulae for common arithmetic operations,
making inferences from marginal p-boxes very easy.

Let us show, for the particular case of addition, that
their results are captured by our joint p-box proposed
in Theorem 19. Cases of other arithmetic operators,
not treated here to save space, follow from almost
identical reasoning. The lower cumulative distribu-
tion function FX1+X2

(y) resulting from probabilistic
arithmetic is, for any y ∈ R,

sup
x1,x2 : x1+x2=y

max{0, F 1(x1) + F 2(x2)− 1}. (11)

Without much loss of generality, assume that both X1

and X2 lie in a bounded interval [a, b].

Let Z1 and Z2 be any surjective maps [a, b] → [0, 1]
which induce the usual ordering on [0, 1] (so both must
be continuous and strictly increasing).

To apply Theorem 19, consider the total pre-
order � on Ω = [a, b]2 induced by Z(x1, x2) =
max{Z1(x1), Z2(x2)}. Figure 2 illustrates the event4

{X1 +X2 ≤ y}, with y ∈ [2a, 2b], as well as the largest
interval Z−1([0, z]) included in it. For z such that

4{X1 + X2 ≤ y} is {(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ y}.

y

y

Z−1
2 (z)

Z−1
1 (z)

{X1 +X2 ≤ y}
Z−1([0, z])

Figure 2: The event {X1 + X2 ≤ y}, and the largest
interval Z−1([0, z]) included in it.

Z−1
1 (z) + Z−1

2 (z) = y, we achieve the largest inter-
val Z−1([0, z]) which is still included in {X1 + X2 ≤
y}. There is always a unique such z because also
Z−1

1 + Z−1
2 is continuous and strictly increasing.

Using Theorems 19 and 17, we find that

EF,F ({X1 +X2 ≤ y}) = F (Z−1(z))

= max{0, F 1(Z−1
1 (z)) + F 2(Z−1

2 (z))− 1}

But, this holds for every valid choice of Z1 and Z2,
whence P 1 �P 2({X1 +X2 ≤ y}) dominates Eq. (11).

8 Example

Next, we investigate an example in which p-boxes are
used to model uncertainty around some parameters.

We aim to estimate the minimal required dike height
h along a stretch of river, using a model proposed in
[6]. Although this model is quite simple, it provides
a realistic industrial application. Skipping technical
details, the model results in the following relationship:

h(q, k, u, d) =





(
q

k
√

u−d
` b

) 3
5

if q ≥ 0

0 otherwise,
(12)

with b and ` the river width and length, q the river
flow rate, k the Strickler coefficient and u, d respec-
tively the upriver and downriver water levels.

For this case study, the river width is b = 300m and
the length is ` = 6400m. The remaining parameters
are uncertain. Expert assessment leads to the follow-
ing distributions.

The river flow rate q has a Gumbel distribution with
location and scale parameters µ = 1335m3s−1 and
β = 716m3s−1. To simplify calculations, we introduce
a variable r satisfying q = µ− β ln(− ln(r)). If r is
uniform over [0, 1], then q is Gumbel with parameters
µ and β. So, after transformation,

h(r, k, u, d) =





(
µ−β ln(− ln(r))

k
√

u−d
` b

) 3
5

if q ≥ 0

0 otherwise.
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p(k ∈ [30− 15z, 30 + 15z])

k30

p(k)

15 45

Figure 3: Derivation of the p-box for a triangular dis-
tribution.

The Strickler coefficient k has a symmetric triangular
distribution over the interval [15m1/3s−1, 45m1/3s−1].

Upper and downriver water levels u and d are uncer-
tain due to sedimentary conditions. Measured values
are u∗ = 55m and d∗ = 50m, with measurement er-
ror definitely less than 1m. These are also modelled
by symmetric triangular distributions, on [54m, 56m]
and [49m, 51m] respectively.

A natural choice for Z is the distance between the
expected values (r∗ = 1/2, k∗ = 30, u∗ = 55, d∗ = 50)
and the actual values (r, k, u, d):

Z(r, k, u, d) = max{2|r− 1
2 |,
|k−30|

15 , |u− 55|, |d− 50|}.

The scale of the distances has been chosen such that
Z(r, k, u, d) ≤ 1 for all points of interest. Equiva-
lence classes [(r, k, u, d)]' are borders of 4-dimentional
boxes with vertices (with z = Z(r, k, u, d))

((1± z)/2, 30± 15z, 55± z, 50± z).

The marginal p-boxes are, for r:

F 1(z) = F 1(z) = p(2|r − 1/2| ≤ z) = z

because r is uniformly distributed over [0, 1]. For k:

F 2(z) = F 2(z) = p(|k − 30|/15 ≤ z) = 1− (1− z)2

(see Fig. 3). Similarly, for u and d, it is easily verified
that F 3(z) = F 3(z) = F 4(z) = F 4(z) = 1− (1− z)2.

Next, osc(h) and osc(h) are:

osc(h)(z) = inf
(r,k,u,d) : Z(r,k,u,d)=z

h(r, k, u, d) = o(−z)

osc(h)(z) = sup
(r,k,u,d) : Z(r,k,u,d)=z

h(r, k, u, d) = o(z)

with

o(z) =





(
µ−β ln(− ln((1+z)/2))

(30−15z)
√

5−2z
` b

) 3
5

if · · · ≥ 0

0 otherwise.

The function o(z) is increasing, with o(−1) = 0,
o(0) = 3.032, and o(1) = +∞.

Hence, osc(h)(z) and osc(h)(z) are decreasing and in-
creasing in z, respectively. So, the full components of
the events

Lt={z ∈ [0, 1] : osc(h)(z) ≥ t}={z ∈ [0, 1] : o(−z) ≥ t}
Ut={z ∈ [0, 1] : osc(h)(z) ≥ t}={z ∈ [0, 1] : o(z) ≥ t}

are of the form Lt = [0, `t] and Ut = [ut, 1], with

`t = −o−1(t) for t ≤ o(0) ut = o−1(t) for t ≥ o(0)

With unknown dependence, using Theorem 19,

F (z) = max{0,−3 + z + 3(1− (1− z)2)}

and whence

E(h) =
∫ o(0)

0

F (−o−1(t)) dt = 1.515

E(h) = o(0) +
∫ +∞

o(0)

(
1− F (o−1(t))

)
dt = 6.423

Therefore, we should consider average overflowing
heights of at least 6.5m. For comparison, using tradi-
tional methods and assuming independence between
all variables, h has expectation 3.2m, which lies be-
tween our lower and upper expectation, as expected.
Note that the imprecision has two sources: we have re-
duced a multivariate problem to a univariate one and
we have not made any assumption of independence.

Calculations were relatively simple due to the mono-
tonicity of the target function with respect to the un-
certain variables. This may not be the case in general.

9 Conclusions

We studied inferences (lower and upper expectations)
from p-boxes on arbitrary totally preordered spaces.
For this purpose, we represented p-boxes as coherent
lower previsions, and studied their natural extension.
Defining p-boxes on totally pre-ordered spaces allowed
us to unify p-boxes on finite spaces and on real in-
tervals, and to extend the theory to the multivariate
case.

One interesting result is a practical means of calcu-
lating the natural extension of a p-box in this general
setting: we proved that it suffices to calculate the full
components of the cut sets of the lower oscillation, fol-
lowed by a simple Riemann integral (Proposition 16).

As examples of how this model can be used in prac-
tice, we have detailed the cases of p-boxes whose pre-
orders are induced by a real-valued mapping, and of
joint p-boxes built from marginals under various com-
bination rules. We demonstrated our methodology on
inference about a river dike assessment, showing that
calculations are generally straightforward.
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Of course, many open problems regarding p-boxes re-
main. For instance, can the dependency model inform
the choice of preorder, to arrive at tighter bounds?
Our choice led to simple expressions, but other choices
giving more precise inference could be investigated.
Also, the connection of p-boxes with other uncertainty
models, such as possibility measures and clouds, de-
serves further investigation.
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Abstract

When animals are transported and pass through cus-
toms, some of them may have dangerous infectious
diseases. Typically, due to the cost of testing, not
all animals are tested: a reasonable selection must be
made. How to test effectively, yet avoid cataclysmic
events? First, we extend a model proposed in the lit-
erature for the detection of invasive species to suit our
purpose. Secondly, we explore and compare two deci-
sion methodologies on the problem at hand, namely,
info-gap theory and imprecise probability theory, both
of which are designed to handle severe uncertainty.
We show that, under rather general conditions, ev-
ery info-gap solution is maximal with respect to a
suitably chosen imprecise probability model, and that
therefore, perhaps surprisingly, the set of maximal op-
tions can be inferred at least partly—and sometimes
entirely—from an info-gap analysis.

Keywords. exotic disease, lower prevision, info-gap,
maximality, minimax, robustness, inspection, proto-
col

1 Introduction

This paper concerns the inspection of imported herds
of animals for signs of known or unknown major exotic
infectious diseases. On the one hand, imports and
exports of animals represent a significant contribution
to the UK economy. On the other hand, there is a real
risk of animal diseases being introduced. Imports are
therefore subject to strict controls at the UK border
under EU and national rules. Fèvre et al. [6] review
the problems associated with animal movement and
the spread of disease.

We will build further on the work of Moffitt et al.
[10], who study inspection protocols for shipping con-
tainers of invasive species, employing info-gap theory
[1] to model the severely uncertain number of infested
items. The aim of their study is to realistically take

into account economical considerations (actual costs
of testing, and of invasive species passing through cus-
toms), whilst also soundly handling the enormous un-
certainty.

A key feature of their, and also our, problem is that
exact probabilities of the constituent events are very
hard to come by [9]. This motivates the use of ro-
bust uncertainty models and decision tools, such as
info-gaps [1] (i.e. robust satisficing) as in the original
study, but also imprecise probabilities [12], as we will
do in this paper.

Our study, using both decision methodologies, leads
us to surmise a connection between info-gap analy-
sis and imprecise probability theory (Γ-minimax and
maximality in particular). We prove that the per-
ceived connection is no coincidence, and we establish a
rigorous theoretical link between the two approaches.

The paper is organised as follows. Section 2 intro-
duces the problem of animal inspection, defines the
model, discusses various uncertainties involved, and
derives an expression for the expected loss under a
simple binomial model for infection. Section 3 solves
the inspection problem, first using an info-gap model,
and then using an imprecise probability model (with
maximality). These results are discussed in Section 4,
where we formally define an info-gap model based on
a nested set of imprecise probability models, and es-
tablish the theoretical connections between info-gap,
Γ-minimax, and maximality. Section 5 concludes the
paper.

2 Animal Herd Testing

In this section, we extend a model, proposed by [10]
for the detection of invasive species, to suit our pur-
pose:

• we explicitly take specificity and sensitivity into
account in order to allow for imperfect testing,
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• we take into account an additional cost term for
terminating the herd in case an infection is de-
tected, and

• we model the occurrence of diseased animals in
the herd as a binomial process, under a worst-
case assumption of independence of infections be-
tween animals.

2.1 Model Description

Consider a herd of n animals, of which m are tested—
the problem is to choose m optimally. The uncer-
tain number of diseased animals in the herd is de-
noted by d. The test has sensitivity—the probabil-
ity that a diseased animal tests positive—equal to p,
and specificity—the probability that a healthy animal
tests negative—equal to q.

Testing m animals costs c(m) utiles. If d diseased an-
imals pass inspection undetected, we incur a cost of
a(d) utiles. When at least one diseased animal is de-
tected, then, typically, the whole herd is terminated,
costing t(n) utiles.

Following [10, p. 295, Sec. 3], in the numerical exam-
ples that follow, we take

c(m) = 1000− 2000m+ 1000m2 (m ≥ 1)

a(d) =

{
0 if d = 0
a if d ≥ 1

(a = 10 000 000)

Moffitt et al. [10] consider n between 250 and 2 500,
do not need to consider the cost of termination (t(n) =
0), and assume perfect testing (p = q = 1). For our
problem, we take

n = 250
t(n) = 400n = 100 000
p = 0.9999
q = 0.999

so we assume that a diseased animal tests positive
with probability 0.9999, and a healthy animal tests
negative with probability 0.999. For reference, if q =
0.999, then probability that all animals in a healthy
herd of size n = 250 test negative is qn = 0.78. These
values for p and q are reasonable in so far that, in
practice, things would be really bad if they were any
lower.

2.2 Model Uncertainties

Obviously, many of these values are rather uncertain.
The only values we are pretty certain of are the num-
ber of animals n in the herd, the cost of testing c(n),
and the cost of termination t(n).

Due to the necessity that the herd must have valid
health documentation, we would expect that the num-
ber of infected animals d would be low. Additional in-
spection by veterinary officials is costly and depends
on the inspecting official’s ability to spot signs of in-
fectious disease like pathological lesions and abnormal
behaviour. Of course, the level of experience and com-
petency will vary from official to official, but the test-
ing procedure should be thorough enough for us to be
confident of both a high sensitivity, p, and specificity,
q. In addition to this, the government would pre-
fer the most sensitive test possible (within budgetary
constraints), even if specificity was slightly compro-
mised, because a rare false positive would be better
for the prevention of disease entry than a rare false
negative. Hence, we would expect p > q. Further
discussion of this can be found in [15].

Regarding the cost a of an infection passing through
customs, some historical data is available. For exam-
ple, instances of major disease outbreaks in the last
couple of decades include BSE where public spending
was over £5 billion, and the foot and mouth outbreak
in 2001 which costed the UK government £2.6 billion
[4]. These experiences show that there is great varia-
tion in the level of costs of exotic disease outbreaks.
Due to the exceptional nature of the outbreaks, there
is limited evidence on which to base cost assessments.
Therefore, there is great uncertainty about what may
happen in the future.

Outbreaks of any particular exotic disease are gen-
erally rare or may never have occurred at all. Also,
diseases change as new strains develop, and the possi-
bility of new diseases arriving into the UK can change
rapidly. For example, until a few years ago, blue-
tongue was considered extremely unlikely, but now
we expect an outbreak every one to two years in the
UK.

In late 2009, an elicitation exercise was carried out
with government experts to help quantify the aver-
age annual costs to the UK government of exotic in-
fectious disease outbreaks and the uncertainty about
those estimates [8]. In that exercise, it was clear that
the costs are severely uncertain even when the disease
was known (for example, foot and mouth is an exotic
infectious disease). A major contributor to the un-
certainty about the overall cost was the possibility of
an outbreak of an unknown infectious disease, which
could cost anywhere from £0.5 billion to £6 billion.

The scale and costs of an outbreak will depend on
the length of time between the diseased animal enter-
ing circulation and the disease’s presence being con-
firmed, and the speed and effectiveness of the govern-
ment’s response. The eventual costs are influenced
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by any public health implications and the effects of
disease controls on other industries. The main ele-
ments of the costs due to control measures include:
the disposal of and payments for culled animals; the
tracing, testing and diagnosis of animals; the clean-
ing and disinfection of infected premises; and admin-
istrative costs in managing the outbreak. The size of
these costs will vary according to the scale of the out-
break with key factors being the number of infected
premises, the numbers of animals culled, and the du-
ration of the outbreak. These types of factors are
considered in greater detail in [4] and [7].

A serious study of how all uncertainties involved could
be taken into account in the model would of course be
extremely interesting, but is beyond the goal of this
paper. Instead, in this initial study, following [10] and
many others, for now we will focus on the main un-
certainty, that is, the number of diseased animals d,
and simply assume reasonable values for the remain-
ing parameters.

2.3 Expected Loss

First, we derive the expected loss, in case all parame-
ters of the problem are perfectly known, including the
number of diseased animals d. Clearly, conditional on
d, the expected loss is:

L(m, d, p, q, c, a, t)
= c(m) + t(n) Pr(T |d) + a(d) Pr(T c|d)

where T denotes termination of the herd, that is, the
event that at least one diseased animal is detected,
and T c denotes its complement, that is, the event that
the herd passes inspection.

Let us deduce Pr(T c|d). First, if the test group of
size m is sampled randomly and without replacement,
then the probability of exactly z diseased animals in
the test group follows a hypergeometric distribution:

Pr(z|d) =

(
d
z

)(
n−d
m−z

)
(

n
m

) .

Next, we calculate the probability of non-termination
given z diseased animals in the test group, that is
Pr(T c|d, z). If d = 0, then the probability of non-
termination is the probability of all healthy animals
in the sample testing negative, so Pr(T c|0, z) = qm.
If d ≥ 1, then given z diseased animals in the sample,
non-termination occurs when none of the z diseased
animals tests positive and all of the m − z healthy
animals test negative. Hence, in all cases,

Pr(T c|d, z) = (1− p)zqm−z. (1)

d0

L

10 20 30

2 500 000

5 000 000

7 500 000

10 000 000

m = 10
m = 20

Figure 1: Loss as a function of the number of diseased
animals for m = 10 and m = 20.

By the law of total probability,

Pr(T c|d) =
d∑

z=0

Pr(T c|d, z) Pr(z|d)

=
d∑

z=0

(1− p)zqm−z

(
d
z

)(
n−d
m−z

)
(

n
m

) . (2)

Now we have all the ingredients to calculate the total
expected loss if we choose to test m out of n animals:

L(m, d, p, q, c, a, t)
= c(m) + t(n) + (a(d)− t(n)) Pr(T c|d)

or, if a′(n, d) = a(d) − t(n) denotes the termination
adjusted cost of apocalypse,

= c(m) + t(n) + a′(n, d) Pr(T c|d)

where Pr(T c|d) is given by Eq. (2). Figure 1 depicts
the expected loss for a few typical cases.

2.4 A Binomial Model for Infection

Moffitt et al. [10] consider an info-gap model directly
over the number of diseased animals d, which leads
to a rather tricky optimisation problem. Instead, we
will consider the (highly uncertain) probability r that
an animal is infected, and derive the expected loss
as a function of r. Although we do not explore this
topic further in this paper, this also paves the way to
modelling spatial dependencies between infections in
the herd, leading to more optimal testing strategies.

So, assume that each animal has a probability r of be-
ing infected; for simplicity, for now, we assume that
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m

E(L|r)/106

0 250.2

2.5

Figure 2: Expected loss L(m|r) as a function of the
test group size m, for r = 0.00010, r = 0.00025, r =
0.00050, and r = 0.00100, from bottom to top.

one animal being diseased does not affect another ani-
mal being diseased. Obviously, this will generally not
be satisfied, and more realistically, we would expect
a positive correlation, resulting in diseased animals
being clustered together in the herd. Assuming inde-
pendence essentially amounts to a worst case study:
at the other extreme end, if one diseased animal would
immediately infect the whole herd, then it would be
sufficient to test only a single animal, as d = 0 and
d = n would be the only two possibilities.

Under the worst case assumption of independence, the
probability of having d out of n animals infected is:

Pr(d|r) =
(
n

d

)
rd(1− r)n−d (3)

The expected loss is:

E(L(m, ·, p, q, c, a, t)|r)

=
n∑

d=0

L(m, d, p, q, c, a, t) Pr(d|r) (4)

From now onwards, we will simply write L(m|r) in-
stead of E(L(m, ·, p, q, c, a, t)|r) in order to simplify
notation. Figure 2 depicts L(m|r) as a function of m
for a few typical situations.

3 Decision Analysis

In this section, we explore and compare two decision
methodologies, designed for severe uncertainty, on the
problem at hand. In particular,

• we accommodate the info-gap approach sug-
gested by [10] to our extended model,

• we investigate possible ways of constructing sets
of probabilities (i.e. imprecise probability mod-
els) which are in some sense equivalent to the
proposed info-gap model, and

• we compare the decisions that these various mod-
els lead to.

3.1 Info-Gap Analysis

One approach to solve our decision problem, under
severe uncertainty about the exact probability r of a
single animal being viciously infected, is to select that
decision which meets a given performance criterion,
Lc, under the largest possible range of r. Given that
we have almost no information about r, this simple
model seems to suffice for our purpose. Obviously,
one could define many other more refined info-gap
models—and our choice of model is just one example
among many. For a much more detailed account, see
[1].

Specifically, for a given value of Lc, the largest possi-
ble range [0, h] of r for which we meet our performance
criterion is characterised by

ĥ(m,Lc) = max
h≥0




h : max

r∈[0,h]
L(m|r)

︸ ︷︷ ︸
M(m,h)

≤ Lc





The value ĥ(m,Lc), as a function of Lc, is called the
robustness curve: it tells us how uncertain about r we
can be for our decision m still to meet a given level of
performance Lc.

A quick Poisson approximation reveals that as long
as exp(−nh) is sufficiently close to 1 (and this holds
for sufficiently small values of nh) the inner maximum
over r ∈ [0, h] is achieved at r = h (also see Figure 2:
the cost increases as r increases), so

M(m,h) = L(m|h)

Obviously, M(m,h) increases as the horizon of un-
certainty h increases, whence ĥ(m,Lc) as a function
of Lc is simply the inverse of M(m,h) as a function
of h. In other words, plotting M(m,h) as a function

356 Matthias C. M. Troffaes & John Paul Gosling



Lc/106

103h

0 7.10

5

Figure 3: Robustness curves ĥ(m,Lc) as a function Lc

for test group sizes m = 1 (solid), m = 15 (dashed),
and m = 30 (dotted).

Lc/106 m∗ 103ĥ(m∗, Lc)
0.5 2 0.207
1.5 5 0.661
2.5 8 1.184
3.5 11 1.803

Table 1: Info-gap choice ofm, and corresponding hori-
zon of uncertainty, for various values of the critical
cost Lc.

of h for different values of m effectively gives us the
robustness curves. Figure 3 depicts them.

The choices of m which maximise robustness, for var-
ious values of the critical cost Lc, are tabulated in
Table 1. For example, at a cost of at most Lc =
2 500 000, we can safeguard against any probability of
infection r ∈ [0, 0.001 184], by testing 8 animals in the
herd.

3.2 Imprecise Probability Analysis:
Maximality

There are several ways one might go about construct-
ing an imprecise probability model for our problem.
As we have just seen, the info-gap approach hinges on
the idea of satisficing. We may start out with a level
of minimum performance that we hope to achieve, and
the analysis tells us how much uncertainty we can ac-
count for, at this price. One might also interpret it
conversely: for a given level of uncertainty, the anal-
ysis tells us how much we might potentially pay, if it
comes to the worst.

Typical decision models for imprecise probabilities
studied in the literature do not relate to satisficing,
yet, they do incorporate an idea similar to the info-
gap horizon of uncertainty: the imprecision of our

model. Concretely, consider the set Mh of all proba-
bility densities over r that are zero outside [0, h].1 We
say that a choice m dominates a choice m′, and we
write m � m′ whenever the expected loss under m is
strictly less than the expected loss under m′ over all
densities p in Mh, that is, whenever

∫ ∞

0

L(m|r)p(r)dr + ε ≤
∫ ∞

0

L(m′|r)p(r)dr

for all probability densities p in Mh and some ε > 0.

This happens exactly when

min
r∈[0,h]

[L(m′|r)− L(m|r)] > 0

Note that the minr∈[0,h] operator can be thought of
as a lower expectation operator, or lower prevision
Ph—we will come back to this in Section 4.

One can easily prove that � is a partial order, whence,
a sensible way to choose m is to pick one which is not
dominated by any other option, or in other words,
which is maximal. The idea of choosing undominated
options goes back at least to Condorcet [3, pp. lvj–
lxix, 4.e Exemple]; also see [11, p. 55, Eq. (1)], [13,
Sections 3.7–3.9], and [12] for further discussion.

Given our partial order, one can easily show that an
option m is maximal if and only if

min
m′∈{0,1,...,n}

max
r∈[0,h]

[L(m′|r)− L(m|r)] ≥ 0 (5)

The inner maximum is almost always achieved at ei-
ther r = 0 or r = h, simplifying practical calcula-
tions substantially. Table 2 depicts these values for
all choices of m, and varying values of h. For ease of
comparison with the info-gap solution, we have chosen
the same values of h as those listed in Table 1.

4 Discussion

Interestingly, info-gap and maximality give essentially
the same result, with maximality refining the picture
slightly: for a given horizon of uncertainty h, the
maximal solutions are {1, . . . ,m∗}, where m∗ is the
info-gap solution. The most notable result is that all
info-gap solutions are maximal. Is this a coincidence?
Formulating info-gap theory in terms of lower previ-
sions, we show that this holds under fairly general
circumstances.

1The adventurous reader may take all finitely additive prob-
ability measures µ on [0,+∞] with µ([0, h]) = 1. We do without
this complication: because all functions involved are continu-
ous, those additional measures make no difference.
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103h
m 0.207 0.661 1.184 1.803
0 −0.9 −0.9 −0.9 −0.9
1 1.1 1.1 1.1 1.1
2 1.4 3.1 3.1 3.1
3 −0.6 4.9 5.1 5.1
4 −3.1 2.9 7.1 7.1
5 −7.7 0.9 7.0 9.1
6 −14.3 −1.1 5.0 11.1
7 −22.9 −4.3 2.9 9.9
8 −33.4 −9.5 0.9 7.9
9 −46.0 −16.6 −1.1 5.8
10 −60.6 −25.9 −4.3 3.7
11 −77.2 −37.1 −9.5 1.7
12 −95.8 −50.3 −16.8 −0.4
13 −116.4 −65.6 −26.1 −2.9
14 −139.1 −82.9 −37.4 −7.4
15 −163.7 −102.2 −50.8 −14.1

Table 2: Result of Eq. (5) (divided by a factor 103 for
everything to fit in the table). A positive value means
that the corresponding choice of m is optimal for the
given horizon of uncertainty h.

4.1 Info-Gaps for Imprecise Probabilities

Let ω ∈ Ω be an uncertain parameter of interest—Ω
can be an arbitrary set. We must select a decision d
from a finite set D. The loss function L(d, ω) repre-
sents the loss (in utiles) if we choose d and ω obtains.

Info-gap theory starts out with a family of nested sets
Uh of Ω, where h is a non-negative parameter called
the horizon of uncertainty and Uh ⊆ Uh′ whenever
h ≤ h′. In our example, Uh was simply [0, h]. Follow-
ing that example, we saw that a very natural way to
model these nested sets Uh in terms of sets of proba-
bilities goes by way of a vacuous model Mh, that is,
the set of all probability densities that are zero outside
Uh.

If we denote the upper expectation induced by Mh

by Ph, then, formally, we define the info-gap solution
D∗(Lc) ⊆ D at satisficing level Lc as:

ĥ(d, Lc) = max
{
h : Ph(L(d, ·)) ≤ Lc

}

D∗(Lc) = arg max
d∈D

ĥ(d, Lc)

Note that D∗(Lc) will usually be a singleton (or, the
empty set).

Also note that the first equation may not have a so-
lution: this happens when P 0(L(d, ·)) > Lc, that is,
when d is infeasible even if we are as certain as can
be (h = 0).

Now, from the point of view of imprecise probability,

there is no compelling reason to restrict ourselves to
vacuous models. In fact, we can allow Mh to be any
set of probability densities on Ω, under one restric-
tion: a close inspection of the theory reveals that a
crucial property that the info-gap model relies on is
that the worst case cost, Ph(L(d, ·)) is increasing as
the horizon of uncertainty h increases. Whence, we
logically impose that Mh ⊆Mh′ whenever h < h′.

So, instead of starting out from a family of nested sub-
sets Uh of Ω, we start out from a family of nested sets
Mh of probability densities on Ω. One can of course
interpret this again as an info-gap model, where the
uncertain parameter is now the probability density
over Ω—also see [2, pp. 1062–1063] for an informal
discussion of this approach. The imprecise Dirich-
let model [14] is an example of such family (with
h = 1/s). For another example, see [5] for a dis-
cussion of nested sets of p-boxes and the resulting
info-gap analysis.

4.2 Main Result

The next result links the info-gap solution to the so-
called Γ-minimax2 solution (see [2, p. 1061, Fig. 14]
for an informal discussion of a very similar equivalence
between info-gap and minimax):
Theorem 1. The info-gap solution D∗(Lc) coincides
with Γ-minimax solution with respect to Ph, that is,

D∗(Lc) = arg min
d∈D

Ph(L(d, ·)),

whenever the following conditions are satisfied:

(i) for all d ∈ D, Ph(L(d, ·)) is strictly increasing as
a function of h, and

(ii) it holds that

Lc = min
d∈D

Ph(L(d, ·)). (6)

Proof. By definition, d∗ ∈ D∗(Lc) whenever, for all
d ∈ D,

ĥ(d∗, Lc) ≥ ĥ(d, Lc)

By definition of ĥ(d, Lc), this is equivalent to saying
that
{
h′ : Ph′(L(d∗, ·)) ≤ Lc

}

⊇ ∪d∈D

{
h′ : Ph′(L(d, ·)) ≤ Lc

}

Rewriting the above expression, we have, equivalently,
{
h′ : Ph′(L(d∗, ·)) ≤ Lc

}

⊇
{
h′ : min

d∈D
Ph′(L(d, ·)) ≤ Lc

}

2Γ-minimax minimises the upper expectation of the loss.
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But, by Eq. (6), Lc = minPh(L(d, ·)), and Ph(L(d, ·))
is strictly increasing for all d as a function of h, whence
its minimum over d is strictly increasing as well. Con-
cluding, the set on the right hand side is a fancy way
of writing [0, h]. Therefore, the above is equivalent to

Ph(L(d∗, ·)) ≤ Lc

Once more by Eq. (6), this is equivalent to saying that
d∗ is a Γ-minimax solution with respect to Ph.

Interestingly, for given Lc such that

min
d∈D

P 0(L(d, ·)) ≤ Lc ≤ min
d∈D

P∞(L(d, ·))

it holds that Eq. (6) has a unique solution for h ≥ 0
whenever all Ph(L(d, ·)) are strictly increasing and
continuous in h. It is given by:

h = max
{
h′ : min

d∈D
Ph(L(d, ·)) ≤ Lc

}
(7)

This means that we are effectively free to choose Lc

under the additional assumption of continuity. To see
why we are not free to choose Lc when continuity is
not satisfied, imagine for instance that:

Ph(L(d1, ·)) =

{
x if h ≤ 1
3 + x if h > 1

Ph(L(d2, ·)) =

{
1 + x if h ≤ 1
4 + x if h > 1

Then, for Lc = 3, we have that D∗(2) = {d1, d2} be-
cause ĥ(d, 2) = 1 for both d1 and d2, yet obviously d1

is Γ-minimax (it could even be uniformly dominated
by d2). Effectively, this is simply a technical limita-
tion of the info-gap model, as any reasonable person
would probably agree with the Γ-minimax solution.

Now, it is well known that every Γ-minimax solution
is also maximal (see for instance [12]), whence, we
conclude:
Theorem 2. Suppose that, for all d ∈ D, Ph(L(d, ·))
is strictly increasing as a function of h. Let

Lc(h) = min
d∈D

Ph(L(d, ·)) (8)

Then, for all h′ ≤ h, every info-gap decision d∗ ∈
D∗(Lc(h′)) is maximal with respect to Ph:

⋃

0≤h′≤h

D∗(Lc(h′))

⊆ {d ∈ D : (∀d′ ∈ D)(Ph(L(d′, ·)− L(d, ·)) ≥ 0)}

Proof. Use the preceding theorem, and note that ev-
ery Γ-minimax with respect to Ph′ is maximal with
respect to Ph, provided that h′ ≤ h.

Again, if in addition all Ph(L(d, ·)) are continuous
in h, then the range for Lc in the above theorem is
simply an interval:

{Lc(h′) : h′ ≤ h}

=
[
min
d∈D

P 0(L(d, ·)),min
d∈D

Ph(L(d, ·))
]
.

Summarising, Theorem 1 provides sufficient condi-
tions3 for the info-gap solution, for fixed values of Lc

and h, to be equivalent to a Γ-minimax solution: pro-
ponents of either approach must reconcile.

Theorem 2 shows that a full fledged info-gap analysis,
varying the horizon of uncertainty along an interval
[0, h], yields an elegant approach to capture maximal
solutions. In our example, we actually find all max-
imal options—in general this may not be the case.
Still, it shows the that an info-gap analysis can be of
value even if maximality is the final goal:

• an info-gap analysis might give a rough idea of
the size of the maximal set (in particular, it pro-
vides a lower bound for it),

• the analysis can be an appealing way to represent
the maximal solution graphically, and

• as robustness curves show the trade-off between
uncertainty and cost, they are also obviously use-
ful in the process of elicitation.

5 Conclusion

We constructed a simple model for inspecting animal
herds for dangerous exotic infections, building further
on the work of Moffitt et al. [10]. We solved the prob-
lem using two popular decision methodologies suited
for dealing with severe uncertainty: info-gap analysis,
and imprecise probability theory (maximality and Γ-
minimax). We found that, in this example, the so-
lutions of both models essentially coincide, although
the way they arrive at it is very different.

We explored the theoretical link between info-gap
theory, Γ-minimax, and maximality. We established
that, under rather general conditions, every info-gap
solution is maximal. Therefore, the set of maximal
options can be inferred at least partly, and sometimes
wholly, from an info-gap analysis. Consequently, ro-
bustness curves also make sense in an imprecise prob-
ability context, for exploring maximal options, and for
elicitation, when studying the trade-off between un-
certainty and cost that is often of interest to decision
makers.

3We have not yet investigated in how far they are also nec-
essary.
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Abstract

How sensitive is the natural extension of an upper
prevision against small perturbations in the assess-
ments? We revise some basic results from the theory
of systems of linear inequalities and equalities, and
linear programming, and apply them to the theory
of upper previsions. We find that stability is most
easily characterized through a regularity condition on
the constraints of the primal problem. We then study
stability, and the existence of stable representations,
in detail. We find necessary and sufficient conditions
for the usual representations of natural extension to
be stable, and necessary and sufficient conditions for
natural extension to have a stable representation at
all. We show that, by arbitrary small perturbation,
we can force stability of the usual representations.

1 Introduction

Brevity pertains—see [8] for more about upper previ-
sions.

Let Ω be any finite possibility space. A gamble is a
real-valued function on Ω. The set of all such gambles
is denoted by L, so L = RΩ.

We are uncertain about the true value ω in Ω. A pop-
ular way of modeling our uncertainty about ω goes by
means of an upper prevision P . Specifically, assume
that for each gamble g from a finite set K ⊆ L, we
can specify an upper bound P (g) on its expectation.
We limit ourselves to upper bounds, without loss of
generality: a lower bound P (g) for g simply translates
into an upper bound P (−g) = −P (g) for −g.

A probability mass function x on Ω incurs a special
kind of upper prevision, namely, one that fixes the

expectation exactly, as x(f) = −x(−f):1

x(f) =
∑

ω∈Ω

x(ω)f(ω),

noting that, for convenience, we denote the expecta-
tion with respect to a probability mass function x also
by x. We call x, as a function of gambles, a linear pre-
vision. The set of all linear previsions on L is denoted
by C, and it is a subset of the set P of all positive lin-
ear functionals (those x for which x(ω) ≥ 0 for all ω
but not necessarily x(1) = 1) on L:

C = {x ∈ P : x(1) = 1}.

For a general upper prevision P , its natural extension
E is of particular interest [8, §3.4.1]:

E(f) = max{x(f) : x ∈ P, x(1) = 1, x ≤ P} (1)

Here, x ≤ P means that x(g) ≤ P (g) for all g ∈ K.
Basically, E tells us how to accomplish inference from
P : given the bounds specified by P , it gives us bounds
for all other gambles.

The problem of natural extension in Eq. (1) is easily
seen to be a linear programming problem. If it has
a solution, then P is said to avoid sure loss. If E
coincides with P on K, then P is said to be coherent.

Its dual is (abusing notation for brevity) [8, §3.1.3(e)]:

E(f) = min
{
a+

∑
g∈K λgP (g) : (a, λK) ∈ Q∗,

a+
∑
g∈K λgg ≥ f

}
(2)

where Q∗ = {(a, λK) : a ∈ R and λg ∈ R+}.2

1The notation ‘x’ for a probability mass function follows the
usual convention in the linear programming literature, where x
usually denotes the variable over which we optimize.

2Technically, λK ∈ (R+)K, and we denote λK(g) by λg .
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For the purpose of numerical analysis, but also for
elicitation, it is important to know whether the solu-
tion is sensitive to perturbations in the assessments
embodied by P . The main purpose of this paper is to
characterize those upper previsions that are insensi-
tive to such perturbations. We investigate under what
conditions a stable representation exists, and how to
find this stable representation.

We extend, and to some extent, also simplify, earlier
work by Hable, in particular, [2, pp. 118–125, Sec. 5.2]
and [3, Sec. 2]. Doing so, we rely on well-known re-
sults about the stability of systems of linear inequal-
ities and equalities.

The paper is structured as follows. Section 2 intro-
duces and demonstrates the problem of instability of
natural extension by means of a few simple examples.
Section 3 reviews the theory of stability of systems
of linear inequalities and equalities. Section 4 applies
these results on the theory of lower previsions, and
natural extension in particular. Section 5 concludes
the paper.

2 Examples

Before we venture into the realm of the theory of sys-
tems of linear inequalities and equalities, we present
some straightforward, yet insightful, examples. Al-
though these examples present an oversimplified and
naive view of the notion of stability of linear programs,
they do capture the key aspects of the discussion that
will follow.

2.1 Instability of Avoiding Sure Loss

We start with a special case of instability of natu-
ral extension, namely, when small perturbations cause
the lower prevision to incur sure loss.

Consider Ω = {ω1, ω2}, and the following assess-
ments:3

P (Iω2) = 2/3 P (Iω1) = 1/3

By Eq. (1), it follows that we can calculate the natural
extension E of for instance Iω1 +2Iω2 by the following
linear program:

maximize
[
1 2

] [x1

x2

]

subject to

x1 ≥ 0, x2 ≥ 0, x1 + x2 = 1 (C)
[
0 1
1 0

] [
x1

x2

]
≤
[
2/3
1/3

]
(S)

3By Iω we denote the gamble which is 1 at ω and zero else-
where.

Clearly, (C) + (S) have a non-empty feasible set: it
includes the probability mass function x with x(ω1) =
1/3 and x(ω2) = 2/3 (in fact, this is the only element
of the feasible set).

However, (C) + (Sε), with

[
0 1
1 0

] [
x1

x2

]
≤
[
2/3− ε

1/3

]
(Sε)

has an empty feasible set, for any ε > 0. If a fea-
sible system of constraints has no solution for some
(but not necessarily all) arbitrary small perturbations,
then we say that these constraints are unstable. Ob-
viously, in such a case, the linear program is deemed
unstable as well.

The above example shows that carelessly designed lin-
ear programming algorithms may fail to solve even
this simple problem due to simple rounding errors.

In practice, implementations of linear programming
get around this limitation by transforming to a so-
called stable representation. Indeed, by identifying
implicit linearities, the program becomes stable, at
least in this case. Concretely, the modified system
(C) + (S’)

[
0 1

] [x1

x2

]
=
[
2/3
]

(S’)

has the same feasible region as original problem. But,
now, unlike the original system, all perturbations to
the modified assessments:

[
0± ε 1± δ

] [x1

x2

]
=
[
2/3± η

]
(S’ε,δ,η)

have a solution for every sufficiently small ε, δ, η.
In other words, the modified constraints are feasible
for every sufficiently small perturbation, and so the
modified system constraints is stable: we say that the
original system has a stable representation. Moreover,
the solution to the perturbed problem

x2 =
2/3 + η − ε
1 + δ − ε

remains close to the original solution x2 = 2/3.
Whence, the linear program, under the stable rep-
resentation, is stable too.

2.2 Instability of Natural Extension

The following example is adapted from an exam-
ple given by Robinson [6, p. 443]. Consider Ω =
{a, b, c, d}, and the following assessments:

P (Ia + 2Ib/3 + 2Id) = 1/2 P (Ib + 3Ic) = 3/2
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By Eq. (1), it follows that we can calculate the natural
extension E of for instance 2Ib + 2Ic by the following
linear program:

maximize
[
0 2 2 0

]



xa
xb
xc
xd




subject to

xa ≥ 0, xb ≥ 0, xc ≥ 0, xd ≥ 0
xa + xb + xc + xd = 1

(C)

[
1 2/3 0 2
0 1 3 0

]



xa
xb
xc
xd


 ≤

[
1/2
3/2

]
(S)

Clearly, (C) + (S) have a non-empty feasible set: it
consists of all the probability mass functions of the
form (with α ∈ [0, 1])

α




1/2
0

1/2
0


+ (1− α)




0
3/4
1/4
0




so E(2Ib + 2Ic) = 2.

However, (C) + (Sε), with

[
1 2/3− ε 0 2
0 1 3 0

]



xa
xb
xc
xd


 ≤

[
1/2
3/2

]
(Sε)

has a very different feasible set, for any ε > 0. Indeed,
regardless of how small ε is chosen, the feasible set of
the perturbed system contains only one probability
mass function:




1/2
0

1/2
0




so, now, E(2Ib+ 2Ic) = 1. An arbitrary small pertur-
bation can lead to an unproportionally large variation
in the solution of the natural extension.

One can easily check that the system has perturba-
tions that incur sure loss, for instance, by reducing
the upper prevision of the first gamble to 1/2− ε. We
will prove that the natural extension is unstable if and
only if there are perturbations which push the system
into incurring sure loss (or equivalently, that the nat-
ural extension is stable if and only if all sufficiently
small perturbations avoid sure loss).

Observe that the dual problem has an unbounded op-
timal solution:
[
0 2 2 0

]
≥ 2 + λ1

(
1/2−

[
1 2/3 0 2

])

+ λ2

(
3/2−

[
0 1 3 0

])

for all non-negative λ1 and λ2 such that λ1 = 3λ2.
We will see that this is also tightly related to the
instability of the primal problem.

Finally, it is unclear whether the system has a sta-
ble representation or not. Intuitively, it seems not;
we will prove this later. For now, we present next
a much simpler example which has clearly no stable
representation.

2.3 Unrepairable Instability

As suggested already, not every upper prevision has a
stable representation. Consider for instance the upper
prevision defined on Iω2 by

P (Iω2) = 0

To calculate its natural extension, we must consider
the constraints (C) + (S2), with

[
0 1

] [x1

x2

]
≤
[
0
]

(S2)

The feasible region is non-empty: it contains the prob-
ability mass function x with x(ω1) = 1 and x(ω2) = 0
(in fact, here again, this is the only element of the
feasible set). However, the perturbation

[
0 1

] [x1

x2

]
≤
[
−ε
]

(S2ε)

has an empty feasible region, no matter how small
ε > 0. In fact, even after recognizing the implicit lin-
earities, the system remains unstable under perturba-
tions. In conclusion, it seems that there is no stable
representation.

2.4 Main Issues

Assuming that we can generalize the above observa-
tions to arbitrary problems of natural extension, we
are left with the following important questions:

1. For the stability of natural extension, does it
matter whether we consider the primal or the
dual representation?

2. In order to establish the stability of natural ex-
tension, is it sufficient to establish stability of the
constraints of the primal linear program?
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3. Under what conditions are the constraints of the
usual representation of the primal linear program
stable?

4. If this usual representation is not stable, under
what conditions can it be transformed to a sta-
ble representation? In other words, when does a
stable representation exist?

5. If a stable representation exists, how to find it?

3 Stability of Linear Programming

Robinson [5] characterizes stability of systems of lin-
ear inequalities and equalities, and [6] relates this
characterization to the stability of natural extension.
Here we quickly summarize his results. Also see [10]
and [4].

3.1 Stability of Linear Systems of
Inequalities and Equalities

Let X and Y be real Banach spaces, let Q be a non-
empty convex cone in Y , let P be a non-empty convex
set (usually, but not always, assumed to be a convex
cone) in X, let b be a point in Y , and let A be a
continuous linear operator from X into Y . For two
points y1 and y2 in Y , we write y1 ≤Q y2 if y2 −
y1 ∈ Q. The cone is used to treat equalities and
inequalities homogeneously. Distinguishing between
them is crucial when studying stability.4

The solution set to

Ax ≤Q b, x ∈ P, (*)

is denoted by F , and for the time being, we are inter-
ested in the stability of F with regard to perturbations
in A and b.

3.1.1 Definition of Stability

Note that x ∈ P is a solution of the above system
of inequalities if and only if b − Ax is in Q (this is
immediate by the definition of ≤Q). Hence, for any
arbitrary x ∈ P , we can take the distance between
b − Ax and Q as a measure of how much x deviates
from a solution of the system, or, if you like, as a
measure of infeasibility with respect to the system.

ρ(x) = d(b−Ax,Q) = inf
q∈Q
‖b−Ax− q‖

The distance will be zero exactly when x satisfies the
system.

4For example, x = 0 is obviously stable, but {x ≥ 0, x ≤ 0}
is obviously not (for instance, perturb the first inequality to
x ≥ ε for some ε > 0).

Definition 1 (Robinson [5, p. 755]). The system (*)
is said to be stable if there is a positive number β, such
that for each x0 ∈ F and for any continuous linear
operator A′ : X → Y and any b′ ∈ Y , sufficiently
close to A and b respectively, the distance from x0 to
the solution set of the perturbed system

A′x ≤Q b′, x ∈ P,

is not greater than βρ′(x0), where

ρ′(x) = d(b′ −A′x,Q) = inf
q∈Q
‖b′ −A′x− q‖

is the distance between b′ −A′x and Q.

Note that stability implicitly demands that the origi-
nal system is feasible, and that all (sufficiently small)
perturbations of the original system are feasible.

In order to understand the reasoning behind Robin-
son’s stability condition, let us rewrite the distance
condition into something we can easily interpret:

d(x0, F
′) ≤ βρ′(x0)

= β inf
q∈Q
‖b′ −A′x− q‖

≤ β inf
q∈Q

(
‖b′ − b− (A′x0 −Ax0)‖

+ ‖b−Ax0 − q‖
)

= β
(
‖b′ − b− (A′x0 −Ax0)‖
+ inf
q∈Q
‖b−Ax0 − q‖

)

= β‖(b′ −A′x0)− (b−Ax0)‖

which we can further bound by

= β‖b′ − b− (A′x0 −Ax0)‖
≤ β(‖b′ − b‖+ ‖A′x0 −Ax0‖)
≤ β(‖b′ − b‖+ ‖A′ −A‖‖x0‖)

Roughly speaking, the condition implies that any so-
lution x0 of the original system, is also a solution of
the perturbed system up to an error that is propor-
tional to the size of the perturbation and ‖x0‖.

3.1.2 Stability Criterion

Next, Robinson identifies a simple necessary and suf-
ficient criterion for stability.

Definition 2 (Robinson [5, Def. 1]). The system (*)
is called regular if b ∈ int(AP +Q).

Theorem 3 (Robinson [5]). The system (*) is stable
if and only if it is regular.

Proof. As discussed in [5, p. 755, last paragraph], this
follows immediately from [5, Thm. 1].
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The following interesting result is an immediate con-
sequence of [5, Thm. 1] (also see [6, Lem. 3]):

Theorem 4. The system (*) is stable if and only if
there is an ε > 0 such that, for all A′ and b′ satisfying
max{‖A−A′‖, ‖b− b′‖} < ε, the system

A′x ≤Q b′, x ∈ P,

is feasible.

3.1.3 Stable Representation Criterion

In finite dimensions, we have the following result as
well, where riP denotes the topological interior of P
relative to its affine span.

Theorem 5 (Robinson [5, Thm. 3]). The system

Gx ≤ g, Hx = h, x ∈ P (3)

is representable as a regular system of inequalities and
equalities over P with the same solution set F if and
only if F ∩ riP 6= ∅. If the condition is satisfied, then
the system can be made regular by changing certain
inequalities to equalities and deleting certain redun-
dant equalities.

3.2 Stability of Linear Programming

Robinson’s stability criterion for systems of linear in-
equalities and equalities does not say that the Haus-
dorff distance (see [7, Sec. 3] for a study of this metric
in the context of credal sets) between the solution sets
is small: it only says that the solution set of the per-
turbed system is contained, up to a small error, in the
solution set of the original system. In fact, the solu-
tion set of the original system could be much larger
(we hinted already at an example of this earlier, once
realized that the dual constraints for natural exten-
sion are always stable).

Confusingly, when considering the primal constraints
for natural extension, it turns out that stability of
these constraints do imply that the Hausdorff distance
between the credal sets of the original and perturbed
systems is small. One of the underlying reasons for
this is that the set C of probability mass functions is
bounded.

The following result summarizes the relationship be-
tween stability of systems of linear inequalities and
equalities and the stability of linear programs.

Note that we say that a linear program is solvable
whenever it has an optimal solution, and that the dual
Q∗ ⊆ Rn of a cone Q ⊆ Rn is defined as

Q∗ = {z ∈ Rn : (∀x ∈ Q)(zx ≥ 0)}

where zx denotes the dot product of z and x.

Definition 6. Consider a finite dimensional linear
program (P) and its dual (D):

maximize cx subject to Ax ≤Q b x ∈ P
minimize ub subject to uA ≥P∗ c u ∈ Q∗

where P and Q are convex cones. The following condi-
tions are equivalent. If any (and whence, all) of them
are satisfied, then we say that the linear program (P)
is stable.

(A) The constraints of (P) and (D) are regular.

(B) The sets of optimal solutions of (P) and (D) are
non-empty and bounded.

(C) For all sufficiently small perturbations (P’)—with
corresponding dual (D’)—of the linear program
(P), both (P’) and (D’) are solvable.

Proof of equivalence. See Robinson [6, Theorem 1].

Robinson [6, Theorem 1] also shows that, whenever
a linear program is stable in the above sense, every
optimal solution of (P’) and (D’) remains close to the
the optimal solution set of (P) and (D). This obviously
implies that the optimal value will not deviate much,
which is exactly what we are after for the stability of
natural extension. We refer to [6, Theorem 1] for a
rigorous statement of what is meant by “sufficiently
small” and “remains close” (we have omitted it here
to keep the exposition as non-technical as possible).

3.3 Examples Revisited

Before we apply the above results to the specific prob-
lem of natural extension, we check stability and stable
representability on the earlier examples.

For the first example, again look at Eq. (S), which
we demonstrated to be unstable. The cone Q, in this
case, is simply the set of non-negative gambles. Let us
check that b 6∈ int(AC+Q), where Ax ≤Q b embodies
the constraints x ≤ P of Eq. (1), for x ∈ C.

Note that this turns out to be equivalent to checking
that b 6∈ int(AP + Q), where Ax ≤Q b corresponds
to the system including the constraint x(1) = 1, but
x ∈ P (see Theorem 7 further on).

A parametric representation of the set AC+Q follows
readily:

AC +Q =
{[

0 1
1 0

] [
x1

x2

]
+
[
y1

y2

]}
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1

1

AC +Q

b

Figure 1: The region AC+Q for (C) + (S). The vector
b lies on the border, so the system is not stable.

1

riC

1

F

Figure 2: The relative interior of C, and solution set
F , for (C) + (S). The solution set F has non-empty
intersection with the relative interior of C, so the sys-
tem has a stable representation.

over all x1, x2, y1, y2 ≥ 0 such that x1 + x2 = 1. The
vector

b =
[
2/3
1/3

]

lies on the border of this set, but not in its interior
(see Fig. 1). Whence, the system is not stable.

However, it has a stable representation: the solution
set

F =
{[

1/3
2/3

]}

intersects with the relative interior of the set C of all
probability mass functions (see Fig. 2).

For the second example, one can similarly show that
it does not satisfy the stability criterion. It is easy
to show that it does not have a stable representation.
Indeed, the feasible set lies on the edge of the set C of
all probability mass functions, because xd = 0 every-
where in the feasible region. So F does not intersect
with the relative interior of C, and therefore there is
no stable representation.

AC +Q

b = 0

Figure 3: The region AC + Q for (C) + (S2). The
vector b lies on the border, so the system is not stable.

1

riC

1

F

Figure 4: The relative interior of C, and solution set
F , for (C) + (S2). The solution set F has empty inter-
section with the relative interior of C, so the system
has no stable representation.

Let us now revisit the third example. Inspect
Eq. (S2). A parametric representation of the region
AC +Q is

AC +Q =
{[

0 1
] [x1

x2

]
+ y1

}

over all x1, x2, y1 ≥ 0 such that x1 + x2 = 1, which
reduces to

= {y1 : y1 ≥ 0}

that is, the set of non-negative real numbers. The
vector

b =
[
0
]

lies on the border of this set, but not in its interior
(see Fig. 3). Whence, the system is not stable.

Moreover, we can now prove our earlier intuition that
it has no stable representation: the solution set

F =
{[

1
0

]}

does not intersect with the relative interior of the set
C of all probability mass functions (see Fig. 4).

4 Stability of Natural Extension

4.1 Canonical Representations

We now rewrite the primal and dual forms of natural
extension using the notation of the previous section
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on linear programming. The primal linear program,
Eq. (1), is:

maximize cfx subject to APx ≤Q bP , x ∈ P (P)

with

cf =
[
f(ω1) . . . f(ωn)

]

AP =




1 . . . 1
g1(ω1) . . . g1(ωn)

...
. . .

...
gk(ω1) . . . gk(ωn)


 bP =




1
P (g1)

...
P (gk)




Q =








0
y1

...
yk


 : y1, . . . , yk ∈ R+





P =







x1

...
xn


 : x1, . . . , xn ∈ R+





Note that the feasible region F is exactly the credal
set of P .

We call the linear program (P) the canonical repre-
sentation of the natural extension of P .

If we omit the constraint x(1) = 1 from the system
of inequalities, and consider the reduced optimization
problem over x ∈ C (as we did before in the exam-
ples), then we arrive at the reduced canonical repre-
sentation of the natural extension of P :

maximize cfx subject to A−
P
x ≤ b−

P
, x ∈ C (P−)

where A−
P

is AP without the first row, and b−
P

is bP
without the first element.

Studying the stability of this reduced system sim-
ply means that we do not consider perturbations in
the normalization constraint x(1) = 1, which in fact
seems a natural thing to do. However, the theory
of stability of linear programs demands that the lin-
ear program has a dual, and (P−) does not have a
dual, because the set C is not a cone. Fortunately, as
we shall prove, stability properties are independent of
whether we allow perturbations in x(1) = 1 or not.

Of course, (P) does have a dual program, given earlier
by Eq. (2):

minimize ubP subject to uAP ≥P∗ cf , u ∈ Q∗ (D)

with P ∗ = {zT : z ∈ P} and

Q∗ =
{[
a λ1 . . . λk

]
: a ∈ R, λ1, . . . , λk ∈ R+

}

The linear program (D) is the canonical dual repre-
sentation of the natural extension of P .

4.2 Stability of the Canonical
Representation of Natural Extension

It will follow from our discussion in Section 3 that, to
determine stability of natural extension in its canon-
ical representation, it suffices to determine the regu-
larity (or, stability) of the system of linear inequalities
and equalities (P) or equivalently, of (P−).

First, we need one more definition: a linear-vacuous
mixture is any coherent upper prevision of the form

(1− α)x+ α sup
ω∈Ω

for some α ∈ [0, 1] and x ∈ C. We say that this
linear-vacuous mixture is non-linear whenever α > 0.
Theorem 7. Let P be any upper prevision. The fol-
lowing conditions are equivalent.

(A) The linear program (P) is stable.

(B) The linear program (D) is stable.

(C) The system of linear inequalities and equalities of
(P) is regular.

(D) The system of linear inequalities and equalities of
(P−) is regular.

(E) All sufficiently small perturbations of P avoid
sure loss, that is, there is an ε > 0 such that
all P

′
on K satisfying P (g) − ε ≤ P

′
(g) ≤ P (g)

avoid sure loss.

(F) There is a linear prevision x such that P (g) >
x(g) for all g in K.

(G) P dominates a non-linear linear-vacuous mix-
ture.

(H) P avoids sure loss and E(g) < E(g) for all g in
K.

Proof. (A) and (B) are equivalent by Definition 6(A).

(A) and (C) are equivalent, again by Definition 6(A),
once established that the system of linear inequalities
and equalities of (D) is always regular. Indeed, it
suffices to show that

cf ∈ int(Q∗A− P ∗)

This holds trivially because

Q∗A− P ∗ =
{
a+

∑
g∈K λgg − p∗ : . . .

}
= Rn

as we vary over all a ∈ R and all p∗ ∈ P ∗.
(C) implies (D), by Theorem 4. [One can also quickly
see that (F) implies (D) by [5, Theorem 2]—also see
the discussion at [6, p. 444].]

ISIPTA ’11: Robustness of Natural Extension 367



Equivalence between (D) and (E) follows from The-
orem 4, once noted that we only need to consider
perturbations in P because probabilities sum one—
whence every small perturbation in A−

P
and b−

P
can

be bounded by a proportionally small perturbation
in b−

P
only—and the usual properties of avoiding sure

loss with respect to dominating upper previsions.

Equivalence between (E), (F), (G), and (H) follows
trivially from the usual properties of lower previsions.

Finally, we establish equivalence between (C) and (F).

We rely on Robinson’s regularity condition, bP ∈
int(APP + Q). It is satisfied if and only if there is
an ε > 0 such that

bP + εB ⊆ APP +Q

where B is the closed unit ball in Y = RK, that is, the
set {b ∈ Y : sup |b| ≤ 1}. Equivalently, now in matrix
notation, we need that




1
P (g1)

...
P (gk)


+ εB ⊆








x(1)
x(g1) + y1

...
x(gk) + yk


 : x ∈ P, y ∈ Q




.

Equivalently, there must be some ε > 0 such that, for
every b ∈ B (that is, bi ∈ [−1, 1]), there is an x ∈ P
and a y ∈ Q such that

1 + b0ε = x(1)

P (gi) + biε = x(gi) + yi for all i ∈ {1, . . . , k}.

If the above is satisfied, take b0 = 0 and b1 = · · · =
bn = 1 to find that P (gi) > x(gi) for all i, and note
that x ∈ C because b0 = 0.

Conversely, if there is some x′ such that P (gi) > x′(gi)
for all i, then the above is satisfied for sufficiently
small ε. Indeed, fix any 0 < ε < 1, and let x =
(1 + b0ε)x′—obviously x ∈ P , and the first equality is
satisfied. The second equality can be satisfied as well,
because

P (gi)− ε ≥ max
b′0∈{−1,1}

(1 + εb′0)x′(gi)

can always be achieved for small enough ε, because
P (gi) > x′(gi), whence, for such ε,

P (gi) + biε ≥ P (gi)− ε
≥ max
b′0∈{−1,1}

(1 + εb′0)x′(gi)

≥ (1 + εb0)x′(gi) = x(gi)

which concludes the proof.

Informally, the canonical representation is stable if
and only if P is inherently imprecise. This also means
that we can always enforce stability by perturbation,
for any upper prevision that avoids sure loss: simply
mix P with a stable one, such as the vacuous upper
prevision:

(1− α)P + α sup
ω∈Ω

is always stable, for any α ∈ (0, 1]. So, every upper
prevision that avoids sure loss has arbitrarily close
stable approximations.

Note that the natural extension of the above pertur-
bation will not necessarily behave nicely as a function
of α, particularly when P is unstable. For instance, in
the perturbed example of Section 2.2, E(2Ib+2Ic) = 1
if α � ε and E(2Ib + 2Ic) = 2 if α � ε. In essence,
one should pick α large enough to counter any (pre-
sumably unintended) implicit linearities, or near lin-
earities.

If, for some reason, approximation is not an option, we
have to find a stable representation. The conditions
under which this is possible are uncovered in the next
section.

4.3 Necessary and Sufficient Conditions for
Stable Representations of Natural
Extension

Definition 8. A system of linear inequalities and
equalities is said to be a representation of another
system if it has the same feasible region F as that
system.

Definition 9. A linear program is said to be a repre-
sentation of another linear program if it has the same
feasible region F and objective function as that linear
program.

Theorem 10. Let P be any upper prevision. The
following conditions are equivalent.

(A) The linear program (P) has a stable representa-
tion.

(B) The linear program (D) has a stable representa-
tion.

(C) The system of linear inequalities and equalities of
(P) has a regular representation.

(D) The system of linear inequalities and equalities of
(P−) has a regular representation.

(E) There is a linear prevision x in the credal set F
of P such that x(ω) > 0 for all ω ∈ Ω.

(F) P avoids sure loss and E(Iω) > 0 for all ω ∈ Ω.
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Proof. The first part of the proof is similar to the
proof of Theorem 7(A)&(B)&(C): again, the key ob-
servation is that the system of the dual is always reg-
ular. We also rely on the fact that the dual of a rep-
resentation is a representation of the dual.

(C) ⇐⇒ (E). Such x belongs precisely to F ∩ riP .
Apply Theorem 5.

(D) ⇐⇒ (E). Such x belongs precisely to F ∩ riC.
Apply Theorem 5.

(E) =⇒ (F). Immediate, because

E(Iω) = sup
x′∈F

x′(ω) ≥ x(ω) > 0.

(F) =⇒ (E). Condition (F) implies that, for every
ω, there is an xω in F such that xω(ω) > 0. Take
any convex mixture x of xω with non-zero coefficients.
Because F is convex, x belongs to F . Clearly, x(ω) >
0 for all ω in F .

The condition for having a stable representation is
clearly much weaker than the one for stability: in
essence, we only need to ensure that no singleton has
zero upper probability. Again, it is obvious that this
can be achieved by an arbitrary small perturbation,
for any upper prevision that avoids sure loss: simply
mix P with a linear prevision x that satisfies x(ω) > 0
for all ω, such as the uniform one:

(1− α)P + α
1
n

∑

ω∈Ω

where n is the cardinality of Ω, always has a stable
representation, for any α ∈ (0, 1]. So, every upper
prevision that avoids sure loss has arbitrarily close ap-
proximations that admit stable representations, and
whose canonical representation is stable if and only if
the canonical representation of P is stable (indeed, by
Theorem 7!).

4.4 Finding the Stable Representation

Every reasonably advanced application for working
with systems of linear inequalities and equalities has
routines for finding all redundant constraints and all
implicit linearities (see for instance [1]), effectively re-
covering the stable representation, when it exists.

5 Discussion and Conclusion

We have linked Robinson’s stability criterion for sys-
tems of linear inequalities and equalities, and for lin-
ear programming, to the theory of upper previsions.

We found a range of interesting necessary and suf-
ficient conditions for the usual canonical representa-
tions of natural extension to be robust against pertur-
bations, that is, to be stable. Thereby, we provided
theoretical guarantees for small changes in the assess-
ments not to have a large impact on any inferences
made.

This is obviously rather useful in elicitation: if a sub-
ject makes assessments which violate stability, then
the subject should at least be made aware of this. We
provided a simple tool to fix unstable assessments,
through perturbation with a vacuous model.

In case of instability of the canonical constraints, a
subject could be unhappy to perturb with a vacu-
ous model, for instance because she insists on certain
assessments to be precise. We found that a stable
representation may still exist after removal of redun-
dant constraints and recognition of implicit linearities.
Tools for doing so are readily available in the litera-
ture. Of course, it is mandatory to check that the
subject actually agrees with the reduced system, and
particularly that any linearities, or near linearities,
are in agreement with her beliefs. When in doubt, we
recommend the vacuous mixture.

In case the reduced system is still unstable, we found
that it can be made stable via perturbation with for
instance a uniform probability mass function—this
may be preferred over vacuous perturbation in case
the subject insists on particular assessments to remain
precise.

In conclusion, we characterized the robustness of nat-
ural extension in a variety of ways, and we provided
straightforward ways to work around instabilities by
means of perturbation.

Many open problems remain, including the extension
to non-finite spaces, and conditional lower previsions,
which are typically solved by sequences of linear pro-
grams [9], and thus for which stability may be much
harder to characterize.
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Abstract

We present a new approach for constructing regres-
sion and classification models for interval-valued data.
The risk functional is considered under a set of prob-
ability distributions, resulting from the application of
a chosen inferential method to the data, such that
the bounding distributions of the set depend on the
regression and classification parameter. Two extreme
(‘pessimistic’ and ‘optimistic’) strategies of decision
making are presented. The method is applicable with
many inferential methods and risk functionals. The
general theory is presented together with the specific
optimisation problems for several scenarios, including
the extension of the support vector machine method
for interval-valued data.

Keywords. belief functions, classification, interval-
valued observations, machine learning, p-box, regres-
sion, risk functional, support vector machines.

1 Introduction

A main goal of statistical machine learning is predic-
tion of an unobserved output value y based on an
observed input vector x, which requires estimation of
a predictor function f from training data consisting of
pairs (x, y). Two major topics in statistics which fit
into the statistical machine learning framework are re-
gression analysis and classification. In regression anal-
ysis, one typically aims at estimation of a real-valued
function based on a finite set of observations with ran-
dom noise. In classification, the output variable is in
one of a finite number of classes1 and the main task is
to classify the output y corresponding to each input
x into one of the classes by means of a discriminant
function. Many methods have been proposed for solv-
ing machine learning problems, but these are mostly
based on rather restrictive assumptions, for example

1Often two classes, to which attention is restricted in this
paper; generalization is possible but not addressed here.

assuming the availability of a large amount of training
data, known probability distribution for the random
noise, or that all observations are point-valued (‘pre-
cise’). Such assumptions are typically not fully satis-
fied in applications. For example, data often include
interval-valued (‘imprecise’) observations, which may
result from imperfection of measurement tools or im-
precision of expert information if used as data. There
may also be (partially) missing data, for example in
classification problems the input vector (‘pattern’) x
is often not fully observed. Many methods for dealing
with such features use additional assumptions. In this
paper, a general framework is presented that allows
such important aspects to be incorporated in machine
learning problems without additional assumptions, in-
stead it uses the framework of imprecise probability
[34] and it can be used for a wide variety of inferences,
models and real-world situations.

Many methods have been presented for regression and
classification with interval-valued data [11, 16, 23]. In
some methods for machine learning, interval-valued
observations are replaced by precise values based on
some (often ad-hoc) additional assumptions, for ex-
ample by taking middle points of the intervals [14].
Also, they may not be suitable if an observation is
not restricted to an interval of finite length. This is
an important restriction, as frequently it may only be
known that an observation is larger (or smaller) than
a specific value while the support of the corresponding
random quantity is not finite. The method presented
in this paper can deal with such information without
additional assumptions and allows infinite support2,
including the use of (−∞,∞) for missing elements of
the input vector x. Machine learning methods have
been presented which use standard interval analysis
and provide predictor functions with interval-valued
parameter [2, 9, 26], and construction of second-order
machine learning models for interval-valued patterns

2It should be noted that the support of elements of vector
x can be arbitrary. Without loss of generality, we assume it to
be (−∞,∞).
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was proposed in [4]. Although many methods have
been presented for dealing with interval-valued data
[23], these are mostly based on interval extension of
the empirical risk functional [33] without benefiting
from, or even considering, an imprecise probabilistic
framework in direct relation to imprecise statistical
data.

Pelckmans et al. [17] presented a detailed analysis of
different methods and models for dealing with miss-
ing data in classification. Many methods do so by im-
putation of (partially) missing patterns, where miss-
ing (precise) values are replaced by some preferable
values. Imputation using intervals, including the full
support in case of missing elements of x has also been
presented. De Cooman and Zaffalon [5] studied the
classification problem with missing data in the frame-
work of imprecise probability theory. An interesting
approach for regression analysis with interval-valued
and fuzzy data using belief functions and evidence
theory has been proposed by Petit-Renaud and De-
noeux [18]. One of the possible approaches to re-
gression analysis is to consider a set of probability
distributions for the random noise instead of a sin-
gle distribution. This approach can be realized in the
framework of imprecise probability theory [34] and
has been developed by Walter et al. [36].

The novel approach for constructing a class of ma-
chine learning models and methods proposed in this
paper uses risk functionals as in [18] and sets of prob-
ability distributions as in [36]. The starting point is
a set of probability distributions related to the train-
ing data, which can just be a small amount of data
or imprecise data, and this set can be generated by
a variety of inferential methods and is assumed to be
bounded by some lower and upper CDFs. Such sets
of probability distributions are also called p-boxes [7].
In the regression and classification applications con-
sidered in this paper, these bounds for the set of prob-
ability distributions depend on the unknown parame-
ter of the regression or discriminant function, because
the sets of probability distributions considered are for
the random residuals and as such they depend on the
model parameter. It should be noted that the consid-
ered set of distributions is not the set of parametric
distributions having the same parametric form as the
bounding distributions, but it is the set of all pos-
sible distributions restricted by the lower and upper
bounds. This is an important feature of the proposed
approach in this paper.

Traditionally, machine learning methods have used a
variety of simplifying assumptions in order to main-
tain acceptable computational effort required for im-
plementation. The fact that the bounds for the set of
probability distributions considered in the regression

and classification problems depend on the model pa-
rameter makes it clear that any optimisation of risk
functionals over the whole set of probability distribu-
tions is likely to require an enormous computational
effort. It will be illustrated that, for a wide range of
popular risk functions, computational is feasible due
to new results for the optimisation. In addition to
introduction of the general theory, the approach will
be illustrated by presenting the resulting optimisation
problem formulations for several combinations of loss
functions and sets of probability distributions.

Generally, the parameter of a regression model is com-
puted by minimising a risk functional defined by the
combination of a certain loss function and a probabil-
ity distribution for the random noise [10, 33]. When
using a set of probability distributions instead of a
precise distribution, we can choose a single distribu-
tion from this set which minimises or maximises the
risk functional; the probability distribution maximis-
ing (minimising) the risk functional corresponds to
the minimax (minimin) strategy. These cases can be
called the ‘pessimistic’ and ‘optimistic’ decisions, re-
spectively. The main problem in finding these two
(‘extreme’ or ‘optimal’) precise distributions is that,
like the bounds of the corresponding set of distribu-
tions, they depend on the unknown regression and
classification model parameter which has to be com-
puted. We will identify these optimal probability
distributions as functions of the unknown parameter
only, which enables us to substitute them into the
expression for the risk functional and to compute the
optimal model parameter by minimising the risk mea-
sure over the set of possible values for the parameter.

The sets of probability distributions can be con-
structed from training data by a variety of statis-
tical inference methods, including imprecise (‘gener-
alized’) Bayesian inference models [19, 34, 35], non-
parametric predictive inference [3] or belief functions
[1, 6, 7, 13, 22]. The approach has recently been used
in regression modelling with precise statistical data
using Kolmogorov-Smirnov (KS) confidence bounds
[30] and also includes imprecise Bayesian normal re-
gression [28]. In this paper, there is special atten-
tion to the use of extended support vector machines
(SVMs) [10, 33] to construct sets of probability distri-
butions in case of interval-valued data, as SVMs are
popular tools in machine learning. It will be inter-
esting to implement the general approach presented
here with a wide range of methods for constructing
the sets of probability distributions and to compare
the resulting inferences, for example also with regard
to the effect of parameters such as the chosen confi-
dence level if KS bounds are used; this is left as an
important topic for future research.
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2 Regression and classification in the
machine learning framework

The standard learning problem can be formulated as
follows [10, 33]. We select the best available function
f(x, αopt) from the set of functions f(x, α) parame-
terized by parameter α ∈ Λ (this parameter is typi-
cally multi-dimensional), so the function f(x, αopt) is
considered to be the best approximation of the sys-
tem response. The selection of the desired function
is based on a (training) set of n observations (xi, yi),
i = 1, ..., n, assumed to be independent (conditionally
on the assumed model) and identically distributed
with probability density function (PDF) p(x, y) =
p(y | x)p(x) and CDF F (x, y). Here x ∈Rm is a mul-
tivariate input and y is a scalar output which takes
values from R for the regression model and from the
set {−1, 1} for the classification model3. The regres-
sion and classification models can be regarded as spe-
cial cases of the general learning problem, the method
presented here is widely applicable.

The quality of an approximation f(x, α) in a re-
gression model is measured by the loss function
L(y, f(x, α)) which typically depends on the differ-
ence z = y − f(x, α). Therefore, we use the notation
L(z) = L(y, f(x, α)). Common and convenient loss
functions are the quadratic loss L(z) = z2, the lin-
ear loss L(z) = |z|, and the so-called ‘ε-insensitive’
[33] and ‘pinball’ loss functions [12]. In classification
models, commonly used loss functions are the indi-
cator loss function L(x, y) = 1{sgn(f(x, α)) 6= y},
the logistic loss, the hinge loss, the squared hinge loss
and the least square loss functions [21]. All these loss
functions can be implemented in the general approach
presented in this paper.

The main goal of learning is to find the optimal pa-
rameter αopt which minimises the following risk func-
tional over the parametrized class of functions f(x, α),
α ∈ Λ:

R(α) =
∫ ∫

L(y − f(x, α))p(x, y)dxdy.

A commonly made assumption for regression mod-
els is that the random error (noise) Z, which takes
the values z = y − f(x, α), has mean zero and PDF
p(z | α) = p(y | x), leading to

R(α) =
∫
L(z | α)p(z | α)dz.

If the joint density p(x, y) is unknown (or no specific
form of it has been assumed), then the risk functional

3Generally, y might take values in any finite set, the restric-
tion to binary classification is due to space limitations.

R(α) can be replaced by the empirical risk functional

Remp(α) =
1
n

n∑

i=1

L(y − f(x, α)). (1)

If p(x, y) is known or of an assumed parametric form,
then a common technique for computing αopt is the
maximum likelihood estimation method [33].

In this paper we assume that the function f is linear,

f(x, α) = α0 + 〈αϕ(x)〉

with 〈·〉 the canonical dot product notation. In partic-
ular we consider the function with ϕi(xi) = xi, which
corresponds to many popular models in learning. The
use of more general functions f will be discussed else-
where.

3 Regression with a set of
distributions

Suppose that we do not know the precise CDF of Z,
but we know that it belongs to a set F(α) bounded
by lower CDF F (z | α) and upper CDF F (z | α)
which depend on the parameter α. As mentioned be-
fore, these bounds can result from the use of a wide
range of inferential methods applied to the observa-
tions (xi, yi), i = 1, ..., n. It is important to emphasize
that the dependence of the lower and upper CDFs
on the parameter α is an important feature of the
proposed approach. When we have a set of prob-
ability distributions instead of a single one, we can
construct a corresponding set of regression models.
For decision making, it is important to choose some
of these models4, we consider the use of the minimax
(‘pessimistic’) and minimin (‘optimistic’) strategies to
judge the quality of an estimator and hence of the cor-
responding regression model.

3.1 The minimax strategy

The minimax strategy can be motivated as follows.
We do not know (or wish to assume) a precise CDF
F and every CDF in F(α) could be selected. There-
fore, we should take the ‘worst’ distribution providing
the largest value of the risk functional. The minimax
criterion can be interpreted as an insurance against
the worst case because it aims at minimising the ex-
pected loss in the least favorable case [20]. The upper
risk functional R(α) for α is defined as

R(α) = max
F (z | α)∈F(α)

∫
L(z | α)dF (z | α). (2)

4Alternative methods for dealing with the set of regression
models can be of interest but are not investigated here.
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It can be regarded as the upper expectation of the loss
function. The optimal parameter αopt is computed by
minimising the upper risk functional over the set Λ.

Most loss functions in regression models have one min-
imum at point 0. Utkin and Destercke [31, 32] have
shown that the optimal CDF from the set F(α) pro-
viding the upper bound for R(α) in case of such loss
functions is of the form

FU (z) =





F (z), z ≤ F−1
(τ),

τ, F
−1

(τ) < z < F−1(τ),
F (z), z ≥ F−1(τ),

(3)

where τ is one of the roots of the equation

L
(
F
−1

(τ)
)

= L
(
F−1(τ)

)
.

If the loss function is symmetric about 0, then τ can
be derived from the equation F−1(τ) + F

−1
(τ) = 0.

Using this optimal CDF, the upper risk functional
R(α) is

R(α) =
∫ F

−1
(τ)

−∞
L(z | α)dF (z | α)

+
∫ ∞

F−1(τ)

L(z | α)dF (z | α). (4)

The optimal value of parameter α according to the
minimax strategy can be derived by minimising R(α)
over α ∈ Λ.

3.2 The minimin strategy

The minimin strategy can be interpreted as corre-
sponding to an ‘optimistic’ decision, namely a CDF
F (z | α) ∈ F(α) is used which provides the smallest
value for the risk functional R(α) for arbitrary values
of α. The corresponding lower risk functional for α is
defined as

R(α) = min
F (z | α)∈F(α)

∫
L(z | α)dF (z | α). (5)

It can be regarded as the lower expectation of the loss
function. The optimal parameter αopt is computed by
minimising the lower risk functional over the set Λ.

The optimal CDF from the set F(α) providing the
lower bound for the expectation is

FL(z) =
{
F (z), z ≤ 0,
F (z), z > 0.

(6)

Using this optimal CDF, which has a jump at point
z = 0, the lower risk functional R(α) is

R(α) =
∫ 0

−∞
L(z | α)dF (z | α)

+
∫ ∞

0

L(z | α)dF (z | α). (7)

The optimal value of parameter α according to the
minimin strategy can be derived by minimising R(α)
over α ∈ Λ.

4 Regression with interval-valued
observations

Suppose that the training set consists of n indepen-
dent observations (xi,Yi), i = 1, ..., n, with intervals
Yi = [y

i
, yi] instead of point-valued observations5.

This implies that the random noise Z takes values
in intervals Zi(α) such that y − f(xi, α) ∈ Zi(α) for
all y ∈ Yi. The question that needs to be addressed is
how to proceed with the interval-valued training set
in the framework of predictive learning.

There are several ways in which one could deal with
such an interval-valued data set. In this paper, we
construct the lower and upper CDFs for a set of
probability distributions corresponding to the avail-
able information through a chosen inferential method
out of a wide range of possibilities, as discussed be-
fore. This set depends on the parameter α because
the intervals Zi(α), i = 1, ..., n are functions of α.
With such intervals Zi(α), the same approach as pro-
posed by Utkin and Coolen [30], who used p-boxes
corresponding to Kolmogorov-Smirnov bounds, can
be applied for parameter optimisation in the regres-
sion model under the minimax and minimin scenar-
ios. Denoting the boundary points of intervals Zi(α)
by Zi(α) = y

i
− f(xi, α) and Zi(α) = yi− f(xi, α), a

p-box can be constructed from the observed intervals
in the framework of Dempster-Shafer theory [6, 22].
If we assume for simplicity that every observation in-
terval occurs only once, then

F (z | α) = Bel((−∞, z]) = n−1
∑

i:Zi(α)≤z
1,

F (z | α) = Pl((−∞, z]) = n−1
∑

i:Zi(α)≤z
1.

If some intervals occur more than once then the corre-
sponding CDFs follow straightforwardly. These lower
and upper CDFs, which depend on the parameter α,
can be used for dealing with interval-valued y in re-
gression, as is illustrated next for several scenarios.

5The method presented in this paper can also deal with
interval-valued input variables xi. Due to space limitations, for
regression the presentation is restricted to point-valued input
variables, but for classification (Section 5) interval-valued input
variables are used. Throughout, the intervals are not restricted,
hence they can be any interval of possible values upto the whole
of (−∞,∞).
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4.1 The minimax strategy

With the lower and upper CDFs corresponding to the
interval-valued observations as discussed above, the
upper risk functional in (4) is

R(α) = n−1
∑

i:Zi(α)≤F−1
(τ)

L(Zi(α))

+ n−1
∑

i:Zi(α)≥F−1(τ)

L(Zi(α)).

with τ such that F−1(τ) = −F−1
(τ). Note that

this upper risk functional uses, for every α, only the
boundary points Zi(α) and Zi(α) of the intervals
Zi(α). This feature is important as it significantly
simplifies computation of the optimal parameter αopt.

The upper risk functional for the minimax strategy
with a fixed α can be written as the upper expectation
corresponding to basic probability assignments [15,
24], giving

R(α) = n−1
n∑

i=1

max
z∈[Zi(α),Zi(α)]

L(z).

We also concluded that this upper risk functional is
achieved at boundary points of intervals Zi, with

R(α) = n−1
n∑

i=1

max
{
L(Zi(α)), L(Zi(α))

}
.

It should be pointed out that, if all observations are
precise (‘point-valued’), so y

i
= yi = yi, this upper

risk functional is equal to the standard empirical risk
functional (1). We can now consider some of the most
important loss function in regression, where the opti-
mal parameter αopt under minimax can be obtained
by minimising R(α) over all α ∈ Λ.

4.1.1 Quadratic loss function

We consider the quadratic loss function L(z) = z2,
the most popular one in classical regression theory
and applications. To minimise the corresponding up-
per risk functional we have to solve the optimisation
problem functional:

min
α

(
n∑

i=1

max
{
Zi2(α),Zi2(α)

}
)
. (8)

Introducing new optimisation variables Gi, i =
1, ..., n, such that G2

i = max
{
Zi2(α),Zi2(α)

}
, prob-

lem (8) can be rewritten as

min
α,Gi

n∑

i=1

G2
i , (9)

subject to

Gi ≥ Zi(α), Gi ≥ Zi(α),

Gi ≥ −Zi(α), Gi ≥ −Zi(α), i = 1, ..., n. (10)

The third and fourth constraints take into account the
fact that residuals may be negative. If we assume that
the function f(x, α) is linear, i.e., f(x, α) = α0+〈αx〉,
then the optimisation problem specified by (9) and
(10) is a well-known quadratic programming problem
with the optimisation variables α and Gi, i = 1, ..., n,
which can be solved by means of standard methods.

4.1.2 Linear and pinball loss function

The pinball loss function with parameter τ ∈ [0, 1] is
given by [12]

Lτ (z) =
{

τz, z > 0,
(τ − 1)z, z ≤ 0.

The linear loss function is the special case of the pin-
ball loss function with τ = 1. We consider calculation
of the optimal parameter of the regression model us-
ing the minimax criterion with the pinball loss func-
tion. We introduce new optimisation variables Gi, i =
1, ..., n, such that Gi = max

{
Lτ (Zi(α)), Lτ (Zi(α))

}
.

The condition z ≥ 0 implies the condition Gi ≥ τ · z.
However, if Gi ≥ τ · z and z ≥ 0, then G ≥ τ · z − z.
On the other hand, the condition z < 0 implies the
condition Gi ≥ (τ − 1)· z = τ · z − z. However, if
Gi ≥ τ · z − z and z < 0, then Gi ≥ τ · z. Finally, the
condition Gi ≥ Lτ (z) can be represented by means of
two constraints Gi ≥ τ · z and Gi ≥ τ · z − z, which
simultaneously ‘cover’ all possible values of z. This
implies that the optimisation problem for computing
the optimal regression parameter can be written as

min
α,Gi

n∑

i=1

Gi, (11)

subject to

Gi ≥ τ · Zi(α), Gi ≥ τ · Zi(α),
Gi ≥ (τ − 1) · Zi(α),

Gi ≥ (τ − 1) · Zi(α), i = 1, ..., n. (12)

If we assume that the function f(x, α) is linear, then
this is a well-known linear programming problem.

4.2 SVM

Let us return to the case with the linear loss func-
tion and the minimax strategy, and compare the ob-
tained optimisation problem with the popular SVM
approach [10, 21, 33] which in regression is also called
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‘support vector regression’. The ε-insensitive loss
function is applied in the corresponding regression
models [33]. If all observations are point-valued, so
y
i

= yi = yi, then according to the standard SVR ap-
proach, parameter α is determined by the quadratic
programming problem

min
α

(
1
2
〈α, α〉+ C

n∑

i=1

(ξi + ξ∗i )

)
(13)

subject to

ξi ≥ 0, ξi + ε ≥ (〈αxi〉+ α0)− yi,
ξ∗i ≥ 0, ξ∗i + ε ≥ yi − (〈αxi〉+ α0) , i = 1, .., n. (14)

Here C is a constant ‘cost’ parameter, ξi, ξ∗i , i =
1, ..., n, are slack variables, and 1

2 〈α, α〉 is the
Tikhonov regularization term (the most popular
penalty or smoothness term) [27] which enforces
uniqueness by penalizing functions with wild oscilla-
tion and effectively restricting the space of admissi-
ble solutions [8]. The positive slack variables ξi, ξ∗i
represent the distance from yi to the corresponding
boundary values of the ε-tube.

The constraints (12) and (14) coincide if the variables
Gi coincide with the slack variables ξi, ξ∗i and y

i
= yi,

ε = 0, τ = 1. Consequently, the proposed approach
for constructing the regression model with interval-
valued data, supplemented by the regularization term
and the constant ‘cost’ parameter C, can be regarded
as an extension of the SVM approach to the case of
interval-valued data, i.e. we have the same objective
function and the following constraints in terms of SVR
for every i = 1, ..., n:

ξi ≥ 0, ξi + ε ≥ (〈αxi〉+ α0)− y
i
,

ξi ≥ 0, ξi + ε ≥ (〈αxi〉+ α0)− yi,
ξ∗i ≥ 0, ξ∗i + ε ≥ y

i
− (〈αxi〉+ α0) ,

ξ∗i ≥ 0, ξ∗i + ε ≥ yi − (〈αxi〉+ α0) .

Now the slack variables ξi, ξ∗i are additionally con-
strained and represent the largest distance from y

i
and yi to the corresponding boundary values of the
ε-tube, respectively. This implies that the minimax
strategy searches for the largest residuals (or ‘mar-
gins’ in terms of classification) from all residuals in
every interval Zi, i = 1, ..., n. The corresponding dual

optimisation problem is

max


−1

2

n∑

i=1

n∑

j=1

(Qi − Ti) (Qj − Tj) 〈xixj〉

− ε
n∑

i=1

(Qi + Ti)−
n∑

i=1

y
i
(Qi − Ti)

+
n∑

i=1

(yi − yi) (ϕ∗i − ϕi)
)
,

subject to
n∑

i=1

(Qi − Ti) = 0, 0 ≤ Qi ≤ C, 0 ≤ Ti ≤ C.

Here ψi, ψ∗i , ϕi, ϕ
∗
i are Lagrange multipliers and Qi =

ψi + ϕi, Ti = ψ∗i + ϕ∗i .

It can be seen from this dual optimisation problem
that in the regression model we use a point in every
observation interval which is a linear combination of
its bounds y

i
and yi with coefficients determined by

the values of the Lagrange multipliers. If yi = y
i

we get the dual optimisation problem of the standard
SVM method with variables Qi and Ti.

If the quadratic loss function is used instead of the ε-
insensitive loss function, then the proposed regression
model (optimisation problem (9)-(10)) is the ‘least
squares SVM’ approach [25] which is solved through
a system of linear equations.

4.3 The minimin strategy

Using the lower and upper CDFs corresponding to the
interval-valued observatons, as discussed at the start
of this section, we can rewrite the lower risk functional
(7) as

R(α) = n−1
∑

i:Zi(α)≤0

L(Zi(α))

+ n−1
∑

i:Zi(α))≥0

L(Zi(α)).

As in the case of the upper risk function, this lower
risk functional is, for every α, defined only by the
boundary points Zi(α) and Zi(α) of the intervals
Zi(α). However, not all observation intervals con-
tribute to the lower risk functional because the opti-
mal CDF has a jump at point 0.

The lower risk functional for the minimin strategy
with a fixed α can be written as the lower expectation
corresponding to basic probability assignments [15,
24], giving

R(α) = n−1
n∑

i=1

min
z∈[Zi(α),Zi(α)]

L(z). (15)
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It follows that the risk measure is 0 if there exist one or
more values of α such that 0 ∈ [Zi(α),Zi(α)] for ev-
ery i = 1, ..., n. If this is the case for multiple vectors
α, one can consider to have found several ‘perfect fits’
to the available data, which either could be considered
all together (this would be in line with some funda-
mental ideas behind imprecise probability) or which
could be compared by a secondary criterion (the same
comment applies generally if there are multiple opti-
mal vectors α). This is an interesting topic for future
research, for now let us assume that a unique best esti-
mate of α can be obtained and that the corresponding
lower risk functional is positive (so there is no ‘perfect
fit’). A term in the objective function is non-zero if
one of the following two conditions holds

Zi(α) < 0, Zi(α) > 0.

Let us consider the pinball loss function for this sit-
uation. Introducing new optimisation variables Hi,
i = 1, ..., n, it is easy to prove that the optimisation
problem can be written as

min
α,Hi

n∑

i=1

Hi,

subject to

Hi ≥ τZi(α), Hi ≥ (τ − 1)Zi(α),
Hi ≥ 0, i = 1, ..., n.

The quadratic loss function leads to the similar prob-
lem with Hi replaced by G2

i , minimisation over Gi,
and τ = 1. These are well-known optimisation prob-
lems that can be solved efficiently by standard meth-
ods.

4.4 SVM

We consider the case with the linear loss function un-
der the minimin strategy and derive the optimisation
problem in the SVM framework. By using the stan-
dard Tikhonov regularization term, we can formulate
the following convex optimisation problem

min
α

(
1
2
〈α, α〉+ C

n∑

i=1

(ξi + ξ∗i )

)
,

subject to

ξi ≥ 0, ξi + ε ≥ (〈αxi〉+ α0)− yi, i = 1, ..., n,
ξ∗i ≥ 0, ξ∗i + ε ≥ y

i
− (〈αxi〉+ α0) , i = 1, ..., n.

This is a quadratic programming problem, with slack
variables ξi, ξ∗i representing the distance from yi and
y
i

to the corresponding lower and upper boundary val-
ues of the ε-tube, respectively. The minimin strategy

searches for the smallest residuals in each interval Zi,
i = 1, ..., n, under condition that there are positive
residuals. As in Subsection 4.2, the corresponding
dual optimisation problem provides further insights
into the optimal solution, a detailed analysis will be
presented elsewhere.

5 Classification with interval-valued
observations

We consider classification problems where the sys-
tem output y is restricted to two values, the pro-
posed method can be generalized to more possible
values. The input variables (patterns) x may be
interval-valued. Suppose that we have a training set
(Xi, yi), i = 1, ..., n. Here Xi ⊂ Rm is the Cartesian
product of m intervals [x(i)

k , x
(i)
k ], k = 1, ...,m, which

again are not restricted so could even include inter-
vals (−∞,∞), and yi ∈ {−1, 1}. Let the n−1 = r
observations Xi with i = 1, . . . , r correspond to the
class (with) y = −1 and the n+1 = n− r observations
Xi with i = r+1, . . . , n correspond to the class y = 1.

The risk functional can be written as R(α) =
R−1(α) +R+1(α), with

Ry(α) =
∫

Rn

L(x, y)dF (x, y)

=πy
∫

Rn

L(x, y)dF (x | y),

where πy = p(y) is a prior probability6 for class y.
Suppose that the CDFs F (x | y) are unknown. As
discussed before, a wide range of inferential meth-
ods can be chosen to, in combination with the data-
set containing interval-valued observations, produce
a set of CDFs F (x | y). One additional obstacle due
to the interval-valued input variables is that x is a
vector so now p-boxes of multivariate distributions
must be constructed. We propose that this problem
can be resolved as follows. Note that interval-valued
data x lead to an interval-valued discriminant func-
tion f(x, α) whose parameter α is unknown and has
to be determined. Therefore, in contrast to many al-
ternative approaches in classification, we propose to
consider the CDF F (f | y) instead of the multivari-
ate CDF F (x | y). This is briefly discussed further
below, detailed explanation and illustrations will be
presented elsewhere. With this change, the risk func-
tional becomes

Ry(α) = πy

∫

R
L(f | y)dF (f | y).

6Choice of prior probabilities is not addressed here. How-
ever, it is worth noting that generalization to allow imprecise
prior probabilities is possible.
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But we allowed explicitly the use of a set of CDFs, so
now consider the set F(y) of probability distributions
produced by lower CDF F (f | y) and upper CDF
F (f | y) CDFs , i.e.

F(y) = {F (f) | ∀f ∈ R, F (f |y) ≤ F (f) ≤ F (f |y)}.

It is important to emphasize that, although we have
not explicitly included α in the notation for these dis-
tribution sets, F(y) depends on the parameter α be-
cause f is a function of α and the lower and upper
CDFs depend on α. We introduce notation

fL = min
x∈X

f(x, α), fU = max
x∈X

f(x, α).

If the function f is linear, then the lower and upper
bounds for the discriminant functions are determined
only by the bounds of pattern intervals, i.e.

fL = min
xk∈{xk,xk}, k=1,...,m

f(x, α),

fU = max
xk∈{xk,xk}, k=1,...,m

f(x, α).

This property is also valid for arbitrary monotone dis-
criminant functions. For every interval-valued obser-
vation (Xi, yi), we have the interval fi = [fL,i, fU,i] of
values of the discriminant function. These intervals
depend on the parameter α, so the bounds fL,i and
fU,i cannot be computed explicitly, but inference is
again possible in many important scenarios through
specification of the optimisation problems involved,
and the use of standard algorithms to solve such prob-
lems. We illustrate this next for the minimax strategy,
methods for the minimim strategy can be developed
similarly and will be presented elsewhere.

5.1 The minimax strategy

According to the minimax strategy, we select a prob-
ability distribution from the set F(−1) and a proba-
bility distribution from the set F(+1) such that the
risk measures R−1(α) and R+1(α) achieve their max-
ima for every fixed α. It must be emphasized that
the ‘optimal’ probability distributions may be differ-
ent for different values of parameter α, which implies
that the corresponding ‘optimal’ probability distribu-
tions depend on α. Since the sets F(−1) and F(1)
are obtained independently for y = −1 and y = 1,
the upper risk functional with respect to the minimax
strategy is of the form

R(α) = max
F (f |−1)∈F(−1)

R−1(α) + max
F (f |1)∈F(1)

R+1(α).

For many popular loss functions in such classification
the loss function L(f,−1) is increasing. If this is the

case, then the upper bound for R−1(α) is achieved at
the distribution F (f,−1), hence

R−1(α) =
∫

R
L(f,−1)dF (f,−1).

In this case the function L(f, 1) is decreasing, so

R+1(α) =
∫

R
L(f, 1)dF (f, 1).

The upper expectationR−1(α) corresponding to given
basic probability assignments m(fi) = r−1 for inter-
vals fi, i = 1, ..., r, can be derived for fixed α by
[15, 24]

R−1(α) = r−1
r∑

i=1

max
f∈[fL,i(α),fU,i(α)]

L(f,−1)

= r−1
r∑

i=1

L(fU,i(α),−1).

And similarly, the corresponding upper expectation
R+1(α) is

R+1(α) = (n− r)−1
n∑

i=r+1

L(fL,i(α), 1).

Finally, we minimise R(α) to compute αopt, with

R(α) =
π−
r

r∑

i=1

L(fU,i(α),−1)

+
π+

n− r
n∑

i=r+1

L(fL,i(α), 1).

Further steps towards the solution of the problem de-
pend on the chosen loss function, we briefly consider
one important special case. For the hinge loss func-
tion L(x, y) = max(1− yf, 0),

R(α) =
π−
r

r∑

i=1

max (0, 1 + fU,i(α))

+
π+

n− r
n∑

i=r+1

max (0, 1− fL,i(α)) .

After simple modifications, we get the linear problem

min
α

(
π−
r

r∑

i=1

Gi +
π+

n− r
n∑

i=r+1

Gi

)
(16)

subject to

Gi ≥ 1− yi (〈αxi〉+ α0) , ∀x(i)
k ∈ {x

(i)
k , x

(i)
k },

Gi ≥ 0, i = 1, ..., n. (17)
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By adding the standard Tikhonov regularization term
to the objective function, we get the SVM classifier
with cost parameters C− = π−/r and C+ = π+/(n−
r). We introduce notation

Qi =
∑

k∈Ji

ψik, Tj(i) =
∑

k∈Ji(j)

ψikx
(i,k)
j

where the set Ji(j) is a ‘projection’ of the set of indices
on the j-th element of the vector xi. Then the dual
optimisation problem is

max




n∑

i=1

Qi −
1
2

n∑

i=1

n∑

j=1

yiyj

(
m∑

v=1

Tv(i)Tv(j)

)
 ,

subject to
n∑

i=1

yiQi = 0, 0 ≤ Qi ≤ C−, i = 1, ..., r,

0 ≤ Qi ≤ C+, i = r + 1, ..., n.

This is the SVM classification approach with interval-
valued data under the minimax strategy. Space re-
strictions prevent further details, illustration or dis-
cussion of this result and related results for different
loss functions and for the minimin strategy. However,
it is clear that the general approach presented in this
paper leads to a wide variety of attractive methods
for machine learning, with relatively straightforward
inclusion of interval-valued observations.

6 Concluding remarks

In this paper, a new class of imprecise regression
and classification models has been proposed which
are capable to deal with interval-valued data as fre-
quently occur in practice. The class has been illus-
trated for several important specific cases, and it has
been shown that the resulting inference problems can
be formulated as standard optimisation problems, so
the method can be implemented using readily avail-
able software. This new method has several important
features. First, it has a clear explanation and justi-
fication in the decision making framework. Secondly,
it allows a wide variety of inferential methods for con-
structing the p-boxes. For example, imprecise (‘gen-
eralized’) Bayesian inference models [19] can be used
and these provide an exciting opportunity for devel-
oping learning models for a wide range of different ap-
plications. Thirdly, the method can deal with (partly)
missing data as the intervals for observations are not
restricted, which is important as complete data sets
are the exception in practice. Finally7, resulting sta-
tistical inferences are similar some well-known robust

7This was discussed by Utkin and Coolen [30] for p-boxes
based on Kolmogorov-Smirnov bounds

statistics methods, for which the current approach
provides formal justifications and interpretations in a
decision theoretic framework. Detailed study of these
aspects, and development of further models and cor-
responding inferences, is ongoing. The main disad-
vantage of the proposed approach is that it is often
not straightforward how the bounding CDFs can be
explicitly defined as functions of the regression or clas-
sification parameter, which may add to computational
complexity but the results show that the approach can
be developed to allow real-world applications. A main
strength of the proposed method is the link with the
popular SVM approach. A key feature of SVMs is
the use of kernels which are functions that transform
the input data to a high-dimensional space where the
learning problem is solved. Such kernel functions can
be linear or nonlinear, which will allow us to signifi-
cantly extend the class of regression or discriminant
functions that can be used. Our approach directly
showed how the regular SVM approach can be gener-
alized for dealing with interval-valued observations.

There are interesting possibilities for combining cor-
responding ‘minimin’ and ‘minimax’ strategies. For
example, the method for cautious decision making
proposed by Utkin and Augustin [29], which uses the
extreme points of a set of probability distributions
produced by imprecise data, can be applied. In our
approach, the values of the extreme points are de-
termined from the optimal CDFs (3) and (6) for the
minimax and minimin strategies, respectively. De-
tailed analysis of this cautious strategy and the pos-
sibility to arrive at set-based predictions and related
final decisions on the basis of our model outputs, are
interesting topics for future research, together with
dealing with imprecise input variables for the object
to predict, imprecision in the dependent variables and
of course comparison with more established methods.
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Abstract

The goal of the paper is to reveal the relationships be-
tween recently introduced concept of conditional in-
dependence in evidence theory and those (dependent
on the choice of conditioning rule) of conditional ir-
relevance.

Keywords. Evidence theory, multidimensional mod-
els, conditioning rules, conditional independence, con-
ditional irrelevance.

1 Introduction

When applying models of artificial intelligence to any
practical problem one must cope with two basic prob-
lems: uncertainty and multidimensionality. The most
widely used models managing these issues are, at
present, so-called probabilistic graphical Markov mod-
els.

The problem of multidimensionality is solved in these
models with the help of the notion of conditional in-
dependence, which enables factorization of a multi-
dimensional probability distribution into small parts,
usually marginal or conditional low-dimensional dis-
tributions (e.g. in Bayesian networks), or generally
into low-dimensional factors (e.g. in decomposable
models). Such a factorization not only decreases the
storage requirements for representation of a multi-
dimensional distribution but it usually also induces
efficient computational procedures allowing inference
from these models.

It is easy to realize that if we need efficient methods
for representation of probability distributions (requir-
ing an exponential number of parameters), the greater
is the need of an efficient tool for representation of be-
lief functions, which cannot be represented by a dis-
tribution (but only by a set function), and therefore
the space requirements for its representation are su-
perexponential. To solve this problem, in [9, 15] we
proposed a new concept of conditional independence

in evidence theory, proved its formal properties and
showed [16] in which sense it is superior to the previ-
ous one [3].

However, another problem appears when one tries to
construct an evidential counterpart of Bayesian net-
work: problem of conditioning, which is not suffi-
ciently solved in evidence theory. There exist many
conditioning rules [6], but is any of them compatible
with our conditional independence concept? In other
words, if one is interested in Bayesian-networks-like
evidential models, he/she will need rather the con-
cept of conditional irrelevance. Therefore, it is also
necessary to find the relationship between conditional
independence and irrelevance. It is not necessary for
Bayesian networks, as in (precise) probability frame-
work the difference between conditional independence
and irrelevance is only subtle.

The contribution is organized as follows. After a short
overview of necessary terminology and notation (Sec-
tion 2), in Section 3 we recall two conditioning rules
(suggested for conditioning of events) and introduce
their generalizations for variables. In Section 4 the
above-mentioned concept of conditional independence
is recalled and a new concept of (conditional) irrele-
vance is presented. In Section 5 the relationship be-
tween (conditional) independence and (conditional)
irrelevance is studied.

2 Basic Concepts

In this section we will briefly recall basic concepts
from evidence theory [11] concerning sets, set func-
tions and marginalization.

2.1 Set projections and extensions

For an index set N = {1, 2, . . . , n} let {Xi}i∈N be
a system of variables, each Xi having its values in a
finite set Xi. In this paper we will deal with multidi-
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mensional frame of discernment

XN = X1 ×X2 × . . .×Xn,

and its subframes (for K ⊆ N)

XK =×i∈KXi.

When dealing with groups of variables on these sub-
frames, XK will denote a group of variables {Xi}i∈K

throughout the paper.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK

will be denoted x↓K , i.e. for K = {i1, i2, . . . , ik}

x↓K = (xi1 , xi2 , . . . , xik
) ∈ XK .

Analogously, for M ⊂ K ⊆ N and A ⊂ XK , A↓M will
denote a projection of A into XM :1

A↓M = {y ∈ XM | ∃x ∈ A : y = x↓M}.

In addition to the projection, in this text we will also
need an opposite operation usually called a cylindrical
extension. The cylindrical extension of A ⊂ XK to
XL (K ⊂ L) is the set

A↑L = {x ∈ XL : x↓K ∈ A}.

Clearly
A↑L = A×XL\K .

A more complicated case is to make common exten-
sion of two sets, which will be called a join. By a join2

of two sets A ⊆ XK and B ⊆ XL (K,L ⊆ N) we will
understand a set

A ./ B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Let us note that for any C ⊆ XK∪L naturally C ⊆
C↓K ./ C↓L, but generally C 6= C↓K ./ C↓L.

Let us also note that if K and L are disjoint, then
the join of A and B is just their Cartesian product
A ./ B = A × B, if K = L then A ./ B = A ∩ B.
If K ∩ L 6= ∅ and A↓K∩L ∩ B↓K∩L = ∅ then also
A ./ B = ∅. Generally,

A ./ B = (A×XL\K) ∩ (B ×XK\L),

i.e. a join of two sets is the intersection of their cylin-
drical extensions.

1Let us remark that we do not exclude situations when M =
∅. In this case A↓∅ = ∅.

2This term and notation are taken from the theory of rela-
tional databases [1].

2.2 Set functions

In evidence theory [11] (or Dempster-Shafer theory)
two measures are used to model the uncertainty: be-
lief and plausibility measures. Both of them can be
defined with the help of another set function called a
basic (probability or belief) assignment m on XN , i.e. ,

m : P(XN ) −→ [0, 1],

where P(XN ) is power set of XN and
∑

A⊆XN

m(A) = 1.

Furthermore, we assume that m(∅) = 0.

A set A ∈ P(XN ) is a focal element if m(A) > 0. Let
F denote the set of all focal elements, a focal element
A ∈ F is called an m−atom if for any B ⊆ A either
B = A or B ∈/ F . In other words, m−atom is a
setwise-minimal focal element.

Let us note that atomicity of a focal element is not
closed with respect to either marginalization or exten-
sion.

Belief and plausibility measures are defined for any
A ⊆ XN by the equalities

Bel(A) =
∑

B⊆A

m(B). (1)

Pl(A) =
∑

B∩A 6=∅
m(B), (2)

respectively.

It is well-known (and evident from these formulae)
that for any A ∈ P(XN )

Bel(A) ≤ Pl(A), (3)
Pl(A) = 1−Bel(AC), (4)

where AC is the set complement of A ∈ P(XN ). Fur-
thermore, basic assignment can be computed from be-
lief function via Möbius inversion:

m(A) =
∑

B⊆A

(−1)|A\B|Bel(B), (5)

i.e. any of these three functions is sufficient to define
values of the remaining two.

2.3 Marginalization

For a basic assignment m on XK and M ⊂ K, a
marginal basic assignment of m on XM is defined (for
each A ⊆ XM ):

m↓M (A) =
∑

B⊆XK

B↓M=A

m(B). (6)

382 Jirina Vejnarova



Analogously we will denote by Bel↓M and Pl↓M

marginal belief and plausibility measures on XM , re-
spectively.

The following simple lemma concerning marginal be-
liefs and plausibilities will be used in the next section.

Lemma 1 Let m be a basic assignment on XN , Bel
and Pl corresponding beliefs and plausibilities and
K ⊂ N . Then for any A ⊂ XK

Bel↓K(A) = Bel(A↑N ), (7)
Pl↓K(A) = Pl(A↑N ). (8)

Proof. Using (1) and (6) one obtains

Bel↓K(A) =
∑

B⊆XK

B⊆A

m↓K(B)

=
∑

B⊆XK

B⊆A

∑

C⊆XN

C↓K=B

m(C)

=
∑

C⊆XN

C↓K⊆A

m(C)

=
∑

C⊆XN

C⊆A↑N

m(C)

= Bel(A↑N ),

where we used the fact that C↓K ⊆ A if and only if
C ⊆ A↑N for any C ⊆ XN and A ⊆ XK .

Similarly, using (2), (6) and the fact that D↓K ⊆
XK , D

↓K∩B 6= ∅ if and only if D ⊆ XN , D∩B↑N 6= ∅

Pl↓K(B) =
∑

C⊆XK

C∩B 6=∅

m↓K(C)

=
∑

C⊆XK

C∩B 6=∅

∑

D⊆XN

D↓K=C

m(D)

=
∑

D⊆XN

D∩B↑L 6=∅

m(D)

= Pl(B↑N ),

as desired. ut

3 Conditioning

Conditioning belongs to the most important topics of
any theory dealing with uncertainty. From the view-
point of construction of Bayesian-network-like multi-
dimensional models it seems to be inevitable.

3.1 Conditioning of Events

In evidence theory the “classical” conditioning rule is
so-called Dempster’s rule of conditioning defined for
any ∅ 6= A ⊆ XN and B ⊆ XN such that Pl(B) > 0
by the formula

m(A|B) =

∑

C⊆XN :C∩B=A

m(C)

Pl(B)
(9)

and m(∅|B) = 0.

Let us note that formula (9) is special case of Demp-
ster’s rule of combination, when combining basic as-
signment m with another mB such that mB(B) = 1.

From this formula one can immediately obtain:

Bel(A|B) =
Bel(A ∪BC)−Bel(BC)

1−Bel(BC)
,

P l(A|B) =
Pl(A ∩B)
Pl(B)

. (10)

This is not the only possibility how to make condition-
ing, another — in a way symmetric — conditioning
rule is the following one called focusing defined for any
∅ 6= A ⊆ XN and B ⊆ XN such that Bel(B) > 0 by
the formula

m(A||B) =





m(A)
Bel(B)

if A ⊆ B,

0 otherwise.

From the following two equalities one can see, in which
sense are these two conditioning rules symmetric:

Bel(A||B) =
Bel(A ∩B)
Bel(B)

, (11)

Pl(A||B) =
Pl(A ∪BC)− Pl(BC)

1− Pl(BC)
.

These rules are based on different philosophy. Fo-
cusing assigns positive values only to those elements
which are subsets of B, while Dempster’s rule of con-
ditioning to those which have nonempty intersection
with it.

It is evident, that focusing is applicable in less cases
than Dempster’s rule, because of relation (3), hence
from this point of view the latter seems to be more
advantageous.

On the other hand, from the computational view-
point the latter is more suitable, as it produces less
focal elements (and in any of them a bigger “mass”
is contained; cf. also Example 1). Due to this fact
it may seem that focusing produces bigger intervals
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than Dempster’s rule (and it is very often true), but
it is not generally satisfied, as can be seen again from
Example 1.

Formulae (10) and (11) are, in a way, evidential coun-
terparts of conditioning in probabilistic framework.
Let us note that seemingly “natural” way of condi-
tioning

m(A|pB) =
m(A ∩B)
m(B)

(12)

is not possible, since m(A|pB) need not be a basic
assignment, as can be seen from the following simple
example. It is caused by a simple fact that m, in con-
trary to Bel and Pl is not monotonous with respect
to set inclusion.

Example 1 Let X = {a, b, c} and m on X be defined
as follows:

m({a}) = m({b}) = m({c}) =
1
4
,

m({a, b}) = m(X) =
1
8
.

Using (12) one would obtain

m({a}|p{a, b}) = m({b}|p{a, b}) = 2,

which is out of the framework of evidence theory.

Let us use this example also for demonstrating the dif-
ference between Dempster’s rule of conditioning and
focusing. For this purpose let us compute

Bel({b, c} =
1
2

and Pl({b, c} =
3
4
.

Then we have

m({b}|{b, c}) =
m({b}) +m({a, b})

Pl({b, c}) =
1
2
,

m({c}|{b, c}) =
m({c})
Pl({b, c}) =

1
3
,

m({b, c}|{b, c}) =
m(X)

Pl({b, c}) =
1
6
,

as {a, b} ∩ {b, c} = {b} and X ∩ {b, c} = {b, c}, while

m({b}||{b, c}) =
m({b})

Bel({b, c}) =
1
2
,

m({c}||{b, c}) =
m({c})

Bel({b, c}) =
1
2
,

as {b} and {c} are the only subsets of {b, c}. ♦

Nevertheless, rather than in conditional beliefs and
plausibilities of events we are interested in condition-
ing by variables. This problem will be in the center
of our attention in the next subsection.

3.2 Conditional Variables

Definition 1 Let XK and XL (K ∩ L = ∅) be two
groups of variables with values in XK and XL, re-
spectively. Then the conditional basic assignment ac-
cording to Dempster’s conditioning rule of XK given
XL ∈ B ⊆ XL (for B such that Pl(B) > 0) is defined
as follows:

mXK |XL
(A|B) (13)

=

∑

C⊆XK∪L:(C∩B↑K∪L)↓K=A

m(C)

Pl(B)

for A 6= ∅ and mK|L(∅|B) = 0. Similarly, the condi-
tional basic assignment according to focusing of XK

given XL ∈ B ⊆ XL (for B such that Bel(B) > 0) is
defined by the equality

mXK ||XL
(A||B) (14)

=

∑

C⊆XK∪L:C⊆B↑K∪L&C↓K=A

m(C)

Bel(B)

for any A 6= ∅ and mK||L(∅||B) = 0.

Now, let us prove that the definition is correct.

Theorem 1 Set functions mXK |XL
and mXK ||XL

de-
fined for any fixed B ⊆ XL, such that Pl(B) > 0 and
Bel(B) > 0, respectively, by Definition 1 are basic
assignments on XK .

Proof.

(i) Let B ⊆ XL be such that Pl(B) > 0. As nonneg-
ativity of mXK |XL

(A|B) for any A ⊆ XK and the
fact that mXK |XL

(∅|B) = 0 follow directly from
the definition, to prove that mXK |XL

is a basic
assignment it is enough to show that

∑

A⊆XK

mXK |XL
(A|B) = 1.

To check it, let us sum the values of the numer-
ators in (13)
∑

A⊆XK

∑

C⊆XK∪L

(C∩B↑K∪L)↓K=A

m(C)

=
∑

A⊆XK

A6=∅

∑

C⊆XK∪L

(C∩B↑K∪L)↓K=A

m(C)

=
∑

C⊆XK∪L

C∩B↑L 6=∅

m(C)

= Pl(B↑L).
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To finish the proof it is enough to realize that
Pl(B↑K∪L) = Pl↓L(B) for any B ⊆ XL (by (8)
of Lemma 1).

(ii) Analogously we will show that mX||Y is defined
correctly. Let B ⊆ XL be such that Bel(B) > 0.
To prove that mX||Y is a basic assignment, it is
again enough to check that

∑

A⊆XK

mXK ||XL
(A||B) = 1.

To do so, let us compute
∑

A⊆XK

∑

C⊆XK∪L:

C⊆B↑K∪L:C↓K=A

m(C)

=
∑

C⊆XK∪L:

C⊆B↑LA

m(C)

= Bel(B↑L).

The rest of the proof, i.e. validity of
Bel(B↑K∪L) = Bel↓L(B) follows directly from
(7) of Lemma 1. ut

4 Conditional Independence and
Irrelevance

4.1 Conditional Independence and
Irrelevance in Probability Theory

Independence and irrelevance need not be (and usu-
ally are not) distinguished in the probabilistic frame-
work, as they are almost equivalent to each other.

Supposing XK , XL and XM are groups of random
variables with a joint probability distribution P we
say that XK is conditionally independent of XL given
XM with respect to P if the equality

P (xK , xL, xM ) · P ↓M (xM )
= P ↓K∪M (xK , xM ) · P ↓L∪M (xL, xM )

(where PXKXM
, PXLXM

, PXM
denote correspond-

ing marginal distributions) holds for every value
(xK , xL, xM ) of the variables XK , XL, XM . It means
that in every situation when the value of XM is known
the values of XK and XL are completely unrelated
(from the stochastic point of view).

There exist several equivalent definitions of stochastic
conditional independence, e.g.

PXK |XLXM
(xK |xL, xM ) = PXK |XM

(xK |xM ),

but this definition may be used only in the situation
when P ↓L∪M (xL, xM ) is positive.

Similarly, in possibilistic framework adopting De
Cooman’s measure-theoretical approach [7] (partic-
ularly his notion of almost everywhere equality) we
proved that analogous definitions are equivalent (for
more details see [13]).

4.2 Independence

When constructing graphical models in any frame-
work, (conditional) independence concept plays an
important role. In evidence theory the most common
notion of independence is that of random set indepen-
dence [5].

It has already been proven [14] that it is also the only
sensible one, as e.g. application of strong indepen-
dence to two bodies of evidence may generally lead to
a model which is beyond the framework of evidence
theory. Epistemic independence and irrelevance were
not taken into consideration, as none of them seem
to be a suitable tool for factorization of multidimen-
sional models. Furthermore, they require condition-
ing, so their application is also problematic from this
point of view.

Definition 2 Let m be a basic assignment on XN

and K,L ⊂ N be disjoint. We say that groups of
variables XK and XL are independent with respect to
basic assignment m (in notation K ⊥⊥ L [m]) if

m↓K∪L(A) = m↓K(A↓K) ·m↓L(A↓L)

for all A ⊆ XK∪L for which A = A↓K × A↓L, and
m(A) = 0 otherwise.

This notion can be generalized in various ways [3, 12,
15]; the concept of conditional non-interactivity from
[3], based on conjunction combination rule, is used
for construction of directed evidential networks in [4].
In this paper we will use the concept introduced in
[9, 15], as we consider it more suitable (the arguments
can be found in [15]).

Definition 3 Let m be a basic assignment on XN

and K,L,M ⊂ N be disjoint, K 6= ∅ 6= L. We say
that groups of variables XK and XL are conditionally
independent given XM with respect to m (and denote
it by K ⊥⊥ L|M [m]), if the equality

m↓K∪L∪M (A) ·m↓M (A↓M )
= m↓K∪M (A↓K∪M ) ·m↓L∪M (A↓L∪M )

holds for any A ⊆ XK∪L∪M such that A = A↓K∪M ./
A↓L∪M , and m(A) = 0 otherwise.

It has been proven in [15] that this conditional in-
dependence concept satisfies so-called semi-graphoid
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properties taken as reasonable to be valid for any con-
ditional independence concept (see e.g. [10]) and it
has been shown in which sense this conditional inde-
pendence concept is superior to previously introduced
ones [3, 12].

4.3 Irrelevance

Irrelevance is usually considered to be a weaker no-
tion than independence (see e.g. [5]). It expresses
the fact that a new piece of evidence concerning one
variable cannot influence the evidence concerning the
other variable, in other words is irrelevant to it. More
formally: group of variables XL is irrelevant to XK

(K ∩ L = ∅) if for any B ⊆ XL such that Pl(B) > 0

mXK |XL
(A|B) = m(A) (15)

for any A ⊆ XK .3

It follows from the definition of irrelevance that it need
not be a symmetric relation. Its symmetrized version
is sometimes taken as a definition of independence.
Let us note, that in the framework of evidence theory
even in cases when the relation is symmetric, it does
not imply independence, as can be seen from Exam-
ples 2 and 3.

Generalization of this notion to conditional irrele-
vance may be done as follows. Group of variables XL

is conditionally irrelevant to XK given XM (K,L,M
disjoint, K 6= ∅ 6= L) if for any B ⊆ XL and C ⊆ XM

such that Pl(B × C) > 0

mXK |XLXM
(A|B × C) = mXK |XM

(A|C) (16)

for any A ⊆ XK .

Remark. This is not the only way of generalization
of the irrelevance concept, e.g. we could allow for con-
ditioning by general sets and not only by rectangles
on the left side of (16), i.e. the equality

mXK |XLXM
(A|B) = mXK |XM

(A|B↓M ) (17)

is satisfied for any A ⊆ XK and B ⊆ XL∪M . This def-
inition is evidently more general, but it seemingly has
little sense, as the “interesting” sets from the view-
point of (conditional) independence are rectangles, or,
more generally, joins.

Let us note that the conditioning in equalities (15)
and (16) stands for an abstract conditioning rule (any
of those mentioned in the previous section or some
other [6]). Nevertheless, the validity of (15) and (16)
may depend on the choice of conditioning rule. To
demonstrate it let us present two simple examples.

3Let us note that somewhat weaker definition of irrelevance
one can found in [2], where equality is substituted by propor-
tionality. This notion has been later generalized using conjunc-
tive combination rule [3].

Example 2 Let X1 and X2 be two binary variables
(with values in Xi = {ai, āi}) with joint basic assign-
ment m defined as follows:

m({(a1, a2)}) =
1
2
,

m(X1 ×X2 \ {(ā1, ā2)}) =
1
4
,

m(X1 ×X2) =
1
4
.

From these values one can obtain

m↓2({a2}) = m↓2(X2) =
1
2
,

and therefore

Bel↓2({a2}) =
1
2
, Bel↓2({ā2}) = 0.

P l↓2({a2}) = 1, P l↓2({ā2}) =
1
2
.

Computing conditional basic assignments (according
to Dempster’s conditioning rule) one can easily see
that

mX1|X2({a1}|{a2}) = mX1|X2({a1}|{ā2})

=
1
2

= m↓1({a1}),
mX1|X2({ā1}|{a2}) = mX1|X2({ā1}|{ā2})

= 0 = m↓1({ā1}),
mX1|X2(X1|{a2}) = mX1|X2(X1|{ā2})

=
1
2

= m↓1(X1),

i.e. X1 and X2 are irrelevant (with respect to Demp-
ster’s conditioning rule). On the other hand, as e.g.

mX1||X2(({a1}||({a2}))

=
m({(a1, a2)}))
Bel({a2})

= 1 6= 1
2

= m↓1({a1}),

they are not irrelevant with respect to focusing. ♦

Example 3 Let X1 and X2 be two binary variables
(with values in Xi = {ai, āi}) with joint basic assign-
ment m defined as follows:

m({(a1, a2)}) =
1
4
,

m({a1} ×X2) =
1
4
,

m(X1 × {a2}) =
1
4
,

m(X1 ×X2 \ {(ā1, ā2)}) =
1
4
.

From these values one can obtain

m↓2({a2}) = m↓2(X2) =
1
2
,
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and therefore

Bel↓2({a2}) =
1
2
, Bel↓2({ā2}) = 0,

P l↓2({a2}) = 1, P l↓2({ā2}) =
1
2
.

Evidently, it is not possible to condition by {ā2} and
we have to confine ourselves to conditioning by {a2}:

mX1||X2({a1}||{a2}) = 1
2 = m↓1({a1}),

mX1||X2({ā1}||{a2}) = 0 = m↓1({ā1}),
mX1||X2(X1||{a2}) = 1

2 = m↓1(X1),

i.e. X1 and X2 are irrelevant (under focusing). On
the other hand, as e.g.

mX1|X2(({a1}|({ā2}))

=
m({a1} ×X2) +m(X1 ×X2 \ {(ā1, ā2)})

Pl({a2})

= 1 6= 1
2

= m↓1({a1}),

they are not irrelevant with respect to Dempster’s
conditioning rule. ♦

5 Relationship Between
Independence and Irrelevance

As we demonstrated at the end of preceding section,
different conditioning rules lead to different irrele-
vance concepts. Therefore we will study the rela-
tionships between independence and irrelevance sepa-
rately for Dempster’s conditioning rule and for focus-
ing.

5.1 Dempster’s rule of conditioning

For (unconditional) independence and irrelevance the
following assertion holds true.

Theorem 2 Let XK and XL (K∪L = ∅) be indepen-
dent groups of variables (under joint basic assignment
m defined on XK∪L). Then XL are irrelevant to XK

with respect to Dempster’s conditioning rule.

Proof. Let XK and XL be independent. Then

m(A) = m↓K(A↓K) ·m↓L(A↓L)

for any A ⊆ XK∩L for which A = A↓K × A↓L, and
m(A) = 0 otherwise, i.e. the only focal elements of
m are rectangles. Therefore we have for arbitrary
A ⊆ XK∪L

Pl(A) =
∑

C:C∩A6=∅
m(C)

=
∑

C:C∩A6=∅
m↓K(C↓K) ·m↓L(C↓L)

=
∑

D:D∩A↓K 6=∅
m↓K(D) ·

∑

E:E∩A↓L 6=∅
m↓L(E)

= Pl↓K(A↓K) · Pl↓L(A↓L).

From this equality we immediately obtain that for all
A such that Pl↓L(A↓L) > 0 equality

Pl(A)
Pl↓L(A↓L)

= Pl↓K(A↓K)

is satisfied. But the left side of this equality is
equal to PlXK |XL

(A↓K |A↓L). As both conditional
and marginal basic assignments can be obtained from
corresponding plausibilities using the equality (4) and
Möbius inversion (5), we immediately obtain that also
for any fixed B ⊆ XL such that Pl↓L(B) > 0

mK|L(A|B) = m↓K(A)

for any A ⊆ XK , i.e. XK and XL are irrelevant. ut
The reverse implication does not hold in general. To
demonstrate it let us recall Example 2.

Example 2 (Continued) We have already shown
that X1 and X2 are irrelevant (with respect to Demp-
ster’s conditioning rule). But they are not indepen-
dent, as the focal elements are not rectangles, which
contradicts Definition 2. ♦

Unfortunately, a generalization of Theorem 2 to
conditional independence and conditional irrelevance
does not hold, as can be seen from the following sim-
ple example.

Example 4 Let X1, X2 and X3 be three variables
with values in X1,X2 and X3 respectively, Xi =
{ai, āi}, i = 1, 2, 3, and their joint basic assignment
is defined as follows:

m({(x1, x2, x3)}) = 1
16 ,

m(X1 ×X2 ×X3) = 1
2 ,

for xi = ai, āi, values of m on the remaining sets being
0, i.e. we have 9 focal elements — 8 singletons and
the whole frame of discernment. Its marginal basic
assignments on X1 ×X3,X2 ×X3 and X3 are

m↓13({(x1, x3)}) = 1
8 ,

m↓13(X1 ×X3) = 1
2 ,

m↓23({(x2, x3)}) = 1
8 ,

m↓23(X2 ×X3) = 1
2 ,

and
m↓3({x3}) = 1

4 ,

m↓3(X3) = 1
2 ,
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respectively (values of m of remaining subsets being 0,
again). It is easy (but somewhat time-consuming)
to show that for any A ⊆ X1 × X2 × X3 such that
A = A↓13 ./ A↓23

m(A) ·m↓3(A↓3)
= m↓13(A↓13) ·m↓23(A↓23),

the values of remaining sets being zero, i.e. {1} ⊥⊥
{2}|{3} [m] holds.

Now, let us show, that X2 is not irrelevant to X1

given X3. To do so, we have to compute mX1|X2X3

and mX1|X3 . First, let us take into account that

Pl({(x2, x3)}) =
5
8

for any xi = ai, āi, i = 2, 3 and

Pl({x3}) =
3
4

for both x3 = a3, ā3 and that

(X1 ×X2 ×X3 ∩ {(a2, a3)}↑123)↓1 = X1

and similarly

(X1 ×X3 ∩ {a3}↑13)↓1 = X1.

Then we have

mX1|X2X3({a1}|{(a2, a3)}) =
m({(a1, a2, a3)})
Pl({(a2, a3)}) =

1
10
,

mX1|X2X3({ā1}|{(a2, a3)}) =
m({(ā1, a2, a3)})
Pl({(a2, a3)}) =

1
10
,

mX1|X2X3(X1|{(a2, a3)}) =
m(X1×X2×X3)
Pl({(a2, a3)}) =

4
5
,

while

mX1|X3({a1}|{a3}) =
m({(a1, a3)})
Pl({a3})

=
1
6
,

mX1|X3({ā1}|{a3}) =
m({(ā1, a3)})
Pl({a3})

=
1
6
,

mX1|X3(X1|{a3}) =
m(X1 ×X3)
Pl({a3})

=
2
3
,

i.e. mX1|X2X3 6= mX1|X3 . ♦

5.2 Focusing

In this subsection we will investigate mutual relation-
ship between (conditional) independence and irrele-
vance based on the latter conditioning rule introduced
in Section 3.

Theorem 3 Let XK and XL (K∩L = ∅) be indepen-
dent groups of variables (under joint basic assignment
m on XK∪L). Then XK and XL are irrelevant with
respect to focusing.

Proof. Let XK and XL be independent. Then

m(A) = m↓K(A↓K) ·m↓L(A↓L)

for any A ⊆ XK∪L for which A = A↓K × A↓L, and
m(A) = 0 otherwise, i.e. the only focal elements of
m are rectangles. Therefore we have for arbitrary
A ⊆ XK

Bel(A) =
∑

C⊆A

m(C)

=
∑

C⊆A

m↓K(C↓K) ·m↓L(C↓L)

=
∑

D:D⊆A↓K

m↓K(D) ·
∑

E:E⊆A↓L

m↓L(E)

= Bel↓K(A↓K) ·Bel↓L(A↓L).

From this equality we immediately obtain that for all
A such that Bel↓L(A↓L) > 0 equality

Bel(A)
Bel↓L(A↓L)

= Bel↓K(A↓K)

is satisfied. But the left side of this equality is equal to
BelXK ||XL

(A↓K ||A↓L). As the both conditional and
marginal basic assignments can be obtained from cor-
responding beliefs using Möbius inversion (5) we im-
mediately obtain that also for any fixed B ⊆ XL such
that Bel(B) > 0

mXK ||XL
(A||B) = m↓K(A)

for any A ⊆ XK , i.e. XK and XL are irrelevant. ut
The reverse implication does not hold again, as can be
seen from the following simple example (continuation
of Example 3).

Example 3 (Continued) We have already proven
that X1 and X2 are irrelevant (under focusing). But
they are not independent, as the focal elements are
not rectangles, which again contradicts Definition 2.♦

Up to now the results presented in this subsection
have been exactly the same as in the preceding one.

Now, let us study the problem of the relationship be-
tween conditional independence and irrelevance. For
this purpose, let us recall Example 4.

Example 4 (Continued) We have already shown
that although X1 and X2 are conditionally indepen-
dent given X3, X2 is not irrelevant to X1 given X3

under Dempster’s rule of conditioning.

Now, let us us check whether X2 is irrelevant to X1

given X3 under focusing. To do so, we have to com-
pute mX1||X2X3 and mX1||X3 . Again, we have to take
into account that

Bel({(x2, x3)}) =
1
8
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for any xi = ai, āi, i = 2, 3 and

Bel({x3}) =
1
4

for both x3 = a3, ā3 and the fact that there does
not exist any focal element A of m such that A ⊆
{(x2, x3)}↑123 (for any pair (x2, x3)) and A↓1 = X1

and similarly there does not exist any focal element
B of m↓13 such that B ⊆ {x3}↑13 (for any x3) and
B↓1 = X1. Therefore we have

mX1||X2X3({a1}||{(x2, x3)})

=
m({(a1, x2, x3)})
Bel({(x2, x3)}) =

1
2
,

mX1||X2X3({ā1}||{(x2, x3)})

=
m({(ā1, x2, x3)})
Bel({(x2, x3)}) =

1
2
,

mX1||X2X3(X1||{(x2, x3)}) = 0,

for any pair (x2, x3) ∈ X2 ×X3 and

mX1||X3({a1}||{x3}) =
m({(a1, x3)})
Bel({x3})

=
1
2
,

mX1||X3({ā1}||{x3}) =
m({(ā1, x3)})
Bel({x3})

=
1
2
,

mX1||X3(X1||x3) = 0,

for any x3 ∈ X3, i.e. mX1||X2X3 = mX1||X3 when con-
ditioning by singletons, which is quite different from
the previous case, based on Dempster’s conditioning
rule.

Nevertheless, to demonstrate that X2 is irrelevant to
X1 given X3 we have also to check the validity of
equality (16) for a general rectangle B ×C such that
Bel(B×C) > 0. As both X2 and X3 are binary, only
three situations may happen:

B = X2 and C = X3: in this case equality (16) is
trivially satisfied, as conditional basic assign-
ments on both sides are, in fact, marginal basic
assignments on X1, and therefore identical;

B = X2 and C = {x3} for x3 = a3, ā3: in this case
equality (16) is again satisfied, as conditional ba-
sic assignment on the left side is, in fact, the same
as that on the right side;

B = {x2} for x2 = a2, ā2 and C = X3: this is the
nontrivial case, corresponding to unconditional
irrelevance (15); nevertheless, its validity need
not be checked, since X1 and X2 are not (uncon-
ditionally) independent, as can be easily checked.

Therefore X2 is irrelevant to X1 given X3 (under fo-
cusing). ♦

Let us finish the section with a partial generalization
of Theorem 3, which, maybe surprisingly, proves that
conditioning by sets which are not rectangles is sensi-
ble.

Theorem 4 Let XK and XL be conditionally inde-
pendent groups of variables given XM under joint
basic assignment m on XK∪L∪M (K,L,M disjoint,
K 6= ∅ 6= L). Then

mXK ||XLXM
(A||B) = mXK ||XM

(A||B↓M ) (18)

for any m↓L∪M -atom B ⊆ XL∪M such that B↓M is
m↓M -atom and A ⊆ XK .

Proof. Let XK and XL be conditionally independent
given XM . Then

m(C) ·m↓M (C↓M )
= m↓K∪M (C↓K∪M ) ·m↓L∪M (C↓L∪M )

holds for any C ⊆ XK∪L∪M such that C = C↓K∪M ./
C↓L∪M , and m(C) = 0 otherwise. From this equal-
ity we immediately obtain that for all C such that
m↓L(C↓L) > 0 equality

m(C)
m↓L∪M (C↓L∪M )

=
m↓K∪M (C↓K∪M )
m↓M (C↓M )

is satisfied. If C↓L∪M is an atom, then
m↓L∪M (C↓L∪M ) = Bel↓L∪M (C↓L∪M ) (and analo-
gously m↓M (C↓M ) = Bel↓M (C↓M ) if C↓M is an
atom) and this equality may be rewritten into the
form

m(C)
Bel↓L∪M (C↓L∪M )

=
m↓K∪M (C↓K∪M )
Bel↓M (C↓M )

.

If we denote C↓L∪M by B, we obtain

mXK ||XLXM
(C↓K ||B) = mXK ||XM

(C↓K ||B↓M ).

If A 6= C↓K , then m(A↑K∪L∪M ∩B↑K∪L∪M ) = 0 and
therefore equality (18) is trivially satisfied. ut
From this theorem it is evident, that conditions under
which conditional independence implies conditional
irrelevance are rather restrictive.

The requirement in Theorem 4 for B being an atom is
substantial, as can be seen from the following simple
example (again continuation of Example 4).

Example 4 (Continued) Let us consider a set B =
{(a2, a3), (ā2, ā3)} ⊆ X2 × X3. One can easily com-
pute that Bel(B) = 1

4 and therefore

mX1|X2X3({a1}|B)

=
m({a1, a2, a3}) +m({a1, ā2, ā3})

Bel(B)
=

1
2
,
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mX1|X2X3({ā1}|B)

=
m({ā1, a2, a3}) +m({ā1, ā2, ā3})

Bel(B)
=

1
2
,

mX1|X2X3(X1|B) = 0,

while,
mX1|X3({a1}|B↓3) = m↓1({a1}) =

1
4
,

mX1|X3({ā1}|B↓3) = m↓1({ā1}) =
1
4
,

mX1|X2X3(X1|B↓3) = m↓1 (X1) =
1
2
.

as B↓3 = X3. ♦

6 Conclusions

We presented two conditional rules for basic assign-
ment and studied the relationship between (condi-
tional) independence and (conditional) irrelevance
(based on these conditioning rules) in evidence the-
ory.

While in unconditional case independence implies ir-
relevance and not vice versa (as expected), for con-
ditional independence such an implication does not
hold, in general. Therefore, it is necessary to be cau-
tious when constructing Bayesian-network-like mod-
els in evidence theory, as the mutual relationship is
more complicated than in probabilistic framework.

It may be of some interest to study another way of
conditioning presented in [8], however, its application
will be more complicated, as conditional basic assign-
ment must be obtained via Möbius transform from
conditional beliefs. Furthermore, we are somewhat
sceptic about the result.
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Abstract

By its capability to deal with the multidimensional
nature of uncertainty, imprecise probability provides
a powerful methodology to sensibly handle prior-data
conflict in Bayesian inference. When there is strong
conflict between sample observations and prior knowl-
edge the posterior model should be more imprecise
than in the situation of mutual agreement or com-
patibility. Focusing presentation on the prototypical
example of Bernoulli trials, we discuss the ability of
different approaches to deal with prior-data conflict.

We study a generalized Bayesian setting, including
Walley’s Imprecise Beta-Binomial model and his ex-
tension to handle prior data conflict (called pdc-
IBBM here). We investigate alternative shapes of
prior parameter sets, chosen in a way that shows im-
proved behaviour in the case of prior-data conflict and
their influence on the posterior predictive distribu-
tion. Thereafter we present a new approach, consist-
ing of an imprecise weighting of two originally sepa-
rate inferences, one of which is based on an informa-
tive imprecise prior whereas the other one is based
on an uninformative imprecise prior. This approach
deals with prior-data conflict in a fascinating way.

Keywords. Bayesian inference; generalized iLUCK-
models; imprecise Beta-Binomial model; imprecise
weighting; predictive inference; prior-data conflict.

1 Introduction

Imprecise probability has shown to be a powerful
methodology to cope with the multidimensional na-
ture of uncertainty [8, 2]. Imprecision allows the qual-
ity of information, on which probability statements
are based, to be modeled. Well supported knowl-
edge is expressed by comparatively precise models,
while highly imprecise (or even vacuous) models re-
flect scarce (or no) knowledge on probabilities. This
flexible, multidimensional perspective on uncertainty

modeling has intensively been utilized in generalized
Bayesian inference to overcome the criticism of the ar-
bitrariness of the choice of single prior distributions in
traditional Bayesian inference. In addition, only im-
precise probability models react reliably to the pres-
ence of prior-data conflict, i.e. situations where “the
prior [places] its mass primarily on distributions in
the sampling model for which the observed data is
surprising” [9, p. 894]. Lower and upper probabilities
allow a specific reaction to prior-data conflict and of-
fer reasonable inferences if the analyst wishes to stick
to his prior assumptions: starting with the same level
of ambiguity in the prior specification, wide posterior
intervals can reflect conflict between prior and data,
while no prior-data conflict will lead to narrow inter-
vals. Ideally the model could provide an extra ‘bonus’
of precision if prior assumptions are very strongly sup-
ported by the data. Such a model would have the ad-
vantage of (relatively) precise answers when the data
confirm prior assumptions, while still rendering more
cautionary answers in the case of prior-data conflict,
thus leading to cautious inferences if, and only if, cau-
tion is needed.

Although Walley [18, p. 6] explicitly emphasizes this
possibility to express prior-data conflict as one of the
main motivations for imprecise probability, it has re-
ceived surprisingly little attention. Rare exceptions
include two short sections in [18, p. 6 and Ch. 5.4]
and [14, 7, 23]. The popular IDM [19, 3] and its gen-
eralization to exponential families [15] do not reflect
prior-data conflict. [21] used the basic ideas of [18,
Ch. 5.4] to extend the approach of [15] to models that
show sensitivity to prior-data conflict.

In this paper a deeper investigation of the issue of
prior-data conflict is undertaken, focusing on the pro-
totypic special case of predictive inference in Bernoulli
trials: We are interested in the posterior predictive
probability for the event that a future Bernoulli ran-
dom quantity will have the value 1, also called a ‘suc-
cess’. This event is not explicitly included in the nota-
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tion, i.e. we simply denote its lower and upper proba-
bilities by P and P, respectively. This future Bernoulli
random quantity is assumed to be exchangeable with
the Bernoulli random quantities whose observations
are summarized in the data, consisting of the number
n of observations and the number s of these that are
successes. In our analysis of this model, we will of-
ten consider s as a a real-valued observation in [0, n],
keeping in mind that in reality it can only take on
integer values, but the continuous representation is
convenient for our discussions, in particular in our
predictive probability plots (PPP), where for given n,
P and P are discussed as functions of s.

Section 2.1 describes a general framework for gener-
alized Bayesian inference in this setting. The method
presented in [18, Ch. 5.4.3], called ‘pdc-IBBM’ in this
paper, is considered in detail in Section 2.2 and we
show that its reaction to prior-data conflict can be
improved by suitable modifications of the underlying
imprecise priors. A basic proposal along these lines
is discussed in Section 2.3 with further alternatives
sketched in Section 2.4. Section 3 addresses the prob-
lem of prior-data conflict from a completely different
angle. There we combine two originally separate infer-
ences, one based on an informative imprecise prior and
one on an uninformative imprecise prior, by an im-
precise weighting scheme. The paper concludes with
a brief comparison of the different approaches.

2 Imprecise Beta-Binomial Models

2.1 The Framework

The traditional Bayesian approach for our basic prob-
lem is the Beta-Binominal model, which expresses
prior beliefs about the probability p of observing
a ‘success’ by a Beta distribution. With1 f(p) ∝
pn

(0)y(0)−1(1 − p)n(0)(1−y(0))−1, y(0) = E[p] can be in-
terpreted as prior guess of p, while n(0) governs the
concentration of probability mass around y(0), also
known as ‘pseudo counts’ or ‘prior strength’.2 These
denominations are due to the role of n(0) in the up-
date step: With s successes in n draws observed, the
posterior parameters are3

n(n) = n(0) + n, y(n) =
n(0)y(0) + s

n(0) + n
. (1)

Thus y(n) is a weighted average of the prior parame-
ter y(0) and the sample proportion s/n, and potential
prior data conflict is simply averaged out.

1Our notation relates to [18]’s as n(0) ↔ s0, y(0) ↔ t0.
2(0) denotes prior parameters; (n) posterior parameters.
3The model is prototypic for conjugate Bayesian analysis

in canonical exponential families, for which updating of the
parameters n(0) and y(0) can be written as (1).

Overcoming the dogma of precision, formulating gen-
eralized Bayes updating in this setting is straightfor-
ward. By Walley’s Generalized Bayes Rule [18, Ch. 6]
the imprecise priorM(0), described by convex sets of
precise prior distributions, is updated to the imprecise
posterior M(n) obtained by updating M(0) element-
wise. In particular, the convenient conjugate analysis
used above can be extended: One specifies a prior
parameter set Π(0) of (n(0), y(0)) values and takes as
imprecise prior the set M(0) consisting of all convex
mixtures of Beta priors with (n(0), y(0)) ∈ Π(0). In
this sense, the set of Beta priors corresponding to Π(0)

gives the set of extreme points for the actual convex
set of priorsM(0). UpdatingM(0) with the General-
ized Bayes’ Rule results in the convex setM(n) of pos-
terior distributions that conveniently can be obtained
by taking the convex hull of the set of Beta posteriors,
which in turn are defined by the set of updated param-
eters Π(n) = {(n(n), y(n)) | (n(0), y(0)) ∈ Π(0)}. This
relationship between the sets Π(0) and Π(n) and the
sets M(0) and M(n) will allow us to discuss different
models M(0) and M(n) by depicting the correspond-
ing parameter sets Π(0) and Π(n). When interpreting
our results, care will be needed with respect to con-
vexity. Although M(0) and M(n) are convex, the pa-
rameter sets Π(0) and Π(n) generating them need not
necessarily be so. Indeed, convexity of the parame-
ter set is not necessarily preserved in the update step:
Convexity of Π(0) does not imply convexity of Π(n).

Throughout, we are interested in the posterior pre-
dictive probability [P,P] for the event that a future
draw is a success. In the Beta-Bernoulli model, this
probability is equal to y(n), and we get4

P = y(n) := min
Π(n)

y(n) = min
Π(0)

n(0)y(0) + s

n(0) + n
, (2)

P = y(n) := max
Π(n)

y(n) = max
Π(0)

n(0)y(0) + s

n(0) + n
. (3)

2.2 Walley’s pdc-IBBM

Special imprecise probability models are now ob-
tained by specific choices of Π(0). If one fixes n(0)

and varies y(0) in an interval [y(0), y(0)], Walley’s [18,
Ch. 5.3] model with learning parameter n(0) is ob-
tained, which typically is used in its near-ignorance
form [y(0), y(0)] → (0, 1), denoted as the imprecise
Beta (Binomal/Bernoulli) model (IBBM)5, which is a
special case of the popular Imprecise Dirichlet (Multi-
nomial) Model [19, 20]. Unfortunately, in this basic
form with fixed n(0) the model is insensitive to prior-

4[15, 21, 22] use the prototypical character of (1) underly-
ing (2) and (3) to generalize this inference to models based on
canonical exponential families.

5We use ‘IBBM’ also for the model with prior information.
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Figure 1: Posterior parameter sets Π(n) for rectangu-
lar Π(0). Left: spotlight shape; right: banana shape.

data conflict [21, p. 263]. Walley [18, Ch. 5.4] there-
fore generalized this model by additionally varying
n(0). In his extended model, called pdc-IBBM in this
paper, the set of priors is defined via the set of prior
parameters Π(0) = [n(0), n(0)] × [y(0), y(0)], being a
two-dimensional interval, or a rectangle set. Study-
ing inference in this model, it is important to note
that the set of posterior parameters Π(n) is not rect-
angular anymore. The resulting shapes are illustrated
in Figure 1: For the prior set Π(0) = [1, 5]×[0.4, 0.7]—
thus assuming a priori the fraction of successes to be
between 40% and 70% and rating these assumptions
with at least 1 and at most 5 pseudo observations—
the resulting posterior parameter sets Π(n) are shown
for data consisting of 3 successes in 6 draws (left) and
with all 6 draws successes (right). We call the left
shape spotlight, and the right shape banana. In both
graphs, the elements of Π(n) yielding y(n) and y(n),
and thus P and P, are marked with a circle.

The transition point between the spotlight and the
banana shape in Figure 1 is the case when s

n = y(0).
Then y(n), being a weighted average of y(0) and s

n , is
attained for all n(0) ∈ [n(0), n(0)], and the top border
of Π(n) in the graphical representation of Figure 1
is constant. Likewise, y(n) is constant if s

n = y(0).
Therefore, (2) and (3) can be subsumed as

P =





n(0)y(0)+s

n(0)+n
if s ≥ n · y(0) =: S1

n(0)y(0)+s

n(0)+n
if s ≤ n · y(0) =: S1

,

P =





n(0)y(0)+s
n(0)+n

if s ≤ n · y(0) =: S2

n(0)y(0)+s

n(0)+n
if s ≥ n · y(0) =: S2

.

The interval [S1, S2] gives the range of expected suc-
cesses [n · y(0), n · y(0)] and will be called ‘Total Prior-
Data Agreement’ interval, or TPDA. For s in the
TPDA, we are ‘spot on’: y(n) and y(n) are attained

1

0
0 s n

A

B

S1 S2

C

D

E1

E2

F1

F2

sl. 1

sl. 1

sl.
2

sl.
2

sl. 1

sl. 1

Figure 2: P and P for models in Sections 2.2 and 2.3.

for n(0) and Π(n) has the spotlight shape. But if the
observed number of successes is outside TPDA, Π(n)

goes bananas and either P or P is calculated with n(0).

To summarize, the predictive probability plot (PPP),
displaying P and P for s ∈ [0, n], is given in Figure 2.
For the pdc-IBBM, the specific values are

A =
n(0)y(0)

n(0) + n
C =

n(0)y(0) + n

n(0) + n

B =
n(0)y(0)

n(0) + n
D =

n(0)y(0) + n

n(0) + n

sl. 1 =
1

n(0) + n
E1 = y(0) E2 =

n(0)y(0) + ny(0)

n(0) + n

sl. 2 =
1

n(0) + n
F2 = y(0) F1 =

n(0)y(0) + ny(0)

n(0) + n
.

As noted by [18, p. 224], the posterior predictive im-
precision ∆ = P− P can be calculated as

∆ =
n(0)(y(0) − y(0))

n(0)+ n
+

n(0)− n(0)

(n(0)+ n)(n(0)+ n)
∆(s,Π(0)),

where ∆(s,Π(0)) = inf{|s− ny(0)| : y(0) ∈ [y(0), y(0)]}
is the distance of s to the TPDA. If ∆(s,Π(0)) 6= 0, we
have an effect of additional imprecision as desired, in-
creasing linearly in s, because Π(n) is going bananas.
However, when considering the fraction of observed
successes instead of s, the onset of this additional im-
precision immediately if s

n 6∈ [y(0), y(0)] seems very
abrupt. Moreover, and even more severe, it happens
irrespective of the number of trials n. When updat-
ing successively, this means that all single Bernoulli
observations, being either 0 or 1, have to be treated
as if being in conflict (except if y(0) = 1 and s = n
or if y(0) = 0 and s = 0). Furthermore, regarding
s/n = 7/10 as an instance of prior-data conflict when
y(0) = 0.6 had been assumed seems somewhat picky.
To explore possibilities to amend this behaviour, al-
ternative approaches are explored next.
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Figure 3: Π(0) and Π(n) for the anteater shape.

2.3 Anteater Shape Prior Sets

Choosing a two-dimensional interval Π(0) seems log-
ical but the resulting inference is not fully satisfac-
tory in case of prior data conflict. Recall that Π(0)

is used to produce M(0), which then is processed by
the Generalized Bayes rule. Any shape can be cho-
sen for Π(0), including the composure of single pairs
(n(0), y(0)). In this section we investigate an alter-
native shape, with y(0) a function of n(0), aiming at
a more advanced behaviour in the case of prior-data
conflict. To elicit Π(0), one could consider a thought
experiment6: Given the hypothetical observation of
sh successes in nh trials, which values should P and
P take? In other words, what would one like to learn
from data sh/nh in accordance with prior beliefs? As
a simple approach, we can define Π(0) such that P = c
and P = c are constants in n(n) = n(0) + nh. Then,
the lower and upper bounds for y(0) must be

y(0)(n(0)) =
(
(nh + n(0))c− sh

)
/n(0) ,

y(0)(n(0)) =
(
(nh + n(0))c− sh

)
/n(0) ,

(4)

for n(0) in an interval [n(0), n(0)] derived by the range
[n(n), n(n)] one wishes to attain for P and P given the
nh hypothetical observations.7 The resulting shape of
Π(0) is as in Figure 3 (left) and called anteater shape.
Rewriting (4), Π(0) is now defined as
{

(n(0), y(0)) | n(0) ∈ [n(0), n(0)],

y(0)(n(0)) ∈
[
c− nh

n(0)

( sh
nh
−c
)
, c+

nh

n(0)

(
c− s

h

nh

)]}
.

With the reasonable choice of c and c such that
c ≤ sh/nh ≤ c, Π(0) can be interpreted as follows:
The range of y(0) protrudes over [c, c] on either side
far enough to ensure P = c and P = c if updated
with s = sh for n = nh, the amount of protrusion de-
creasing in n(0) as the movement of y(0)(n(0)) towards

6AKA ‘pre-posterior’ analysis in the Bayesian literature.
7For the rest of the paper, we tacitly assume that nh, sh,

n(0) and c/c are chosen such that y(0) ≥ 0 resp. y(0) ≤ 1 to
generate Beta distributions as priors.

sh/nh is slower for larger values of n(0). As there is
a considerable difference in behaviour if n > nh or
n < nh, these two cases are discussed separately.

If n > nh, the PPP graph in Figure 2 holds again,
now with the values

A = c(n(0)+nh)−sh

n(0)+n
S1 = sh + c(n− nh) E1 = c

B = c(n(0)+nh)−sh

n(0)+n
S2 = sh + c(n− nh) F2 = c

C = c(n(0)+nh)−sh+n

n(0)+n
sl. 1 = 1/(n(0) + n)

D = c(n(0)+nh)−sh+n
n(0)+n

sl. 2 = 1/(n(0) + n)

E2 = c+
n(0) + nh

n(0) + n
(c− c) = c− n− nh

n(0) + n
(c− c)

F1 = c− n(0) + nh

n(0) + n
(c− c) = c+

n− nh
n(0) + n

(c− c) .

As for the pdc-IBBM, the TPDA boundaries S1 and
S2 mark the transition points where either y(n) or y(n)

are constant in n(0). We now have

S1

n
= c+

nh

n

( sh
nh
− c
)
,

S2

n
= c− nh

n

(
c− sh

nh

)
,

so this TPDA is a subset of [c, c]. The anteater shape
is, for n > nh, even more strict than the pdc-IBBM,
as, e.g., y(0)(n(0)) = c− nh

n(0)

(
sh

nh − c
)
< S1

n .

The situation for n < nh is illustrated in Figure 4,
where A, B, C, D, E1, F2 and slopes 1 and 2 are the
same as for n > nh, but

E2 = c+
n(0) + nh

n(0) + n
(c− c) = c+

nh − n
n(0) + n

(c− c) ,

F1 = c− n(0) + nh

n(0) + n
(c− c) = c− nh − n

n(0) + n
(c− c) .

Note that now S2 < S1, so the TPDA is [S2, S1]. In
this interval, P and P are now calculated with n(0); for
s 6∈ [S2, S1] the same situation as for n > nh applies,
with the bound nearer to s/n calculated with n(0) and
the other with n(0).

The upper transition point S1 can now be between
y(0)(n(0)) and y(0)(n(0)), and having S1 decreasing in
n now makes sense: the smaller n, the larger S1, i.e.
the more tolerant is the anteater set. The switch over
S1 (with s/n increasing) is illustrated in the three
graphs in Figures 3 (right) and 5 (left, right): First,
Π(0) from Figure 3 (left) is updated with s/n = 3/6 <
S1/n, leading again to an anteater shape, and so we
get P and P from the elements of Π(n) at n(n), as
marked with circles. Second, the transition point is
reached for s = S1 = 4.27, and now P is attained
for any n(n) ∈ [n(n), n(n)], as emphasized by the ar-
row. Third, as soon as s exceeds S1 (in the graph:
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Figure 4: P and P for the anteater shape if n < nh.
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Figure 5: Posterior parameter sets Π(n) for anteater
prior sets Π(0). Left: the transition point where y(n)

is attained for all n(n), right: the banana shape.

s/n = 6/6), it holds that y(n)(n(n)) > y(n)(n(n)), and
P is now attained at n(n). As for the pdc-IBBM, for s
outside the TPDA Π(n) goes bananas, leading to ad-
ditional imprecision. The imprecision ∆ = P − P if
n < nh is

∆ =
n(0)+ nh

n(0)+ n
(c− c) +

n(0) − n(0)

(n(0)+ n)(n(0)+ n)
∆(s, n, c),

where ∆(s, n, c) = n
∣∣c∗ − s

n

∣∣ − nh
∣∣c∗ − sh

nh

∣∣ and
c∗ = arg maxc∈[c,c] | sn − c| is the boundary of [c, c]
with the largest distance to s/n. For s ∈ [S2, S1],
∆(s, n, c) = 0, giving a similar structure as for the
pdc-IBBM except that ∆(s, n, c) does not directly
give the distance of s/n to Π(0) but is based on [c, c].
The imprecision increases again linearly with s, but
now also with n. The distance of s/n to the oppo-
site bound of [c, c] (weighted with n) is discounted by
the distance of sh/nh to the same bound (weighted
with nh). In essence, ∆(s, n, c) is thus a reweighted
distance of s/n to sh/nh. The more dissimilar these
fractions are, the larger the posterior predictive im-
precision is.

For n = nh, S1 = S2 = sh so the TPDA is reduced
to a single point. In this case, the anteater shape

n > nh
s < S1 s ∈ [S1, S2] s > S2

banana spotlight banana

n = nh
s < sh s = sh s > sh

banana rectangular banana

n < nh
s < S2 s ∈ [S2, S1] s > S1

banana anteater banana

Table 1: Shapes of Π(n) if Π(0) has the anteater shape.

can be considered as an equilibrium point, with any
s 6= sh leading to increased posterior imprecision. In
this case, the weights in ∆(s, n, c) coincide, and so the
posterior imprecision depends directly on |s− sh|.
For n > nh the transition behaviour is as for the pdc-
IBBM: As long as s ∈ [S1, S2], Π(n) has the spotlight
shape, where both P and P are calculated with n(n);
∆ for s ∈ [S1, S2] is thus calculated with n(n) as well.
If, e.g., s > S2, P is attained with n(n), and ∆(s, n, c)
gives directly the distance of s/n to sh/nh, the part
of which is inside [c, c] is weighted with n, and the
remainder with nh. Table 1 provides an overview of
the possible shapes of Π(n).

2.4 Intermediate Résumé

Despite the (partly) different behaviour inside the
TPDA, both pdc-IBBM and the anteater shape dis-
play only two different slopes in their PPPs (Fig-
ures 2 and 4), with either n(n) or n(n) used to
calculate P and P. It is possible to have shapes
such that for some s other values from [n(n), n(n)]
are used. As a toy example, consider Π(0) =
{(1, 0.4), (3, 0.6), (5, 0.4)}, so consisting only of three
parameter combinations (n(0), y(0)). P is then derived
as y(n) = max{ 0.4+s

1+n ,
1.8+s
3+n ,

2+s
5+n}, leading to

y(n) =





0.4+s
1+n if s > 0.7n+ 0.3

1.8+s
3+n if 0.1n− 1.5 < s < 0.7n+ 0.3
2+s
5+n if s < 0.1n− 1.5

.

So, in a PPP we would observe the three different
slopes 1/(1 + n), 1/(3 + n) and 1/(5 + n) depending
on the value of s. Our conjecture is therefore that
with carefully tailored sets Π(0), an arbitrary num-
ber of slopes is possible, and so even smooth curva-
tures. Using a thought experiment as for the anteater
shape, Π(0) shapes can be derived to fit any required
behaviour. Another approach for constructing a Π(0)

that is more tolerant with respect to prior-data con-
flict could be as follows: As the onset of additional
imprecision in the pdc-IBBM is caused by the fact
that y(n)(n(n)) > y(n)(n(n)) as soon as s/n > y(0),
we could define the y(0) interval at n(0) to be nar-
rower than the y(0) interval at n(0), so that the ba-
nana shape results only when s/n exceeds y(0)(n(0))
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far enough. Having a narrower y(0) interval at n(0)

than at n(0) could also make sense from an elicitation
point of view: We might be able to give quite a precise
y(0) interval for a low prior strength n(0), whereas for
a high prior strength n(0) we must be more cautious
with our elicitation of y(0), i.e. giving a wider inter-
val. The rectangular shape for Π(0) as discussed in
Section 2.2 seems thus somewhat peculiar. One could
also argue that if one has substantial prior informa-
tion but acknowledges that this information may be
wrong, one should not reduce the weight of the prior
n(0) on the posterior while keeping the same informa-
tive interval of values of y(0).

Generally, the actual shape of a set Π(0) influences
the inferences, but for a specific inference only a few
aspects of the set are relevant. So, while a detailed
shape of a prior set may be very difficult to elicit, it
may not even be that relevant for a specific inference.
A further general issue seems unavoidable in the gen-
eralized Bayesian setting as developed here, namely
the dual role of n(0). On the one hand, n(0) governs
the weighting of prior information y(0) with respect to
the data s/n, as mentioned in Section 2.1: The larger
n(0), the more P and P are dominated by y(0) and
y(0). On the other hand, n(0) governs also the degree
of posterior imprecision: the larger n(0), the larger c.p.
∆. A larger n(0) thus leads to more imprecise poste-
rior inferences, although a high weight on the supplied
prior information should boost the trust in posterior
inferences if s in the TPDA, i.e. the prior information
turned out to be appropriate. In the next section,
we thus develop a different approach separating these
two roles: Now, two separate models for predictive
inference, each resulting in different precision as gov-
erned by n(0), are combined with an imprecise weight
α taking the role of regulating prior-data agreement.

3 Weighted Inference

We propose a variation of the Beta-Binomial model
that is attractive for prior-data conflict and has small
yet fascinating differences with the models in Sec-
tions 2.2 and 2.3. We present a basic version of the
model in Section 3.1, followed by an extended version
in Section 3.2. Opportunities to generalize the model
are mentioned in Section 3.3.

3.1 The Basic Model

The idea for the proposed model is to combine the
inferences based on two models, each part of an im-
precise Bayesian inferential framework using sets of
prior distributions, although the inferences can also
result from alternative inferential methods. The com-
bination is not achieved by combining the two sets of

prior distributions into a single set, but by combin-
ing the posterior predictive inferences by imprecise
weighted averaging. When the weights assigned to
the two models can vary over the whole range [0, 1] we
actually return to imprecise Bayesian inference with
a prior set, as considered in this subsection. In Sec-
tion 3.2 we restrict the values of the model weights.
The basic model turns out to be relevant from many
perspectives, in particular to highlight similarities and
differences with the methods presented in Sections 2.2
and 2.3, and it is a suitable starting point for more
general models. These aspects will be discussed in
Subsection 3.3.

We consider the combination of the imprecise poste-
rior predictive probabilities [Pi,P

i
] and [Pu,P

u
] for

the event that the next observation is a success with

Pi =
si + s

ni + n+ 1
and P

i
=

si + s+ 1
ni + n+ 1

, (5)

Pu =
s

n+ 1
and P

u
=
s+ 1
n+ 1

. (6)

The superscript i indicates ‘informative’, in the sense
that these lower and upper probabilities relate to an
‘informative’ prior distribution reflecting prior beliefs
of similar value as si successes in ni observations. The
superscript u indicates ‘uninformative’, which can be
interpreted as absence of prior beliefs. These lower
and upper probabilities can for example result from
Walley’s IBBM, with Pi and P

i
based on the prior set

with n(0) = ni + 1 and y(0) ∈
[

si

ni+1 ,
si+1
ni+1

]
, and Pu

and P
u

on the prior set with n(0) = 1 and y(0) ∈ [0, 1].
There are other methods for imprecise statistical in-
ference that lead to these same lower and upper proba-
bilities, including Nonparametric Predictive Inference
for Bernoulli quantities [4]8, where the si and ni would
only be included if they were actual observations, for
example resulting from a second data set that one
may wish to include in the ‘informative’ model but
not in the ‘uninformative’ model.

The proposed method combines these lower and upper
predictive probabilities by imprecise weighted averag-
ing. Let α ∈ [0, 1], we define

Pα= αPi + (1− α)Pu, Pα= αP
i
+ (1− α)P

u
, (7)

and as lower and upper predictive probabilities for
the event that the next Bernoulli random quantity is
a success9

P = min
α∈[0,1]

Pα and P = max
α∈[0,1]

Pα .

8See also www.npi-statistics.com.
9While in (2) and (3), prior and sample information are im-

precisely weighted, here informative and uninformative models
are combined.
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Allowing α to take on any value in [0, 1] reduces this
method to the IBBM with a single prior set, as dis-
cussed in Section 2, with the prior set simply gener-
ated by the union of the two prior sets for the ‘infor-
mative’ and the ‘uninformative’ models as described
above. For all s these minimum and maximum values
are obtained at either α = 0 or α = 1. With switch
points S1 = (n + 1) s

i

ni − 1 and S2 = (n + 1) s
i

ni , they
are equal to

P =

{
Pu = s

n+1 if s ≤ S2

Pi = si+s
ni+n+1 if s ≥ S2 ,

P =

{
P
i

= si+s+1
ni+n+1 if s ≤ S1

P
u

= s+1
n+1 if s ≥ S1 .

.

The PPP graph for this model is displayed in Figure 6.
The upper probability for s = S1 and the lower prob-
ability for s = S2 are both equal to si

ni . The TPDA
contains only a single possible value of s (except if S1

and S2 are integer), namely the one that is nearest to
si

ni . The specific values for this basic case are

A = 0 B =
si + 1

ni + n+ 1
C =

si + n

ni + n+ 1

D = 1 E =
si

ni
− 1
n+ 1

F =
si

ni
+

1
n+ 1

sl. 1 =
1

ni + n+ 1
sl. 2 =

1
n+ 1

.

If s is in the TPDA it reflects optimal agreement of
the ‘prior data’ (ni, si) and the (really observed) data
(n, s), so it may be a surprise that both the lower and
upper probabilities in this case correspond to α = 0,
so they are fully determined by the ‘uninformative’
part of the model. This is an important aspect, it
will be discussed in more detail and compared to the
methods of Section 2 in Subsection 3.3. For s in the
TPDA both P and P increase with slope 1

n+1 and
∆ = 1

n+1 .

Figure 6, with the specific values for this basic case
given above, illustrates what happens for values of s
outside this TPDA. Moving away from the TPDA in
either direction, the imprecision increases as was also
the case in the models in Section 2. For s decreas-
ing towards 0, this is effectively due to the smaller
slope of the upper probability, while for s increas-
ing towards 1 it is due to the smaller slope of the
lower probability. For s ∈ [0, S1], the imprecision is
∆ = si+1

ni+n+1 − sni

(ni+n+1)(n+1) . For s ∈ [S2, n] the im-

precision is ∆ = 1
n+1 − si

ni+n+1 + sni

(ni+n+1)(n+1) . For
the two extreme possible cases of prior data conflict,
with either si = ni and s = 0 or si = 0 and s = n, the
imprecision is ∆ = ni+1

ni+n+1 . For this combined model
with α ∈ [0, 1], we have P ≤ s

n ≤ P for all s, which is
attractive from the perspective of objective inference.

1

0
0 s n

A

B

S1 S2

E

F C

D

si

ni

sl. 1

sl.
2

sl.
2

sl.
2

sl.
2

sl. 1

Figure 6: P and P for the weighted inference model.

3.2 The Extended Model

We extend the basic model from Subsection 3.1, per-
haps remarkably by reducing the interval for the
weighting variable α. We assume that α ∈ [αl, αr]
with 0 ≤ αl ≤ αr ≤ 1. We consider this an extended
version of the basic model as there are two more pa-
rameters that provide increased modelling flexibility.
It is important to remark that, with such a restricted
interval for the values of α, this weighted model is
no longer identical to an IBBM with a single set of
prior distributions. One motivation for this extended
model is that the basic model seemed very cautious
by not using the informative prior part if s is in the
TPDA. For αl > 0, the informative part of the model
influences the inferences for all values of s, includ-
ing the one in the TPDA. As a consequence of taking
αl > 0, however, the line segment (s, sn ) with s ∈ [0, n]
will not always be in between the lower and upper
probabilities anymore, specifically not at, and close
to, s = 0 and s = n, as follows from the results pre-
sented below.

The lower and upper probabilities resulting from the
two models that are combined by taking an impre-
cise weighted average are again as given by formulae
(5)-(6), with the weighted averages Pα and Pα, for
any α ∈ [αl, αr], again given by (7). This leads to
the lower and upper probabilities for the combined
inference

P = min
α∈[αl,αr]

Pα and P = max
α∈[αl,αr]

Pα .

The lower and upper probabilities have, as func-
tion of s, the generic forms presented in Figure 6,
with [S1, S2] =

[
(n+ 1) s

i

ni − 1, (n+ 1) s
i

ni

]
as in Sec-

tion 3.1. The specific values for Figure 6 are

A = αls
i

ni+n+1 B = 1
n+1 + αr[si(n+1)−ni]

(ni+n+1)(n+1)

D = 1− αl(n
i−si)

ni+n+1 C = n
n+1 −

αr[(ni−si)(n+1)−ni]
(ni+n+1)(n+1)
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sl. 1 = ni+n+1−αrni

(ni+n+1)(n+1) E = si

ni − 1
n+1

[
1− αln

i

ni+n+1

]

sl. 2 = ni+n+1−αlni

(ni+n+1)(n+1) F = si

ni + 1
n+1

[
1− αln

i

ni+n+1

]
.

The increase in imprecision when s moves away from
the TPDA can again be considered as caused by the
informative part of the model, which is logical as the
uninformative part of the model cannot exhibit prior-
data conflict.

The possibility to choose values for αl and αr provides
substantially more modelling flexibility compared to
the basic model presented in Section 3.1. One may,
for example, wish to enable inferences solely based
on the informative part of the model, hence choose
αr = 1, but ensure that this part has influence on
the inferences in all situations, with equal influence to
the uninformative part in case of TPDA. This latter
aspect can be realized by choosing αl = 0.5. When
compared to the situation in Section 3.1, this choice
moves, in Figure 6, A and D away from 0 and 1,
respectively, but does not affect B and C. It also
brings E and F a bit closer to the corresponding upper
and lower probabilities, respectively, hence reducing
imprecision in the TPDA.

3.3 Weighted Inference Model Properties

The basic model presented in Section 3.1 is fits in
the Bayesian framework, but its use of prior informa-
tion is different to the usual way in Bayesian statis-
tics. The lower and upper probabilities are mainly
driven by the uninformative part, which e.g. implies
that P ≤ s

n ≤ P for all values of s. While in (im-
precise, generalized) Bayesian statistics any part of
the model that uses an informative prior can be re-
garded as adding information to the data, the infor-
mative part of the basic model leads to more careful
inferences when there is prior-data conflict. Figure 6
shows that, for the basic case of Section 3.1, the points
A and D are based only on the uninformative part of
the model, but the points B and C are based on the
informative part of the model.

Prior-data conflict can be of different strength, one
would expect to only talk about ‘conflict’ if consider-
ation is required, hence the information in the prior
and in the data should be sufficiently strong. The pro-
posed method in Section 3.1 takes as starting point
inference that is fully based on the data, it uses the
informative prior part of the model to widen the in-
terval of lower and upper probabilities in the direction
of the value si

ni . For example, if one observed s = 0,
the upper probability of a success at the next obser-
vation is equal to si+1

ni+n+1 , which reflects inclusion of
the information in the prior set for the informative
part of the model that is most supportive for this

event, equivalent to si + 1 successes in ni + 1 obser-
vations. As such, the effect of the prior information
is to weaken the inferences by increasing imprecision
in case of prior-data conflict.

One possible way in which to view this weighted in-
ference model is as resulting from a multiple expert or
information source problem, where one wishes to com-
bine the inferences resulting individually from each
source. The basic model of Section 3.1 leads to the
most conservative inference such that no individual
model or expert disagrees, while the restriction on
weights provides a guaranteed minimum level for the
individual contributions to the combined inference.

It should be emphasized that the weighted inference
model has wide applicability. The key idea is to com-
bine, by imprecise weighting, the actual inferences re-
sulting from multiple models, and as such there is
much scope for the use and further development of
this approach. The individual models could even be
models such as those described in Sections 2.2 and
2.3, although that would lead to more complications.
If the individual models are coherent lower and up-
per probabilities, i.e. provide separately coherent in-
ferences, then the combined inference via weighted
averaging and taking the lower and upper envelopes
is also separately coherent10.

In applications, it is often important to determine a
sample size (or more general design issues) before data
are collected. If one uses a model that can react to
prior-data conflict, this is likely to lead to a larger data
requirement. One very cautious approach is to choose
n such that the maximum possible resulting impreci-
sion does not exceed a chosen threshold. In the mod-
els presented in this paper, this maximum imprecision
will always occur for either s = 0 or s = n, whichever
is further away from the TPDA. In such cases, a pre-
liminary study has shown an attractive feature if one
can actually sample sequentially. If some data are
obtained with success proportion close to si/ni, the
total data requirement (including these first observa-
tions) to ensure that the resulting maximum impre-
cision cannot exceed the same threshold level is sub-
stantially less than had been the case before any data
were available. This would be in line with intuition,
and further research into this and related aspects is
ongoing, including of course the further data need in
case first sampled data is in conflict with (ni, si), and
the behaviour of the models of Section 2 in such cases.

The weighted inference method combines the infer-
ences based on two models, and can be generalized to
allow more than two models and different inferential
methods. It is also possible to allow more impreci-

10This follows from e.g. [18, 2.6.3f]
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sion in each of the models that are combined, leading
to more parameters in the overall model that can be
used to control the behaviour of the inferences. Sim-
ilar post-inference combination via weighted averag-
ing, but with precise weights, has been presented in
the frequentist statistics literature [11, 13], where the
weights are actually determined based on the data and
a chosen optimality criterion for the combined infer-
ence. In Bayesian statistics, estimation or prediction
inferences based on different models can be similarly
combined using Bayes factors [12], which are based on
both the data (via the likelihood function) and prior
weightings for the different models. In our approach,
we do not use the data or prior beliefs about the mod-
els to derive precise weights for the models, instead we
cautiously base our combined lower and upper pre-
dictive probabilities on those of the individual models
with a range of possible weights. This range is set by
the analyst and does not explicitly take the data or
prior beliefs into account, but it provides flexibility
with regard to the relative importance given to the
individual models.

4 Insights and Challenges

We have discussed two different classes of inferential
methods to handle prior-data conflict in the Bernoulli
case. These can be generalized to the multinomial
case corresponding to the IDM. It also seems possi-
ble to extend the approaches to continuous sampling
models like the normal or the gamma distribution, by
utilizing the fact that the basic form of the updating
of n(0) and y(0) in (1) underlying (2) and (3) is valid
for arbitrary canonical exponential families [15, 21].
Further insight into the weighting method may also
be provided by comparing it to Generalized Bayesian
analysis based on sets of conjugate priors consisting of
nontrivial mixtures of two Beta distributions. There,
however, the posterior mixture parameter depends on
the other parameters. For a deeper understanding of
prior-data conflict it may also be helpful to extend our
methods to coarse data, in an analogous way to [17]
and [16], and to look at other model classes of prior
distributions, most notably at contamination neigh-
bourhoods. Of particular interest here may be to
combine both types of prior models, considering con-
tamination neighbourhoods of our exponential family
based-models with sets of parameters, as developed in
the Neyman-Pearson setting by [1, Section 5].

The models presented here address prior-data conflict
in different ways, either by fully utilizing the prior in-
formation in a way that is close to the traditional
Bayesian method, where this information is added to
data information, or by not including them initially
as in Section 3. All these models show the desired in-

crease of imprecision in case of prior-data conflict. It
may be of interest to derive methods that explicitly
respond to (perhaps surprisingly) strong prior-data
agreement. One possibility to achieve this with the
methods presented here is to consider the TPDA as
this situation of strong agreement in which one wants
imprecision reduced further than compared to an ‘ex-
pected’ situation, and to choose the prior set (Sec-
tion 2) or the two inferential models (Section 3) in
such a way to create this effect. This raises inter-
esting questions for elicitation, but both approaches
provide opportunities for this and we consider it as an
important topic for further study.

Far beyond further extensions one has, from the foun-
dational point of view, to be aware that there are
many ways in which people might react to prior-
data conflict, and we may perhaps at best hope to
catch some of these in a specific model and inferential
method. This is especially important when the con-
flict is very strong, and indeed has to be considered as
full contradiction of modeling assumptions and data,
which may lead to a revision of the whole system of
background knowledge in the light of surprising obser-
vations, as Hampel argues.11 In this context applying
the weighting approach to the NPI-based model for
categorical data [6] may provide some interesting op-
portunities, as it explicitly allows to consider not yet
observed and even undefined categories [5].

There is another intriguing way in which one may re-
act to prior-data conflict, namely by considering the
combined information to be of less value than either
the real data themselves or than both information
sources. Strong prior beliefs about a high success
rate could be strongly contradicted by data, as such
leading to severe doubt about what is actually go-
ing on. The increase of imprecision in case of prior-
data conflict in the methods presented in this paper
might be interpreted as reflecting this, but there may
be other opportunities to model such an effect. It
may be possible to link these methods to some pop-
ular approaches in frequentist statistics, where some
robustness can be achieved or where variability of in-
ferences can be studied by round robin deletion of
some of the real observations.This idea may open up
interesting research challenges for imprecise probabil-
ity models, where the extent of data reduction could
perhaps be related to the level of prior-data conflict.
Of course, such approaches would only be of use in
situations with substantial amounts of real data, but
as mentioned before these are typically the situations
where prior-data conflict is most likely to be of suf-
ficient relevance to take its modelling seriously. As

11See in particular the discussion of the structure and role of
background knowledge in [10].
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(imprecise, generalized) Bayesian methods all work
essentially by adding information to the real data, it
is unlikely that such new methods can be developed
within the Bayesian framework, although there may
be opportunities if one restricts the inferences to situ-
ations where one has at least a pre-determined num-
ber of observations to ensure that posterior inferences
are proper. For example, one could consider allowing
the prior strength parameter n(0) in the IBBM to take
on negative values, opening up a rich field for research
and discussions.
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Abstract
Predictions made by imprecise-probability models are often
indeterminate (that is, set-valued). Measuring the quality
of an indeterminate prediction by a single number is im-
portant to fairly compare different models, but a principled
approach to this problem is currently missing. In this paper
we derive a measure to evaluate the predictions of credal
classifiers from a set of assumptions. The measure turns
out to be made of an objective component, and another that
is related to the decision-maker’s degree of risk-aversion.
We discuss when the measure can be rendered independent
of such a degree, and provide insights as to how the com-
parison of classifiers based on the new measure changes
with the number of predictions to be made. Finally, we
empirically study the behavior of the proposed measure.

Keywords. Credal classification, indeterminacy, empirical
evaluations, discounted accuracy, utility, risk-aversion.

1 Introduction

When we use an imprecise-probability model to make pre-
dictions, we meet one of the most striking differences of
imprecise probability in comparison to precise probability:
the imprecise-probability model can issue indeterminate
predictions. That is, among the set of possible options, the
model may drop some of them as sub-optimal, while keep-
ing the entire remaining set as its prediction. The prediction
is generally indeterminate as such a set is not necessarily
a singleton. Indeterminate predictions are a crucially im-
portant feature of imprecise-probability models: they allow
credible, and reliable, predictions to be obtained no matter
how scarce is the information available to build a model.

Yet, we should have a way to measure how good is an in-
determinate prediction. A major reason is that we need to
compare imprecise- with precise-probability models: we
should have a clear, simple, and possibly shared, way to
say which one is better, in a given application. The same
consideration applies, of course, when we compare two
imprecise-probability models. Ideally, we would like to be

able to reward each, determinate or indeterminate, predic-
tion by a single number. Most probably this would speed
up progress in the field, as it would enable comparisons to
be automatized over a large number of test applications.

In the case of precise-probability models, there are well-
consolidated measures to do this. Let us consider the field
of pattern classification [4], which is the focus of this pa-
per (Section 2 gives a brief introduction to classification
problems). In this case, the predictive models are called
(precise) classifiers. A classifier predicts one out of a finite
set C of so-called classes. In this case, correct predictions
may be rewarded with 1 and incorrect ones with 0, thus
giving rise to the measure of performance called the predic-
tive accuracy of a classifier: i.e., the proportion of correct
predictions it makes.

The situation is very different with credal classifiers, that
is, classifiers that issue set-valued predictions. One of the
very few proposals to evaluate an indeterminate prediction
by a single number can be found in [2]: a prediction made
of a set K of k classes is rewarded with 1/k if it contains
the actual class, and with 0 otherwise. This gives rise to
the measure called discounted accuracy, which was bor-
rowed from the field of multi-label classification [11]. The
problem here is that no justification is given for discounted
accuracy, as the work in [2] points out. In [7], classifiers
which return indeterminate classifications are evaluated
through the F-metric, originally designed for information
retrieval problems; but also here the measure is not justi-
fied. Other than these, the proposals are either explicitly
non-numerical, as the rank test in [2], or require a vector
of parameters to evaluate the performance, as in [1]. The
latter approach is actually meaningful, but was conceived
to compare credal with precise classifiers, and cannot be
easily generalized to the more general case; moreover, it is
a method that needs supervision so that it does not easily
lend itself to be run automatically on many test cases.

In our view, the scarcity of principled numerical evaluation
methods for credal classifiers is not accidental: in fact, it
is not easy to assign a single number to an indeterminate
prediction. Consider the following case: there is a vacuous
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classifier, which every time predicts the set of all classes C ,
and a random one, which picks up a class from C through
the uniform distribution. If C is made of two classes (we
say that the classification problem is binary), and we use the
predictive accuracy, the random classifier has an expected
reward equal to 1/2. What should be the expected reward
of the vacuous classifier? Both classifiers do not know how
to predict the class, but only the vacuous classifier declares
it. From this, one might argue that the latter should be
rewarded with more than 1/2. On the other hand, it is clear
also that the vacuous classifier cannot predict the class
better than the random one, so that one might argue that it
should be rewarded with 1/2 too.

In the attempt to address these kinds of problems in the
most objective way, we found it useful to regard classifiers
as bettors. In the betting framework introduced in Section 3,
we assume we only know how to value determinate pre-
dictions, in particular by 0-1 rewards. In Section 4, we
extend the framework, in a kind of least-committal way, to
credal classifiers: we show that, under certain assumptions,
indeterminate predictions should be valued according to
discounted accuracy.

Note that, in the previous example, discounted accuracy
would value the vacuous and the random classifiers the
same. This kind of (questionable) effect can be traced
back to having deliberately avoided introducing subjective
considerations in the evaluation. Still, subjective prefer-
ences should be accounted for: we introduce in Section 5 a
decision-maker in charge of selecting the ‘best’ classifier
in the next bet, and show that preferences can enter the pic-
ture through his utility, as a function of discounted accuracy.
This defines the utility-based accuracy measure we propose
to evaluate credal classifiers. More generally, this shows
in a very definite sense how the reliability of a classifier is
tightly related to the variability of its predictions, and that
the aversion to this variability is what makes some people
prefer credal classifier to precise ones.

In Section 6 we discuss an important case where the eval-
uation can still be made in quite an objective way despite
the decision-maker’s preferences, and we relate this to the
amount of indeterminacy produced by a credal classifier.

In Section 7 we analyze how the picture changes if we focus
on evaluating classifiers in the next m≥ 1 bets. We show
that the difference between precise and credal classifiers
decreases with growing m, so that the relative benefits of
credal classification are less important with large m.

Finally, in Sections 8 and 9 we make some empirical analy-
sis of our utility-based measure. We compare naive Bayes
[3] and naive credal classifier [1] on binary problems. We
show that the decision-maker’s utility can be defined very
easily in this case, and that the credal classifier becomes
superior to the precise one even with relatively small pref-
erences of the decision-maker towards reliable predictions.

2 Classification Problems

A classification problem is made of objects described by
attribute (or feature) variables, which we group into the
single variable A, and a class variable C. The class variable
represents the object’s category. There are finitely many
possible categories, which we identify with their indexes
to simplify notation: {1, . . . ,n}=: C . We denote by c the
generic element of C . The attribute variable represents
some characteristics of the object that are related to the
class. Variable A takes values in the set A ; we denote by
a its generic element. As an example, objects might be pa-
tients; A would represent information about a patient, such
as personal information as well as outcomes of medical
tests; C would index the patient’s possible diseases.

Usually, some values of (A,C) are sampled in an indepen-
dent and identically distributed way according to a law that
is not known a priori. The so-called learning set L records
those values, which are also called instances of (A,C). The
goal of classification is to learn from the learning set a func-
tion that maps attributes into classes. We call this function
a (precise) classifier.

A classifier is applied to predict the class of new objects
based on their attributes. Predictions are rewarded through
a reward matrix R. This is an n×n matrix whose generic
element ri j is a number representing the reward obtained
by predicting class i when the actual class is j. Equiva-
lently, we can regard the reward matrix as a set of gambles
(i.e., bounded random variables) Ri, i = 1, . . . ,n, each one
corresponding to a row of R: gamble Ri represents the un-
certain reward obtained by predicting class i and is defined
by Ri( j) := ri j, with j ∈ C . The reward matrix is an input
of the classification problem, in the sense that it is given.

In classification, at least with respect to the machine learn-
ing practice, rewards are usually measured in a linear utility
scale: although this point is often left implicit, we can
deduce it from the observation that the performance of a
classifier is usually identified with its expected reward.

The most frequent practice consists also in using just a
0-1 valued reward matrix, which we denote by I. In this
case, the gamble corresponding to the i-th row of the ma-
trix coincides with the indicator function of set {i}, which
yields Ii(i) = 1, and Ii( j) = 0 for i 6= j. Accordingly, the
performance of a classifier corresponds to the probability of
predicting the actual class. Such a probability is called the
predictive accuracy (or simply the accuracy) of a classifier.

The term ‘accuracy’ is used also for the sample estimate of
such a probability. In fact, a classification problem usually
comes with a test set T . This set contains a number of
sampled instances of (A,C) that are used to evaluate the
classifier’s predictive performance by measuring its accu-
racy on them. And in fact the predictive accuracy is by far
the most frequently used empirical index to compare classi-
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fiers, even though a careful elicitation of rewards would ar-
guably lead in many cases to a reward matrix more general
than I. Such a widespread use has probably been favored
by the simple interpretation of predictive accuracy; a more
substantial reason could be that the predictive accuracy is
particularly convenient to make extensive comparisons of
classifiers over many data sets, which is a key component
of the machine learning practice. Accordingly, in this paper
we focus on the 0-1 valued reward matrix I.

So far we have introduced the traditional view of classifica-
tion, where the predictions issued by (precise) classifiers
are made of single classes. This view has been general-
ized through the introduction of credal classifiers [13, 14].
A credal classifier is also a function learned from set L ,
but it maps the attributes of an instance into a set K ⊆ C
of k := |K | classes in general. We call this a set-valued
classification. We also say that the classification is deter-
minate when k = 1, and indeterminate otherwise. When a
classification is fully indeterminate, that is, when K = C ,
we call it vacuous. Similarly, the vacuous classifier is the
one that always issues vacuous predictions. To each credal
classifier it is possible to associate a determinate classifier
that outputs predictions by choosing every time a class uni-
formly at random1 from the output set K of the credal
classifier. We call this the K -random classifier; when the
related credal classifier is the vacuous one, we just call it
the random classifier.

Evaluating a credal classifier can be regarded as the prob-
lem of defining an ‘extended’ reward matrix, which asso-
ciates a reward gamble to each non-empty subset of classes.

3 Introducing the Betting Framework

In order to make the comparison of credal classifiers as
objective as possible, we introduce the idea of a betting
framework. We define the framework for a traditional prob-
lem of classification, where classifiers issue determinate
predictions. In Section 4 we will extend the framework to
credal classification.

In the framework under consideration, we have two classi-
fiers, which we would like to compare, that have already
been inferred from data (so that there is no further learning,
only an evaluation stage). These classifiers are regarded
as bettors. Bets correspond to instances of the problem of
classification: a bet is set up by sampling an instance of
the problem. Classifiers are required to bet by predicting
the actual class of the instance, and are rewarded accord-
ing to matrix I. The process is repeated for ever, and the
performance of classifiers is taken to be their predictive
accuracy.

Let us make the betting framework more precise by describ-

1Throughout the paper we use the word ‘random’ to mean uniformly
random.

ing the two types of actors that play a role there:

Bettors: each of the two classifier we aim at comparing is
regarded as a bettor.

House: rewards are delivered to bettors by an artificial en-
tity that we call House. House only accepts determinate
bets, which are rewarded according to matrix I.

These actors are characterized by clarifying their relation-
ship with the rewards, that is, with the utility scale involved.
To start with, based on the discussion made in Section 2,
we can readily state our first assumption concerning the
betting framework:

(A1) Utility of bettors is linear in the rewards.

This assumption simply states explicitly what is current
practice in classification.

The second assumption concerns House. We want to model
House as an agent whose only aim is to reward correct
predictions. In other words, House should not introduce
any subjective bias in the process of rewarding bettors
because of a risk-averse or risk-seeking attitude; it should
just be risk-neutral:

(A2) Utility of House is linear in the rewards.

4 Betting with Credal Classifiers

Now we would like to extend the betting framework to
credal classifiers. The crucial point here is that House only
accepts determinate bets, while a credal classifier outputs
set-valued classifications in general. Therefore, if we want
to allow a credal classifier to play, we should find a way to
extend the reward matrix to set-valued classifications in a
way that both House and bettor find acceptable.

The first step in this direction is to recognize that any ne-
gotiation between the credal classifier and House can be
made only on the basis of determinate bets, which is the
only language that House understands. In order to enable
the credal classifier to play as a determinate bettor, we state
the following assumption:

(A3) The credal bettor accepts betting on any single class
from its set-valued prediction, if forced to make a
determinate bet, and on no class outside that set.

This assumption is satisfied whenever the classes in the
output set of the credal classifier are incomparable, and the
other ones represent dominated options. This is the case
when credal classifiers are obtained using sets of probabili-
ties and decision criteria like maximality or e-admissibility
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(see, e.g., [12, Section 3.9]). We state the assumption ex-
plicitly in order to allow the framework to be used also by
credal classifiers created in a different way.

The next assumption formalizes the idea that the framework
is run for ever:

(A4) Every possible bet is repeated infinitely many times
in the betting framework by sampling the problem
instances.

This assumption, together with the previous one, enable
the credal classifier to actually adopt a randomized strat-
egy over the k classes in its output set K . A randomized
strategy is a mass function σ = (σi)i∈K that represents the
(determinate) betting behavior of the credal classifier in the
limit.

At this point House knows that the credal classifier has the
freedom to implement any randomized betting strategy: this
means that the credal classifier can actually force House to
undergo any expected loss that can follow from the choice
of the strategy.

Let us call a prediction K ‘successful’ if the actual class
belongs to K . We restrict the attention to successful pre-
dictions as they determine House’s expected loss: in fact,
an unsuccessful prediction always yields a zero loss, by def-
inition of I, irrespective of the randomized strategy adopted.
Let θ = (θ j) j∈C be the vector of chances, that is, the pop-
ulation proportions, for the classes conditional on the pre-
diction being successful (this means that θ j = 0 if j /∈K ).
House’s expected loss conditional on a successful predic-
tions equals

∑
i∈K

∑
j∈C

Ii( j)σiθ j = ∑
i∈K

σiθi,

where we are assuming that the strategy is chosen indepen-
dently of the chances.

The loss depends on σ , which is chosen by bettor, and on θ .
The latter models the specific problem under consideration.
But House knows that the betting system will be applied,
in principle, to every possible problem. House should then
be enabled to consider every possible scenario:

(A5) In the determination of the expected loss, House has
the freedom to choose any value for θ .

At this point we are ready to derive the extended reward
matrix (as described at the end of Section 2):
Theorem 1. Let K ⊆ C be a set-valued prediction made
of k classes, IK be the indicator function of set K , and j
the actual class. The corresponding value in the extended
reward matrix that is uniquely consistent with (A1)–(A5) is
the discounted accuracy:

IK ( j)
k

. (1)

Proof. If K is unsuccessful, then any randomized strategy will
yield a zero loss. Let us focus on successful predictions. Let ∆ be
the n−1 probability simplex. We formulate the problem in a game-
theoretic setting. The two players are just bettor and House. Bettor
can choose σ ∈ ∆, while House can choose θ ∈ ∆. What we get
is a zero-sum game with a gain for bettor defined by ∑i∈K σiθi.
This is a continuous linear function in σ for all θ ∈ ∆, as well as
in θ for all σ ∈ ∆, and moreover ∆ is a compact convex set. The
minimax theorem (see, e.g., [10, Theorem 6.7.3]) allows us to
deduce that there is an optimal solution to the game with expected
reward equal to maxσ∈∆ minθ∈∆ ∑i∈K σiθi. It is easy to see that
that is equal to 1/k: once a strategy σ is fixed, the minimum is
achieved by setting θi∗ := 1 on any i∗ = argmini∈K σi; then the
problem becomes maxσ∈∆ mini∈K σi = 1/k. The related optimal
strategy σ∗ is uniform, σ∗i := 1/k for all i ∈K ; this means that
bettor and House agree that credal bettor should act like the K -
random classifier.

Now remember that, according to (A1)–(A2), both bettor and
House are risk-neutral. This means they agree that an unsuccessful
prediction is rewarded by the certain value 0 and a successful one
by the certain value 1/k. This is achieved by setting the reward
equal to the discounted accuracy. �

It is useful to comment on this result from a few different
viewpoints.

One thing is that the discounted accuracy implements a
kind of least-committal reward system for House, in the
sense that House gives bettor only what is certainly due
to it. In fact, if the credal bettor does implement strategy
σ∗, the expected reward that it achieves is indeed 1/k, irre-
spective of the chances. Therefore the established reward
is what House knows already that bettor can make for sure.
For the same reason, it would be implausible to expect that
credal bettor accepts any smaller reward. It is also interest-
ing to observe that playing as the K -random bettor (i.e.,
classifier) is the only way for credal bettor to have a sure
reward.

The next consideration is again based on the observation
that credal bettor is evaluated exactly as the K -random bet-
tor. This has important implications for the comparison of
classifiers through the discounted accuracy: the main point
is that the K -random bettor is actually taken as a baseline
to compare classifiers. Consider, for the sake of explanation,
a determinate classifier whose output class is always con-
tained in that of a certain credal classifier. The determinate
classifier will be evaluated better than the credal classifier
as soon as it exploits, to any (even a very tiny) degree, the
credal classifier’s set of output classes better than the K -
random one. Looking at this from another side, it means
that the credal classifier can be better than the determinate
one only if the latter behaves worse than the K -random
classifier! In practical applications, this will imply that a
credal classifier will almost never be superior to a deter-
minate classifier whose output is included in the credal’s
one. This discussion should make clear that the discounted
accuracy, although it is a reasonable criterion, is probably
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the most unfavorable way (among the reasonable ones) to
evaluate credal classifiers, as a credal classifier cannot do
better than isolating a set of classes that is impossible to
compare.

This points to an aspect of the evaluation that the discounted
accuracy certainly fails to capture. Let us focus on the sim-
plest possible setup, using the following example. You are
trying to evaluate two physicians based on some recorded
diagnostic performance of theirs. In your records, the first
physician always issues a vacuous diagnosis, that is, the
entire set C of possible diseases. The second always issues
a determinate diagnosis. But when you measure the second
physician’s predictive accuracy, you realize that his pre-
dictions are random. In this case, the discounted accuracy
values the two physicians the same: 1/n. But it is clear
that the first physician provides you with something more
than the second, because, in a sense, he delivers what he
promises. How to precisely value this ‘something more’
appears to be quite a subjective matter. In this sense, it
should not be too surprising that discounted accuracy does
not value it at all, as it has been created trying to keep sub-
jectivity out of consideration. And yet, subjectivity matters,
and should be taken into account. The next section shows
that this can be done in a very natural way.

5 Comparing Credal Classifiers

We have two classifiers f ,g. We focus on selecting the clas-
sifier whose expected performance in the next instance (i.e.,
next bet) is greater than the other’s. In the previous section
we have measured performance by discounted accuracy. In
this section, we want to make the method of comparison
more flexible by allowing subjectivity to enter the picture,
so as to be able to deal with the issues discussed at the
end of the previous section. To this end, we start identi-
fying classifiers with gambles: gambles f and g yield the
discounted-accuracy reward achieved by classifiers f and
g, respectively, in the next instance. There is uncertainty
about these gambles because we assume that the instance
has yet to be sampled.

The comparison of gambles f and g needs a (rational)
decision-maker, whom we call ‘you’. By definition of the
gambles, you will compare them based on discounted-
accuracy rewards. We model your attitude towards these
rewards through the following assumption:

(A6) Your utility function2 u(·) is concave in the
discounted-accuracy rewards,

which means that you are risk-averse, or at most neutral, in
these rewards.3

2We assume that the usual regularity conditions for utility hold, and
in particular that it is strictly increasing, and that it has first and second
derivatives (see, e.g., [9]).

3Note that House is not affected by your entering the picture, as it

This seems to be quite a reasonable assumption, at least
in the common setup where the original rewards (the ones
used to define the 0-1 reward matrix I) are measured in
a utility scale that is linear for you. In fact, imagine that
you are explicitly asked to extend the reward matrix to take
into account your attitude towards set-valued classifications.
Can we say something about the values you would use to
define such an extended matrix? On the one hand, we argue
that the rewards you would put there should be greater than
or equal to the discounted-accuracy rewards. This follows
from the discussion at the end of Section 4, which shows
that it would be unreasonable to use values smaller than
the discounted accuracy. On the other hand, values strictly
greater than that would be reasonable: these allow you to
express a preference in favor of a set-valued classification
in comparison to the related K -random prediction. These
considerations imply that your utility function is in general
non-linear in the discounted-accuracy (that is, discounted
accuracy can be regarded as defining a new utility scale out
of the original one). We take your utility in particular to be
concave to express a consistent preference for set-valued
classifications in comparison to the related K -random pre-
dictions (note that this includes the extreme case of a linear
utility function, in which the two options are equally val-
ued).

Going back to the comparison of classifiers, it follows
immediately from (A6) and decision-theoretic arguments
that you will choose the one with maximum expected utility:
h∗ := argmaxh∈{ f ,g}E[u(h)].

Re-consider the example of the vacuous and the random
classifier, discussed at the end of Section 4, as they are
emblematic of the differences that arise in the evaluation
of credal and precise classifiers when using utility.

Proposition 2. The random and the vacuous classifiers
have the same expected reward on the next instance, but the
expected utility of the vacuous is greater under any strictly
concave utility function.

Proof. Denote the random classifier by r, and the vacuous classi-
fier by v. As usual, we identify the classifiers with the correspond-
ing gambles, which represent uncertain discounted-accuracy re-
wards for the next bet. The vacuous classifier gets on any instance
the deterministic reward 1/n. Thus, under any utility function:

E[u(v)] = u
(

1
n

)
= u(E[v]) .

The random classifier r samples the predicted class from C ac-
cording to the uniform mass function σ∗, independently of the
actual class. Let us denote, as usual, by θ = (θ j) j∈C the vector
of chances for the actual classes. We obtain that

E[r] = ∑
i∈C

∑
j∈C

Ii( j)σ∗i θ j = ∑
i∈C

σ∗i θi = 1/n .

keeps on delivering discounted accuracy rewards as before. What changes
is the explicit introduction of a decision-maker and his perception of the
value of these rewards, as modeled by your risk-aversion.
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This shows that E[v] = E[r]. In addition, using Jensen’s inequality
leads to

E[u(r)]< u(E[r]) = u(1/n) = E[u(v)] ,

whenever u is a strictly concave function. �

To better analyze this point, it is useful to approximate the
expected utility by a second-order Taylor series. Let h be a
generic classifier (and hence, a gamble):

E[u(h)]' u(E[h])+

=0︷ ︸︸ ︷
u′(E[h])E(h−E[h])+

+
1
2

u′′(E[h])E
[
(E[h]−h)2

]
=

= u(E[h])+
1
2

u′′(E[h])Var[h] , (2)

where u′,u′′ are the first and second derivative of the utility
function, and Var[h] denotes the variance of h. Well-known
papers in finance [6, 8] have shown that this is a very accu-
rate approximation.

Remember that u′′(E[h])≤ 0 for every concave utility func-
tion (moreover, u′′(·) is related to the degree of risk aversion
of the utility assessor). Therefore what Equation (2) tells
us is that the expected utility increases by increasing the
expectation of rewards and decreasing their variance. It is
clear now why the vacuous classifier, with variance equal
to zero, is preferred to the random one. In other words, the
‘something more’ that the vacuous classifier is providing
is its inherent reliability in earning rewards, which, using
discounted accuracy, has a very clear numerical counterpart
in its variance. The value that you give to this is indeed per-
sonal, and is formalized through your utility function. In the
extreme case when you are risk-neutral in the discounted-
accuracy rewards, the value is zero, and in this case there
seems to be little room for credal classifiers in your inter-
ests. Bigger values express stronger preferences for reliable
predictions.

It is also interesting to briefly consider the case where
you are risk-averse in the original rewards defining I. This
would most probably be the case if those rewards repre-
sented amounts of money. In particular, if the discounted-
accuracy rewards were the actual money payed by a betting
system, then you would be ‘natively’ risk-averse in them;
as a natural byproduct, you would prefer the more reli-
able (i.e., less variable) credal classifier to its K -random
counterpart.

All the above considerations can be turned into a remark-
ably simple procedure to empirically compare credal classi-
fiers in practice. Remember that in a classification problem
we usually have a test set T , that is, a collection of in-
stances used to evaluate the performance of a classifier. We
need to estimate E[u(h)] for a certain classifier h. Let us
denote by U the set of values that gamble u(h) can take.
Set U has (2n− 1)× n elements at most, as the values

are in one-to-one correspondence with the elements of the
reward matrix extended through discounted accuracy. If
we estimate the chance of a value uh ∈ U by its sample
proportion #(uh)/|T | in the test set, we obtain:

E[u(h)]' ∑
uh∈U

uh
#(uh)
|T | =

1
|T | ∑

(a,c)∈T
u(h(a,c)).

This is equivalent to evaluating the performance of a credal
classifier using the (2n−1)×n reward matrix obtained by
applying function u(·) point-wise to the matrix extended
through discounted accuracy. In other words, what is done
in practice is to change the ‘discounting’ factor in the dis-
counted accuracy by means of the concave utility function.

A final consideration is that the comparison can be, per-
haps more conveniently, made also using u−1(E[u(h)]),
the so-called certainty equivalent. This brings the perfor-
mance index back to the range [0,1] so that it can still be
interpreted as a predictive accuracy, although one that is
distorted through the utility function.

6 The Case for an Objective Winner

Equation (2) is useful because it gives us a very accurate
approximation to the expected utility while releasing us
from having our considerations narrowed down by the spe-
cific form of the utility function considered. To this end, in
the following, we will repeatedly refer to (2) as if it were
our actual expected utility.

In particular, an interesting consideration suggested by
Equation (2) is that in one case the comparison of classi-
fiers can be done by minimizing subjective considerations:
when the two classifiers have equal expected reward. In this
case, the classifier with minimum variance wins under ev-
ery strictly concave utility function: that is, no matter how
tiny (but non-zero) is your degree of risk-aversion. This
can be implemented in practice by defining a range where
the difference of the expected rewards is deemed irrelevant,
and estimating their variances from the test set.

In the following, we investigate whether we can relate the
variance of a classifier with its determinacy, that is, with a
measure of the amount of imprecision in the output. Intu-
itively, we expect such a relationship to exist because both
measures are related to the reliability of a classifier, and
moreover, we expect that larger indeterminacy corresponds
to smaller variance.

The gamble h corresponding to a classifier’s performance
in the next bet can be decomposed in two other gambles hD
and hI such that h = hD + hI and hDhI = 0 (element-wise).
Intuitively, hD and hI represent the rewards for f when it
returns, respectively, a determinate and an indeterminate
classification. The following relationships follow from the
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decomposition under discounted accuracy:

E[h2] = E[h2
D]+ E[h2

I ],E[h2
D] = E[hD],E[hI ]≥ E[h2

I ],

where in the last expression we have the equality only if
E[hI ] = E[h2

I ] = 0, which implies that either h is a precise
classifier or that indeterminate predictions of h contain the
actual class with probability zero.

Let f and g denote two generic classifiers with the same
expected discounted accuracy: E[ f ] = E[g]. Using the iden-
tities above, one can show that the difference of variances
is thus

∆Var := Var[g]−Var[ f ] = E[gD]+E[g2
I ]−E[ fD]−E[ f 2

I ].
(3)

Let us start by considering the important case where we
compare a credal classifier with a precise one:
Proposition 3. Consider a credal classifier and a precise
classifier with the same expected reward. Then the credal
classifier is preferable to the precise classifier under any
strictly concave utility function.
Proof. Let us denote by f the credal classifier and by g the precise
one. We know by Equation (2) that we prefer the classifier with
smaller variance under any strictly concave utility function. Thus,
it suffices to show that ∆Var ≥ 0. Since E[ f 2

I ]≤ E[ fI ], it follows
from Equation (3) that ∆Var = E[gD]−E[ fD]−E[ f 2

I ] so that

∆Var ≥ E[gD]−E[ fD]−E[ fI ] = E[g]−E[ f ],

which equals zero, since f and g have equal expected reward.
Note the inequality is strict (i.e., there is strict preference) if the
credal classifier is not always determinate and its indeterminate
predictions are successful with positive probability. �

Now, let HD be the event that equals 1 when the generic
classifier h is determinate on the next instance, and 0 oth-
erwise. We define the determinacy of classifier h as the
probability that h is determinate: P(HD). This definition
allows us to settle the problem for the next case:
Proposition 4. Consider two credal classifiers that are
vacuous whenever they are indeterminate and that have
the same expected reward. Then the more indeterminate
classifier is preferable under any strictly concave utility
function.
Proof. Let us denote by f and g the two credal classifiers, as-
suming f to be more indeterminate than g: P(GD) > P(FD). It
suffices to show that ∆Var > 0. Any generic classifier h that is
vacuous whenever it is indeterminate is rewarded with 1/n for
any indeterminate prediction. Hence,

E[hI ] =
1−P(HD)

n
, E[h2

I ] =
E[hI ]

n
.

From these identities and Equation (3) we have that

∆Var = E[gD]+ E[gI ]/n−E[ fD]−E[ fI ]/n

=−E[gI ]+ E[gI ]/n + E[ fI ]−E[ fI ]/n

=
n−1

n
(−E[gI ]+ E[ fI ]) =

n−1
n2 (P(GD)−P(FD)) ,

which is strictly positive by the initial assumptions. �

This proposition is particularly useful as it allows us to
solve the problem in the case of binary classification prob-
lems, where any indeterminate prediction is necessarily
vacuous.

One might be tempted to think that the previous result ex-
tends to non-vacuous classifiers as well, that is, the more
determinate a classifier the higher its variance (and there-
fore the less preferable it is). Unfortunately, this is not the
case, as the following example shows.

Example 1. Consider a three-class classification problem. Let
Hk denote the event that equals 1 if the generic classifier h returns
a set of k classes that contains the actual one, and 0 otherwise.
Likewise, let Hc

k be the event that equals 1 if h outputs k incorrect
classes, and 0 otherwise. Note that ∑3

k=1 Hk +Hc
k = 1 and Hc

3 = 0.
We can define the relevant expectations in terms of Hk,Hc

k :

P(Dh) = P(H1)+ P(Hc
1), E[h] =

3

∑
k=1

1
k

P(Hk),

E[h2] =
3

∑
k=1

1
k2 P(Hk), 1 =

3

∑
k=1

P(Hk)+ P(Hc
k ) .

Assume that P(F1) = P(G1) + ε , P(Gc
1) = P(Fc

1 ) + 2ε , P(G2) =
P(F2) + 2ε , P(Fc

2 ) = P(Gc
2) + 3ε , and P(F3) = P(G3), for some

small ε > 0. Then we have from the identities above that E[ f ] =
E[g]. Similarly, we have that E[ f 2] = E[g2]+ ε

2 . Hence, ∆Var =
E[g2]−E[ f 2] < 0, and g is preferred over f even though g is
more determinate than f : P(D f ) = P(Dg)− ε .

Alternatively, we might measure the indeterminacy of a
classifier h by the expected number of classes it outputs:
∑n

k=1 k
[
P(Hk)+ P(Hc

k )
]
. Thus, in the example, we would have

n

∑
k=1

k [P(Fk)+ P(Fc
k )] =

n

∑
k=1

k [P(Gk)+ P(Gc
k)]+ 4ε,

and g is preferred over f even though the former has a smaller
expected number of output classes than the latter. �

7 Comparison Over the Next m Bets

So far, we have considered the expected reward and utilities
for the next single classification; this setting fits for instance
the case of a patient, who asks a doctor for a diagnosis and
who is concerned only about the utility generated by the
very next classification (his diagnosis). Conversely, an on-
line trader, who performs m trading operations every day,
might accept to lose some money in the very next transac-
tion, provided that the set of m transactions generated at the
end of day has high enough utility. In this case, expected
rewards and expected utilities should be computed over
the next m bets. In the following, we compare the random
classifier r and the vacuous classifier v on the next m bets;
we denote by vm and rm the rewards of the vacuous and the
random ones over the next m instances.
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Gamble vm has deterministic value m/n and thus:

E[u(vm)] = u
(m

n

)
.

To compute E[u(rm)], let us consider that classifier r yields
utility u(`) when it correctly predicts ` outcomes in the
next m bets; considering that classifier r issues a correct
classification with probability 1/n (see Proposition 2), the
probability of correctly predicting ` instances out of the
next m is the binomial:

Bin(`,m,
1
n

) =
(
`

m

)
1
n

`(
1− 1

n

)m−`
.

The expected utility produced by the random classifier over
the next m bets is thus:

E[u(rm)] =
m

∑̀
=1

u(`)Bin(`,m,
1
n

). (7)

It is not immediate to compare the expected utilities of the
random and vacuous classifiers using Equation (7); a clear
understanding can be obtained through the second-order
approximation given by Equation (2). In the following, we
analyze in this way the logarithmic and the exponential
utility. The second-order approximation of both the log-
arithmic and the exponential utility is very good, having
relative absolute error consistently smaller than 1%.

7.1 Logarithmic Utility

The logarithmic utility is u(x) := log(1 + x), whence
u′′(x) =− 1

(1+x)2 ; applying Equation (2), we get:

u(E[rm])+
1
2

u′′(E[rm])Var(rm) =

u(E[rm])− Var(rm)
2(E[rm]+ 1)2 =

u
(m

n

)
− m 1

n

(
1− 1

n

)

2( m
n + 1)2 ,

where in the last passage we introduced the analytical ex-
pression of the variance for a binomial distribution.

Thus, the (approximated) difference between the expected
utility of the random and the vacuous over the next m bets
is

d(m) = E[u(vm)]−E[u(rm)] =
m
n

(
1− 1

n

)

2( m
n + 1)2 ∝

m
( m

n + 1)2 , (8)

where in the last passage we removed the proportionality
constant 1

2n

(
1− 1

n

)
> 0. Function d(m) is shown in Fig. 1.

The first derivative of d(m) is:

d′(m) =
1

( m
n + 1)2 −2

m
n

( m
n + 1)3 ∝ 1− m

n
, (9)

0 20 40

0

4 ·10−2

8 ·10−2

m

d(
m

)

20 classes
2 classes

Figure 1: Function d(m) for logarithmic utility, under dif-
ferent number of classes.

where the last passage is obtained considering that ( m
n +

1)3 > 0. From Equations (8) and (9), we can figure out that
d(m) will monotonically increase up to m < n (inversion
point), to then indefinitely decrease, so that d(m)→ 0 for
m→∞; if expectations of utilities are computed over a long
enough number of bets, the expected utility produced by the
two classifiers is the same. It also follows that increasing n
delays the convergence of the expected utilities to the same
value, as also shown in Fig. 1.

7.2 Exponential Utility

The exponential utility is u(x) := 1− exp(−ax), where
a is a coefficient of risk-aversion. Noting that u′′(x) =
−a2 exp(−ax), the second-order approximation yields:

u(E[rm])+
1
2

u′′
(m

n

)
Var(rm) =

u
(m

n

)
− 1

2
a2 exp

(
−a

m
n

)
m

1
n

(
1− 1

n

)
,

whence

d(m) =−1
2

a2 exp
(
−a

m
n

)
m

1
n

(
1− 1

n

)
∝

∝−exp
(
−a

m
n

)
m,

where the proportionality constant is a2

2
1
n

(
1− 1

n

)
> 0.

We have

d′(m) = exp
(
−a

m
n

)
·
(

a
m
n
−1
)
.

Function d(m) has qualitatively the same behavior of the
logarithmic case, but the inversion point is now located at
m = n

a . Moreover, the difference between the expected util-
ity of the two classifiers depends also on the risk-aversion
coefficient a; higher risk-aversion delays the convergence
of the expected utilities, thus emphasizing the difference in
favor of the vacuous on small m.
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8 Experiments on Artificial Data Sets

In the following, we denote the naive Bayes classifier as
NBC [3] and the naive credal classifier as NCC [1]. We
compare the utility generated by NBC and NCC on the
next single bet. In a first set of experiments, we generated
artificial data sets, considering a binary class and 10 binary
features; we set the marginal chances of classes as uniform,
while we drew the conditional chances of the features under
the constraint |θi1`− θi2`| ≥ 0.1 ∀i, j, where θi j` denotes
the chance of feature Ai to be in state ` when C = j; the
constraint forced each feature to be truly dependent on the
class. We drew θ 80 times uniformly at random and we
consider the sample sizes: s ∈ {25,50,100}. We did not
consider larger sample sizes, under which NCC would have
been almost completely determinate, and thus not really
different from NBC. For each pair (θ ,s) we generated 50
training sets; we then evaluate the trained classifiers on a
test set of 10000 instances. In the following, the instances
indeterminately classified by NCC are referred to as the
area of ignorance. We denote as NBC(NCC-I) the accu-
racy of NBC on the area of ignorance. For each sample
size, we thus perform 80θ ×50 trials = 4000 training/test
experiments.

20 40 60 80 100
84

86

88

90

Sample size

A
cc

ur
ac

y/
U

til
ity

NCC: utility
NBC: accuracy, utility
NCC: disc-acc

Figure 2: Experimental results with artificial data; each
point shows the median over 4000 experiments, performed
with the same sample size s. For NBC, accuracy and utility
coincide. For NCC, the curve of utility rises the values of
discounted accuracy.

We set the utility of a determinate and successful classifi-
cation as u(1) := 1; the utility of a non-successful classifi-
cation (determinate or indeterminate) as u(0) := 0. This is
the case, for instance, if you are risk-neutral in the scale the
original rewards are measured. It remains to set the utility
u(0.5) of an indeterminate classification (notice that for a
data set with two classes, an indeterminate classification
has necessarily discounted accuracy of 0.5). We think that
in general the value of u(0.5) could reasonably lie between
0.6 and 0.8; in our experiments, we set u(0.5) := 0.65. As
a term of comparison, determinate and indeterminate clas-
sifiers have been compared in [7] through the F1 metric,
which is widely used in information retrieval. Under the

F1 metric, on a dataset with 2 classes, the vacuous classi-
fier gets the same score of a precise classifier with 66%
accuracy; this gives further support to our choice.

As expected, NBC has higher discounted accuracy than
NCC (see Fig. 2); this means that, on the area of igno-
rance, it is doing better than the K -random guesser. Yet,
NCC produces slightly higher utility than NBC at each
sample size. The determinacy of NCC rises steadily with
the sample size; interestingly, at the same time the value
of NBC(NCC-I) decreases; this means that NCC is getting
better at identifying instances which are really hard to clas-
sify. For instance, NBC(NCC-I) is 64% for s = 25, and
54% for s = 100; this explains why the gap of utility tends
to slightly increase with the sample size. Note however that
the restriction of the area of ignorance (20% for s = 25,
and only 4% for s = 100) works against enlarging the gap
between NCC and NBC. Results similar to those shown
here are obtained also using logarithmic utility; however
we find it clearer in this simple setting to reason about the
only point to elicit, u(0.5), rather about the whole utility
function.

9 Experiments on the kr-kp Data Set
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Figure 3: Utility and discounted accuracy generated by
NBC and NCC for downsampled versions of kr-kp.

We then performed some experiments on the kr-kp data set
(2 classes, 36 binary features, 3200 instances) from the UCI
repository. To evaluate the sensitivity of the performance
on the sample size, we worked by downsampling the kr-kp
data set. In particular, we generated training sets of size
s ∈ {5,10,15,20,30,50,100,150}; for each sample size,
we generated 100 different training sets; for each training
set, the corresponding test set is given by the instances left
in the original data set. All training and test sets are strati-
fied, namely the proportion among the two classes matches
that of the original data set. For each sample size, we report
the average results over all splits; the results are shown
in Tab. 1 and Fig. 3. The determinacy of NCC steadily
increases with the sample size, as well its discounted ac-
curacy and the accuracy of NBC. For NBC, notice that
accuracy and utility have the same value. For very small s
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s NCC: NBC:
Determ NBC(NCC-I)

(%) (%)

5 2 59
10 10 65
15 25 60
20 29 64
30 41 64
50 60 62

100 78 60
150 85 59

Table 1: Results for the kr-kp experiment; Determ. indicates
the % of instances determinately classified by NCC.

(e.g., s = 5), NCC is almost always indeterminate; in this
case, its utility corresponds to u(0.5) and thus is 0.65; in
the same situation, NBC is almost randomly guessing, and
thus its utility is close to 50%. Both the utility of NBC and
NCC smoothly increases with s; the utility of NCC remains
however slightly superior. In fact, under a data set with two
classes, whether NCC or NBC produces a higher utility
can be realized by comparing NBC(NCC-I) with u(0.5); if
u(0.5)<NBC(NCC-I), then NCC produces higher utility
than NBC, and vice versa. However, the outcome of the
comparison would be slightly in favor of NBC by (con-
servatively) setting u(0.5) = 0.6, as can be deduced from
Tab. 1; in fact, once utility is introduced in the evaluation
of the classifiers, it also plays a role in the final decision
about which of the considered classifiers is better. This
also implies that to generate sensible results when using
utility-based metrics, it is fundamental to carefully elicit
the decision maker’s utility.

10 Conclusions

In this paper, we have tried to define in a principled way
a measure to empirically evaluate credal classifiers. In
our proposal, any such measure is made of two main
components: the discounted accuracy, which represents
a kind of objective performance of a classifier, and its vari-
ance, which represents the unreliability of the classifier,
and whose contribution to the overall measure has to be
weighted through subjective considerations of risk-aversion.
Our measure can be implemented very easily in practice,
and in fact is shown to empirically lead to some interest-
ing results. Future work could (i) explore generalizations
to rewards more general than 0-1 ones; (ii) exploit what
appear to be natural connections between our measure and
finance, in order to evaluate credal classifiers (some recent
work connecting utility and machine learning, that could be
useful to consider in that respect, has also recently appeared
[5]); and also (iii) deepen the empirical study in order to ver-
ify the possibility to define some kind of ‘general purpose’
utility functions for machine learning aims.
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admissibility, 199
Antonucci, Alessandro, 21
approximation scheme, 277
Arlo-Costa, Horacio, 31
Augustin, Thomas, 41, 51, 139, 391
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