
Causal Inference of Ambiguous Manipulations 
by 
 

Peter Spirtes*¶, Richard Scheines* 
 

Abstract: Over the last two decades, philosophers, statisticians, and computer scientists 
have converged on the fundamental outline of a theory of causal representation and 
causal inference (Spirtes, Glymour, and Scheines, 2000; Pearl, 2000). Some conditions 
and assumptions under which reliable inference about the effects of manipulations is 
possible have been precisely characterized; other conditions and assumptions under 
which reliable inference about the effects of manipulation is impossible have also been 
characterized. However, the theory of inference about the effects of manipulations that 
has been developed does not consider the problem of “defined variables”. In causal 
modeling, sometimes variables are deliberately introduced as defined functions of others 
variables. More interestingly, sometimes two or more measured variables are 
deterministic functions of one another, not deliberately, but because of redundant 
measurements. In these cases, manipulation of an observed defined variable may actually 
be an ambiguous description of a manipulation of some underlying variables, although 
the manipulator does not know that this is the case.  In this article we revisit the question 
of precisely characterizing conditions and assumption under which reliable inference 
about the effects of manipulations is possible, even when the possibility of “ambiguous 
manipulations” is allowed.  

1) Introduction 
Among other things, causal hypotheses predict how the world will respond to an 
intervention. How much will we reduce our risk of stroke by switching to a low-fat diet?  
How will the chances of another terrorist attack change if the U.S. invades Iraq next 
week? Over the last two decades, philosophers, statisticians, and computer scientists have 
converged on the fundamental outline of a theory of causal representation and causal 
inference (Spirtes, Glymour, and Scheines, 2000; Pearl, 2000). Some conditions and 
assumptions under which reliable inference about the effects of manipulations is possible 
have been precisely characterized; other conditions and assumptions under which reliable 
inference about the effects of manipulations is not possible have also been characterized. 
Different researchers give slightly different accounts of the idea of a manipulation, or an 
intervention, but all assume that when we intervene ideally to directly set the value of 
exactly one variable, it does not matter how we set it in predicting how the rest of the 
system will respond.  This assumption turns out to be problematic, primarily because it 
often does matter how one sets the value of a variable one is manipulating.  In this paper 
we explain the nature of the problem and how it affects the theory of causal 
representation and causal inference.  We begin by describing the source of the problem, 
defined variables.  We illustrate how manipulations on defined variables can be 
ambiguous, and how this ambiguity affects prediction.   We describe the theory of causal 
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inference when it is assumed that manipulations are not ambiguous, and we describe how 
admitting the possibility of ambiguous manipulations affects causal inference. Finally, we 
illustrate with an example involving both an ambiguous and then an unambiguous 
manipulation.   
 

2) Defined Variables 
In causal modeling, sometimes variables are deliberately introduced as defined functions 
of others variables. More interestingly, sometimes two or more measured variables are 
deterministic functions of one another, not deliberately, but because of redundant 
measurements, or underlying lawlike connections. When all of the variables are 
measured, the second sort of dependency sometimes shows up as complete statistical 
dependence, or in the case of linear relationships, a correlation equal to one. A very high  
correlation of causal variables, or “multicollinearity”, creates problems for data analysis 
for which there are a variety of more or less ad hoc data analysis procedures. Perhaps the 
most principled response is to divide the analysis into several sub-analyses in none of 
which are variables deterministically related. But the most interesting case is much more 
interesting 
 
Consider the following hypothetical example. An observational study leads researchers to 
hypothesize that high cholesterol levels cause heart disease. They recommend lower 
cholesterol diets to prevent heart disease. But, unknown to them, there are two sorts of 
cholesterol: LDL cholesterol causes heart disease, and HDL cholesterol prevents heart 
disease. Low cholesterol diets differ, in the proportions of the two kinds of cholesterol. 
Consequently, experiments with low cholesterol regimens can differ considerably in their 
outcomes.  
 
In such a case the variable identified as causal—total cholesterol—is actually a 
deterministic function of two underlying factors, one of which is actually causal, the 
other preventative. The manipulations (diets) are actually manipulations on the 
underlying factors, but in different proportions. When specification of the value of a 
variable, such as total cholesterol, underdetermines the values of underlying causal 
variables, such as LDL cholesterol and HDL cholesterol, we will say that manipulation of 
that variable is ambiguous. How are such causal relations to be represented, what 
relationships between causal relations and probability distributions are there in such 
cases, and how should one conduct search when the systems under study may, for all one 
knows, have this sort of hidden structure? These issues seem important to understanding 
possible reasons for disagreements between observational and experimental studies, non-
repeatability of experimental studies (and not only in medicine—psychology present 
many examples), and in understanding the value and limitations of meta-analysis. 
 



3) Causal Inference When Manipulations are Assumed Unambiguous 
There are two fundamentally different operations that transform probability distributions1 
into other probability distributions. The first is conditioning, which corresponds roughly 
to changing a probability distribution in response to finding out more information about 
the state of the world (or seeing). The second is manipulating, which corresponds roughly 
to changing a probability distribution in response to changing the  state of the world in a 
specified way (or doing). An important feature of conditioning is that each conditional 
distribution is completely determined by the joint distribution (except when conditioning 
on sets of measure 0.) In contrast to conditioning, a manipulated probability distribution 
is not a distribution in a subpopulation of an existing population, but is a distribution in a 
(possibly hypothetical) population formed by externally forcing a value upon a variable 
in the system.  
 
In some cases the conditional probability is equal to the manipulated probability and in 
other cases, the conditional probability is not equal to the manipulated probability. In 
general, if conditioning on the value of a variable X raises the probability of a given 
event, manipulating X to the same value may raise, lower, or leave the same the 
probability of a given event. Similarly if conditioning on a given value of a variable 
lowers or leaves the probability of a given even the same, the corresponding manipulated 
probability may be higher, lower, or the same, depending upon the domain. 
 
In contrast to conditioning, the results of manipulating depend upon more than the joint 
probability distribution. The “more than the joint probability distribution” that the results 
of a manipulation of a specified variable depend upon are causal relationships between 
variables. Thus discovering the causal relations between variables is a necessary step to 
correctly inferring the effects of manipulations. 
 
Conditional probabilities are typically of interest in those situations where the value of 
some variables (e.g. what bacteria are in your blood stream) are difficult to measure, but 
the values of other variables (e.g. what your temperature is, whether you have spots on 
your face) are easy to measure; in that case one can find out about the (probability 
distribution) of the value of the variable that is hard to measure by conditioning upon the 
values of the variables that are easy to measure.  
 
Manipulated distributions are typically of interest in those situations where a decision is 
to be made, or a plan to be formulated. The possible actions that are considered in 
decision theory are typically manipulations, and hence the probability distributions that 
are relevant to the decision are manipulated probabilities, not conditional probabilities 
(although as we have noted, in some cases they may be equal.)  
 
First, we will consider inference in the case where all manipulations are assumed to be 
unambiguous. The general setup is described at length in Spirtes et al. (2000) that we 
illustrate with the following example. It is assumed that HDL cholesterol (HDL) causes 
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Disease 1, LDL cholesterol (LDL) causes Disease 2, and that HDL and LDL cause heart 
disease (HD). This causal structure can be represented by the directed acyclic graph 
shown in Figure 1. 

 

 
 
 
 
 
 

Figure 1 

Disease 1                      Disease 2          HDL: High Density Lipids 
                LDL: Low Density Lipids 
      HD: Heart Disease 
HDL                              LDL 
 
 
                      HD 

A directed graph G is the causal graph for a causal system C when there is an edge from 
A to B in G if and only if A is a direct cause of B relative to C. Note that for a causal 
system C over a there is a unique causal graph for C. We assume that the set of variables 
in a causal graph is causally sufficient, i.e. if V is the set of variables in the causal graph, 
that there is no variable L not in V that is a direct cause (relative to V ∪ {L}) of two 
variables in V. However, we do not assume that the set of measured variables is causally 
sufficient. 
 
In order to make causal inferences from data samples, it is necessary to have some 
principles that connect causal relations to probability distributions. We make the 
following assumption that is widely, if often implicitly, assumed in a number of sciences. 
In order to state the principle the following definitions are needed. In a graph G, X is a 
parent of Y if and only if G contains an edge X → Y. Y is a descendant of X in a graph G 
if and only if either X = Y, or there is a directed path from X to Y.  
 
Causal Markov Principle: In a causal system C over a set of causally sufficient 
variables V each variable is independent of the set of variables that are neither its parents 
nor its descendants conditional on its parents in the causal graph G for C 
 
In the example, the Causal Markov Principle entails that HD is independent of {Disease 
1, Disease 2} conditional on {HDL, LDL}, HDL is independent of {LDL, Disease 2}, 
LDL is independent of {HDL, Disease 1}, Disease 1 is independent of {HD, LDL, 
Disease 2} conditional on HDL, and Disease 2 is independent of {HD, HDL, Disease 1} 
conditional on LDL.  
 
The justification (and limitations) of the Causal Markov Principle is discussed at length 
in Spirtes et al. (2000). One justification is that if each variable is a function of its parents 
in the causal graph, together with some independent random noise term, then the Causal 
Markov Principle is guaranteed to hold.  
 
The Causal Markov Principle is equivalent to the following factorization principle. X is 
an ancestor of Y in a graph if there is a directed path from X to Y, or X = Y. Parents(G,Y) 
is the set of parents of Y in graph G. If G is a directed graph over S, and X ⊆ S, X is an 
ancestral set of vertices relative to G if and only if every ancestor of X in G is in X. A 



joint probability distribution (or in the case of continuous variables a joint density 
function) P(V) factors according to a directed acyclic graph (DAG) G when for every 
X ⊆ V that is an ancestral set relative to G, 
 

P(X) = P(X | Parents(G,X))
X ∈X
∏  

 
In the example, this entails that P(Disease 1, Disease 2, HDL, LDL, HD} = P(Disease 
1|HDL) × P(Disease 2|LDL) × P(HDL) × P(LDL) × P(HD|LDL,HDL). This factorization 
entails that the entire joint distribution can be specified in the following way (where the 
numbers have been chosen simply for the purposes of illustration): 
 
P(HDL = High) = .2 
P(LDL = High) = .4 
P(Disease 1 = Present|HDL = Low) = .2 
P(Disease 1 = Present|HDL = High) = .9 
P(Disease 2 = Present|LDL = Low) = .3 
P(Disease 2 = Present|LDL = High) = .8 
 
P(HD = Present|HDL = Low, LDL = Low) = .4  
P(HD = Present|HDL = High, LDL = Low) = .1 
P(HD = Present|HDL = Low, LDL = High) =  .8 
P(HD = Present|HDL = High, LDL = High) = .3  
 
We will take a joint manipulation {Man(P1(X1))…,Man(Pn(Xn))} for a set of variables 
Xi ∈ X as primitive. Intuitively, this represents a randomized experiment where the 
distribution P’(X) = ∏  is forced upon the variables X. We will also write 

{Man(P’

P'i (Xi)X i ∈X

1(X1))…,Man(P’n(Xn))} as Man(P’(X)). We assume X can be manipulated to any 
distribution over the values of X, even those that have zero probability in the population 
distribution over X, as long as the members of X are jointly independent in the 
manipulated distribution. For a set of variables V ⊇ X, a manipulation Man(P’(X)) 
transforms a distribution P(V) into a manipulated distribution over V denoted as 
P(V||P’(X)), where the double bar (Lauritzen 2001) denotes that the manipulation 
Man(P’(X)) has been performed.  
 
For example, suppose that LDL was manipulated so that P’(LDL = Low) = .5 and P’(LDL 
= High) = .5, while simultaneously HDL was manipulated so that P’(HDL = Low) = .5 
and P’(HDL = High) = .5. This could be done for each person by flipping two 
independent fair coins, one determining the value to be given to LDL and the other 
determining the value to be given to HDL. Consider then P(HD|Disease 1) in the 
hypothetical population after the two manipulations. It is denoted in this notation by 
P(HD|Disease 1||P’(HDL) × P’(LDL)), where the term to the left of the double bar 
represents the quantity of interest, and the term to the right of the double bar specifies the 
joint distribution that the manipulated variables have been assigned.  
 



A DAG G represents a causal system among a set of variables V when P(V) factors 
according to G, and for every manipulation  Man(P’(X)) of any subset X of V  
 

P(V || P'(X)) = P'(X) × P(V | Parents(G,V ))
V ∈V \ X
∏  

 
For example, if HD is manipulated to have the value Present, i.e. P’(HD = Present) = 1, 
then the joint manipulated distribution is: 
 
P(Disease 1, Disease 2, HD, LDL, HD = Present||P’(HD)) = 1 × P(Disease 1|HDL) × 
P(Disease 2|LDL) × P(LDL) × P(HDL), and 
 
P(Disease 1, Disease 2, HDL = High, LDL, HD = Absent||P’(HD)) = 0 × P(Disease 
1|HDL) × P(Disease 2|LDL) × P(LDL) × P(HDL) = 0. 
 
Note that the distribution of HDL after manipulation of HD to Present, i.e. 
P(HDL||P’(HD = Present)) is not equal to the probability of HDL conditional on HD = 
Present, i.e. P(HDL|HD = Present).  
 
The Causal Markov Principle allows some very limited causal inferences to be made. For 
example, suppose {X,Y} is causally sufficient. A causal graph that contains no edge 
between X and Y entails that X is independent of Y, and hence is not compatible with any 
distribution in which X and Y are dependent. However, if it is not known whether {X,Y} 
is causally sufficient, then assuming just the Causal Markov Principle, no (point) 
conclusions about the effects of a manipulation can be reliably drawn. For example, 
suppose the causal relationships between X and Y is known to be linear, and the 
correlation between X and Y is r. Let the linear coefficient that describes the effect of X 
on Y be c (i.e. a unit change in  X produces a change of c in Y.) Then regardless of the 
value of r, for any specified c there is a causal model in which the correlation between X 
and Y is r, and the effect of X on Y is c. That is the observed statistical relation (r) places 
no constraints at all on the causal relation (c). This negative result generalizes the case 
where more than two variables are measured. Even when {X,Y} is known to be causally 
sufficient, the Causal Markov Principle does not suffice to produce a unique prediction 
about the mean effect of manipulating X on Y no matter what variables are measured, as 
long as X and Y are dependent. 
 
We will make a second assumption that is commonly, if implicitly, made in the statistical 
literature.  
 
Causal Faithfulness Principle: In a causal system C, if S is causally sufficient, and P(S) 
is the distribution over S in C, every conditional independence that holds in P(S) among 
three disjoint sets of variables X, Y, and Z included in S is entailed by the causal graph 
that represents C under the Causal Markov Condition. 
 
Applying the Causal Faithfulness Principle to the DAG in Figure 1 entails that the only 
conditional independence relations that hold in the population are the ones entailed by the 



Causal Markov Principle: i.e., that HD is independent of {Disease 1, Disease 2} 
conditional on {HDL, LDL}, HDL is independent of {LDL, Disease 2}, LDL is 
independent of {HDL, Disease 1}, Disease 1 is independent of {HD, LDL, Disease 2} 
conditional on HDL, and Disease 2 is independent of {HD, HDL, Disease 1} conditional 
on LDL.  
 
The justification for the Causal Faithfulness Principle (as well as descriptions of cases 
where it should not be assumed) is discussed at length in Spirtes et al. (2000). One 
justification is that for a variety of parametric families, the Causal Faithfulness Principle 
is only violated for a set of parameters that have measure 0 (with respect to Lebesgue 
measure, and hence with respect to any of the usual priors placed over the parameters of 
the model.)  
 
Given the Causal Markov Principle and the Causal Faithfulness Principle, there are 
algorithms that in the large sample limit reliably infer some of the causal relations among 
the random variables, and reliably predict the effects of some manipulations, even if it is 
not known whether the measured variables are causally sufficient. For those causal 
relations that cannot be inferred, and those effects of manipulations that cannot be 
predicted, the algorithms will return “can’t tell”. See Spirtes et al. (2000) for details. 
Examples of inferences that can be reliably made, and inferences that cannot be reliably 
made, are described in section 4).  

4) Causal Inference When Manipulations May Be Ambiguous 
We now consider the case where it is not known whether a manipulation is ambiguous or 
not. Consider what kinds of dependency structures can emerge in a few hypothetical 
examples. (More details and proofs are available in Spirtes and Scheines (2003).) 

4.1. Example 1 
Consider an extension of the hypothetical Example 1, shown in Figure 2 in which the 
concentration of total cholesterol is defined in terms of the concentrations of high density 
lipids and low density lipids. This is indicated in the figure by the bold faced arrows from 
HDL and LDL to TC. The other arrows indicate causal relationships. Suppose that high 
levels of HDL tend to prevent HD, while high levels of LDL tend to cause HD. We have 
the following parameters for Example 1 (again chosen for the purpose of illustration.)  
 
HDL = Low, LDL = Low → TC = Low 
HDL = Low, LDL = High → TC = Medium 
HDL = High, LDL = Low → TC = Medium 
HDL = High, LDL = High → TC = High 
 
P(HDL = High) = .2 
P(LDL = High) = .4 
P(Disease 1 = Present|HDL = Low) = .2 
P(Disease 1 = Present|HDL = High) = .9 
P(Disease 2 = Present|LDL = Low) = .3 
P(Disease 2 = Present|LDL = High) = .8 



 
P(HD = Present|HDL = Low, LDL = Low) = .4 = P(HD = Present|TC = Low) 
P(HD = Present|HDL = High, LDL = Low) = .1 
P(HD = Present|HDL = Low, LDL = High) =  .8 
P(HD = Present|HDL = High, LDL = High) = .3 = P(HD = Present|TC = High) 
 
Manipulation of TC is really a manipulation of HDL and LDL. However, even after an 
exact level of TC is specified as the target of a manipulation, there are different possible 
manipulations of HDL and LDL compatible with that target. For example, if a 
manipulation sets TC to Medium, then this could be produced by manipulating HDL to 
Low and LDL to High, or by manipulating HDL to High and LDL to Low. Thus, even 
after the manipulation of TC is completely specified (e.g. to Medium), the effect of the 
manipulation on HD is indeterminate (i.e. if the manipulation is HDL to High and LDL to 
Low, then after the manipulation P(HD) is .1, but if the manipulation is HDL to Low and 
HDL to High, then after the manipulation P(HD) is .8). Hence a manipulation of TC to 
Medium might either lower the probability of HD (compared to the population rate), or it 
might raise the probability of HD. It is quite plausible that in many instances, someone 
performing a manipulation upon TC would not know about the existence of the 
underlying variables HDL and LDL, and would not know that the manipulation they 
performed was ambiguous with respect to underlying variables. For example,  
manipulation of TC could be produced by the administration of several different drugs 
that affect HDL and LDL in different ways, and produce different effects on HD.  
 
What is the correct answer to the question “What is the effect of manipulating TC to 
Medium on HD?” Suppose that we manipulate TC to Medium, i.e. P’(TC=Medium) = 1. 
Without further information, the most informative answer that could be given is to give 
the entire range of effects of manipulating TC to Medium (i.e. either P(HD||P’(TC)) = .8 
or P(HD||P’(TC)) = .1). Another possible answer is to simply output “Can’t tell” because 
the answer is indeterminate from the information given. A third, but misleading, answer 
would be to output one of the many possible answers (e.g. P(HD||P’(TC)) = .1). This 
answer is misleading as long as it contains no indication that this is merely one of a set of 
possible different answers, and an actual manipulation of TC to Medium might lead to a 
completely different result. Note that it is the third, misleading kind of answer that would 
be produced by performing a randomized clinical trial on TC; there would be nothing in 
the trial to indicate that the results of the trial depended crucially upon details of how the 
manipulation was done. A fourth possibility is open to Bayesians: put a prior distribution 
down on the underlying manipulations, and then calculate the posterior probability of the 
effect of a manipulation. 
 
In the examples described below, we take the second alternative, and output “Can’t tell” 
in some instances. However, there can be a variety of reasons that the effects of a 
manipulation are underdetermined by the evidence (e.g. the possibility of latent variables, 
or the possibility of an ambiguous manipulation) and when “Can’t tell” is output, we 
make no attempt here to determine if it is possible to find the reason for the 
underdetermination.  



 
 Disease 1                      Disease 2          HDL: High Density Lipids

                LDL: Low Density Lipids 
      TC: Total Cholesterol  
      HD: Heart Disease 
HDL                              LDL 
 
 
                      
                      TC 
 
 
                        
                       HD 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
Suppose now that Disease 1, Disease 2, TC, and HD are the measured variables, and we 
assume the Causal Markov and Faithfulness Principles (extended to graphs with 
definitional links), but allow that there may be hidden common causes.  What reliable 
(pointwise consistent)2 inferences can be drawn from samples of the distribution 
described in Example 1?  We will contrast 2 cases: the case where it is assumed that all 
manipulations are unambiguous manipulations of underlying variables and the case 
where the possibility that a manipulation may be ambiguous is allowed. The general 
effect of weakening the assumption of no ambiguous manipulations is to introduce more 
“Can’t tell” entries. Proofs of these results are given in Spirtes and Scheines (2003).  
 
Manipulate: Effect on: Assume 

manipulation 
unambiguous

Manipulation
may be 
ambiguous 

Disease 1 Disease 2 None None 
Disease 1 HD Can’t tell Can’t tell 
Disease 1 TC Can’t tell Can’t tell 
Disease 2 Disease 1 None None 
Disease 2 HD Can’t tell Can’t tell 
Disease 2 TC Can’t tell Can’t tell 
TC Disease 1 None Can’t tell 
TC Disease 2 None Can’t tell 
TC HD Can’t tell Can’t tell 
HD Disease 1 None Can’t tell 
HD Disease 2 None Can’t tell 
HD TC Can’t tell Can’t tell 

                                                 
2 An estimator is a real-valued function of the data. An estimator is a pointwise consistent estimator of a 
causal parameter θ if, for each possible value of θ, in the limit as the sample size approaches infinity, the 
probability of the distance between the estimator and the true value of θ  being greater than any fixed finite 
value approaches zero. 



 

4.2. Example 2 
We will now consider what happens when the example is changed slightly. In Example 2, 
suppose that the effect of HDL and LDL on the probability of HD actually is completely 
determined by TC. Example 2 is the same as the Example 1, except that we have changed 
the distribution of HD in the following way: 
 
P(HD = Present|HDL = Low, LDL = Low) =  
P(HD = Present|TC = Low) = .1 
 
P(HD = Present|HDL = High, LDL = Low) =  
P(HD = Present|HDL = Low, LDL = High) =  
P(HD = Present|TC = Medium) = .3 
 
P(HD = Present|HDL = High, LDL = High) =  
P(HD = Present|TC = High) = = .8 
 
In this case, while manipulating TC to Medium represents several different possible 
manipulations of the underlying variables HDL and LDL, each of the different 
manipulations of HDL and LDL compatible with manipulating TC to Medium produces 
the same effect on HD (i.e. P(HD||P’(TC)) equals P(HD = Present|HDL = High, LDL = 
Low) = P(HD = Present|HDL = Low, LDL = High)  prior to manipulation, which is .3). In 
this case we say that the effect of manipulating TC on HDL is determinate. (Note that the 
effect of manipulating TC on Disease 1 is not determinate, because it depends upon how 
the manipulation of TC is done. So manipulating a variable may have determinate effects 
on some variables, but not on others.)   
 
Interestingly, the Causal Faithfulness assumption actually entails that the effect of TC on 
HD is not determinate. This is because if the effect of manipulating TC on HD is 
determinate, then LDL and HDL are independent of HD conditional on TC, which is not 
entailed by the structure of the causal graph, but instead holds only for certain values of 
the parameters, i.e. those values for which P(HD = Present|HD = Low, LDL = High) = 
P(HD = Present|HDL = High, LDL = Low). Hence, in these cases we make a modified 
version of the Causal Faithfulness Principle, which allows for the possibility of just these 
kinds of determinate manipulations.  
 
What reliable (pointwise consistent) inferences can be drawn from samples of the 
distribution described in Example 2? Because there are conditional independence 
relations that hold in Example 2 that do not hold in Example 1, more pointwise consistent 
estimates of manipulated quantities can be made under the assumption that manipulations 
may be ambiguous, than could be made in the previous example.  
 
 
 
 
 



Manipulate: Effect on: Assume 
manipulation 
unambiguous: 
Example 2 

Manipulation 
may be 
ambiguous: 
Example 2 

Disease 1 Disease 2 None None 
Disease 1 HD Can’t tell Can’t tell 
Disease 1 TC Can’t tell Can’t tell 
Disease 2 Disease 1 None None 
Disease 2 HD Can’t tell Can’t tell 
Disease 2 TC Can’t tell Can’t tell 
TC Disease 1 None Can’t tell 
TC Disease 2 None Can’t tell 
TC HD = P(HD|TC) = P(HD|TC) 
HD Disease 1 None None 
HD Disease 2 None None 
HD TC None None 
 

4.3. Example 3 
Examples 1 and 2 are two simple cases in which causal conclusions can be reliably made. 
Indeed, for those examples, the algorithms that we have already developed (in particular 
the FCI algorithm described in Spirtes et al. 2000) and that are reliable under the 
assumption that there are no ambiguous manipulations, still give correct output, as long 
as the output is suitably reinterpreted according to some simple rules that only slightly 
weaken the conclusions that can be drawn.  However, there are other examples in which 
this is not the case. For example, if Disease 1 and Disease 2 are not independent, but are 
independent conditional on a third measured variable X then no simple reinterpretation of 
the output of the algorithm gives answers which are both informative about cases in 
which TC does determinately cause HD, and reliable. In all such examples that we have 
examined so far, however, the data itself contains information that indicates that the 
current algorithm cannot be applied reliably; hence for these examples the algorithm 
could simply be modified to check the data for this condition, and output “can’t tell.”  
 
We do not have general conditions under which the data would indicate that the 
algorithm could not be reliably applied (unless the assumption of no ambiguous 
manipulations is made.) This raises the questions: Are there feasible general algorithms 
that are both correct and informative even when the assumption of no ambiguous 
manipulations is not made? If so, what is the algorithm? What is its computational 
complexity as a function of the number of variables? What is its reliability on various 
sample sizes? 
 
 
 
 



References 
 

Lauritzen, S. (2001) “Causal Inference from Graphical Models”, in Complex Stochastic 
Systems, edited by O. Barndorff-Nielsen, D. Cox, and C. Kluppenlberg, Chapman and 
Hall, London, pp. 63-107. 
 
Spirtes, P., Glymour, C., and Scheines, R. (2000) Causation, Prediction, and Search. 
MIT Press, Cambridge MA.  
 
Spirtes, P., and Scheines, R. (2003) “Causal Inference of Ambiguous Manipulations”, 
Carnegie Mellon University Department of Philosophy Technical Report 138. 
 


	Introduction
	Defined Variables
	Causal Inference When Manipulations are Assumed Unambiguous
	Causal Inference When Manipulations May Be Ambiguous
	Example 1
	Example 2
	Example 3
	References



