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Abstract 

The statistical evidence for the detrimental effect of exposure to low 

levels of lead on the cognitive capacities of children has been debated for 

several decades. In this paper I describe how two techniques from 

artificial intelligence and statistics help make the statistical evidence for 

the accepted epidemiological conclusion seem decisive. The first is a 

variable-selection routine in TETRAD III for finding causes, and the 

second a Bayesian estimation of the parameter reflecting the causal 

influence of Actual Lead Exposure, a latent variable, on the measured IQ 

score of middle class suburban children.  

1.  Introduction.  

This paper presents an example of causal discovery in which two pieces of artificial 

intelligence technology proved crucial. The pieces are TETRAD III’s Build module, used 

to identify and discard spurious confounders of the relationship between lead exposure 

and IQ, and TETRAD III’s Gibb's sampler2 used to estimate the influence of lead 

exposure on IQ within an underidentified model involving the remaining non-spurious 

confounders.   

In a variety of contexts in KDD, effective variable selection is crucial. For example, 

identifying a small set of variables that can accurately predict who will be profitable as a 

credit card customer is a classic KDD problem in the financial realm. Variable selection 

techniques accompany different models.  For example, one can use best subsets, or a 

                                                 
1 To appear in Handbook of Data Mining (2001), MIT Press. 
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forward or backward stepwise procedure with linear or logistic regression.  Decision 

trees all use some variant of a forwards stepwise procedure.  In each case, the typical 

desiderata is purely predictive.  That is, the goal is to use observations on some variables 

in order to predict the values of other variables. In contrast, another goal for KDD can be 

causal discovery.  Instead of using a given data set to build a model which will then be 

used with future data to predict one variable from the observations on the model's inputs, 

the goal is to use a given data set to build a model which will then be used to predict one 

variable from interventions that set the values of the model's inputs.  Mining a data set 

might tell us that the amount of stain on a person's teeth is a good predictor of how much 

tea they will buy, but it does not tell us that a person will buy more tea if we first sell 

them gum that stains their teeth. In predicting the effects of interventions, causal 

knowledge is essential, and standard variable selection techniques simply are not 

designed to identify the causes of a variable. The TETRAD programs (Scheines, et al., 

1994) implement techniques that are designed to identify the causes and not just the 

predictors of a variable. In this case study, the difference between standard variable 

selection in regression and in TETRAD III are made vivid.  

In the paper that follows, I first briefly survey the history of lead and IQ research that 

led to this work.  I then discuss variable selection for prediction vs. variable selection for 

causal discovery, and illustrate the difference on this case.  In the final sections, I show 

how these results allowed a Bayesian estimation of the final causal model to give 

persuavive evidence that exposure to lead does indeed have a deleterious effect on 

cognition, even at low levels. 

2. A Brief History of Lead and IQ Research 

By measuring the concentration of lead in a child’s baby teeth, Herbert Needleman 

was the first epidemiologist to reliably measure cumulative lead exposure in children. His 

work helped convince the United States to eliminate lead from gasoline and most paint 

(Needleman, et. al., 1979). Needleman and a few colleagues collected data3 on over 50 

variables on almost 300 New England children. The measures included the child's IQ, 

parental education, parental IQ, SES, teacher evaluations of the child, response time tests, 
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several other possible confounders, and finally a measure of cumulative lead exposure. 

The goal was causal: to estimate the effect of cumulative lead exposure on the child's IQ.   

Needleman’s original statistical analysis, which was basically ANOVA (Needleman, 

et. al., 1979) was criticized by the EPA (Grant, et al., 1983), who concluded that his data 

neither supported nor rejected the conclusion that lead was damaging at the doses he 

recorded in asymptomatic children. Needleman reanalyzed his data with multiple 

regression. He performed a variable selection search using backwards stepwise 

eliminative regression, and found five covariates (measured confounders) that he 

included in a multiple regression to estimate the effect of lead on IQ.  He found that even 

after controlling for the five covariates, the estimated effect of lead on IQ was negative 

and significant (Needleman, et al., 1985). 

This helped with the EPA, but aroused other worries from Steve Klepper, an 

economist at Carnegie Mellon (see Klepper, 1988; Klepper, Kamlet, & Frank, 1993). 

Klepper correctly argued that Needleman’s statistical model (a linear regression) 

neglected to account for measurement error in the regressors. That is, Needleman’s 

measured regressors were in fact imperfect proxies for the actual but latent causes of 

variations in IQ, and in these circumstances a regression analysis gives a biased estimate 

of the desired causal coefficients and their standard errors. 

Unfortunately, an errors-in-all-variables model that explicitly accounts for 

measurement error is “underidentified,” and thus cannot be estimated by classical 

techniques without making additional assumptions.  Klepper, however, had worked out 

an ingenious technique to bound the estimates, provided one could reasonably bound the 

amount of measurement error contaminating other measured covariates (Klepper, 1988, 

1993). The bounds on the measurement error infecting the measured covariates required 

to estimate the effect of actual lead exposure in Needleman’s model seemed 

unreasonable, however, and Klepper concluded that the statistical evidence for 

Needleman’s hypothesis was indecisive. 

Reanalyzing Needleman’s data, I used TETRAD III to check whether backwards 

stepwise regression had indeed identified the appropriate set of confounders that should 

                                                                                                                                                 
3 The data are available in the Datasets section of Statlib at Carnegie Mellon: www.statlib.cmu.edu. 

 3



be included in the final model. TETRAD III discarded three of the five covariates that 

stepwise regression had located, and these variables were precisely the ones which 

required unreasonable measurement error assumptions in Klepper's analysis. With the 

remaining regressors, I specified an errors-in-all-variables model to parameterize the 

effect of actual lead exposure on children’ IQ. This model is still underidentified, but 

instead of trying to bound the parameters of interest I put a prior distribution over the 

parameters in the model and used a Gibbs sampler (Smith and Roberts, 1993, Scheines, 

Hoijtink, and Boomsma, 1999) to do a Bayesian estimation of the resulting model. Under 

several priors, nearly all the mass in the posterior was over negative values for the effect 

of actual lead exposure--now a latent variable--on measured  IQ.   

3. Variable Selection with TETRAD III  

In their 1985 article in Science,  Needleman, Geiger and Frank gave results for a 

multivariate linear regression of children’s IQ on lead exposure. Having started their 

analysis with almost 40 covariates, they were faced with a variable selection problem to 

which they applied backwards stepwise regression, arriving at a final regression equation 

involving lead and five covariates. The covariates were measures of genetic contributions 

to the child’s IQ (proxied by the parent’s IQ), the amount of environmental stimulation in 

the child’s early environment (proxied by the mother’s education), physical factors that 

might compromise the child’s cognitive endowment (proxied by the number of previous 

live births and the parent’s age at the birth of the child).  The measured variables they 

used are as follows, with the correlations among these variables and the p-value of each 

correlation given in Table 1. 

 

Ciq - child’s verbal IQ score 
Lead - measured concentration in baby teeth  
Mab - mother’s age at birth 
Fab - father’s age at birth 
Med - mother’s level of education in years   
Nlb - number of live births previous to the sampled child 
Piq - parent’s IQ scores 
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Table 1. Correlations & p-values (n=221) 

Correlations 

 Lead Fab Nlb Med Mab Piq Ciq 
Lead 1.00       
Fab -.08 1.00      
Nlb .11 .39 1.00     
Med -.14  .02 -.18 1.00    
Mab -.15  .85 .47 .003 1.00   
Piq -.06 .17 .03 .53 .16 1.00  
Ciq -.23 -.0003 -.17 .41 .05 .40 1.00 

 

p-values 

 Lead Fab Nlb Med Mab Piq 
Fab .23      
Nlb .10 .00     
Med .04 .78 .01    
Mab .02 .00 .00 .96   
Piq .39 .01 .70 .00 .02  
Ciq .00 .99 .01 .00 .43 .00 

  

The standardized regression solution is as follows, with t-ratios in parentheses. Except for 

Fab, which is significant at 0.1, all coefficients are significant at 0.05, and R2 = .271. 

 

qiCˆ  = − .143 Lead + .219Med + .247Piq + .237Mab − .204Fab − .159Nlb            [1] 
                (2.32)         (3.08)         (3.87)        (1.97)         (1.79)        (2.30) 
 

The intuition behind statistically “controlling” for covariates in a multivariate 

regression intended to estimate causal influence is scientifically appealing but can be 

wrong. It stems from the following plausible story: an association between X and Y might 

not be due to a direct causal link from X to Y, but rather at least partly due to confounders 

(common causes of X and Y), or intermediate causes; statistically controlling for 

covariates can remove that part of the association produced by confounders, leaving only 

the association between X and  Y due to an actual causal relationship.  In the case of 

linear regression, βi (the regression coefficient of the outcome Y on Xi) is statistically 
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significant just in case the partial correlation of Y and Xi controlling for all of the other 

regressors is significant.  

Measuring whether there is an association between X and Y after controlling for all 

the other potential confounders is the right test for whether X is a direct predictor of Y, 

but it is not necessarily the right test for whether X is a direct cause of Y.  Clearly 

Needleman (and Klepper after him) considered the variable selection problem settled by 

the significance test for coefficients in the multivariate regression, and this seems to be 

standard operating procedure in the social science and epidemiological community. 

Unfortunately, the general principle is wrong, and this data set is an exemplar of why. 

In the general setting of multivariate regression, linear or otherwise, an outcome Y 

and a set of regressors X is specified. Assuming that X is prior to Y, in which case Y 

cannot cause any X ∈ X, we say that X is causally adjacent to Y relative to the set X just 

in case either X is a direct cause of Y relative to X, or there is a Z not in X such that Z is a 

common cause of X and Y.  TETRAD III requires two assumptions in order to analyze 

whether any Xi ∈ X is causally adjacent to Y relative to X from population data: the 

Causal Markov Condition and Faithfulness.4 The Causal Markov Condition amounts to 

assuming that every variable X is independent of all variables that are not its effects 

conditional on its immediate causes (Spirtes, et al., 1993). The Causal Markov Condition 

is satisfied necessarily by structural equation models with independent errors (Kiiveri and 

Speed, 1982), and seems to be relatively uncontroversial. Faithfulness amounts to 

assuming that all independences true in a population determined by a causal structure are 

due to the absence of causal connection and not due to parameter values that produce 

independences by perfect cancellation. Although versions of this assumption are used in 

every science (Spirtes et al., 1993), it is not uncontroversial, and has been generally 

challenged by Robins and Wasserman (1996). Allowing these two assumptions, it turns 

out that X is causally adjacent to Y only if X and Y are dependent conditional on every 

subset of X - {X,Y} (Spirtes, et al., 1993).  Contrast this criterion with the one used in 

multivariate regression: X is causally adjacent to Y only if X and Y are dependent 

                                                 
4For discussions of the reliability of regression for determing causal structure, see (Spirtes, et al., 1993, ch. 
8; Scheines, 1995; and Glymour et al., 1994). 
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conditional on exactly the set X - {Xi,Y}. The model in Figure 1, in which  X = {X1, X2, 

X3} and Z is unmeasured, makes the flaw in the regression criterion vivid.  

 

  Y

 X3 X2 X1
  Z Entailed Conditional

 Independences over
the Measured Variables

          X2          Y | {X3}
         X1           X3 | {X2}  

Figure 1: A model that fools regression 

This model does not entail that X2 and Y are independent when we condition on all 

the other regressors {X1, X3}. It is possible for the model to imply this independence, but 

only for unfaithful parameterizations. For all faithful parameterizations, a regression of Y 

on X will produce non-zero coefficients for all three regressors.  Although this is not a 

sampling problem, it is easy to verify that regression will mistakenly conclude that X2 is 

causally adjacent to Y on sample data by randomly parameterizing this model, generating 

a pseudo-random sample, and then running a regression of Y on X1, X2, and X3.  

It turns out that the regression criterion is reliable for causal adjacency only when X 

is known to be prior to Y and the measured variables are known to be confounder 

complete,5 i.e., all common causes of two variables in X U {Y} are already in X U {Y}. 

Assuming confounder completeness in general seems entirely unrealistic, and clearly so 

for the lead data. 

The FCI algorithm executed by the Build module in TETRAD III does not assume 

confounder completeness, and asymptotically dominates regression as a test for causal 

adjacency. That is, with correct statistical decisions about independence, the FCI 

algorithm can detect non-causally adjacent variables that regression cannot, but not vice 

versa (Spirtes, Glymour, & Scheines, 1993). Run on the correlations in Table 1, 

TETRAD III indicates that only Lead, Med, and Piq are adjacent to Ciq, and that Mab, 

Fab, and Nlb are not causally adjacent to Ciq, contrary to the regression analysis. In 

                                                 
5 In TETRAD III, and many previous publications, we use the terminology of “causal sufficiency” to mean 
what I define here as confounder completeness. 
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Needleman’s data, Mab, Fab, and Nlb are more correlated with Ciq after conditioning on 

the other regressors than they are unconditionally. Mab and Fab, for example, are 

completely uncorrelated with Ciq unconditionally (see Table 1), yet are correlated with 

Ciq conditional upon all the other regressors. Whether Mab and Fab are measured with 

error or not, then under these assumptions they or the variables they are proxies for 

cannot be causally adjacent to Ciq relative to this set. The regressor Nlb is correlated with 

Ciq unconditionally, almost uncorrelated with Ciq when conditioned on Med (rNlb,Ciq.Med = 

-.114, p = .1), but once again correlated when conditioned on the entire set of regressors.  

To finalize the variable selection phase, I did a regression of Ciq on only those 

regressors found to be causally adjacent to Ciq, namely lead, Med, and Piq.  

 

qiCˆ  =  − .177 Lead + .251 Med + .253 Piq                                     [2] 
    (2.89)           (3.5)           (3.59) 

 

The overall R2 for the regression in equation [2] is .243, which is quite close to the R2 of 

.271 from the full regression on all six variables in equation [1].   All coefficients in [2] 

are significant at .01, as expected, and the coefficient on lead is slightly more negative 

than it was in equation [1]. 

4. Estimating the Parameters of an “Underidentified” Model 

As Klepper (1988, 1993) correctly points out, these measured regressor variables are 

really proxies that almost surely involve substantial measurement error.  Measured lead is 

really a proxy for actual lead exposure, Med is really a proxy for environmental 

stimulation, and Piq is really a proxy for genetic factors related to IQ.  Figure 2 shows a 

full errors-in-all variables specification for the variables included by TETRAD II.6 The 

task is now to estimate the coefficient β1. 

 

                                                 
6 In this figure, measured variables are boxed, latent variables are enclosed in ovals, and error terms are left 
unenclosed. 
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Figure 2. Errors-in-all-variables model for Lead’s influence in IQ. 

 

Although an errors-in-all-variables linear structural equation model seems a 

reasonable specification, this model is underidentified in the classical setting. That is, for 

any implied covariance matrix Σ(θ) that minimizes a discrepancy function of the implied 

and observed covariances, there are an infinity of parameterizations θ’ such that Σ(θ) = 

Σ(θ’). In this case there are 13 free parameters in the model but only 10 data points in the 

covariance matrix for Ciq, lead, Med, and Piq, thus the model is underidentified by three 

degrees of freedom. 

Several strategies exist for identifying the model. One is to specify the exact 

proportion of measurement error for each measured independent variable. Since in this 

model we have standardized the variables, σ2(Lead) = 1. By the model's specification, 

σ2(Lead)  = σ2(Actual Lead) + σ2(εLead), so the proportion of measured Lead’s variance 

that is due to measurement error is just σ2(εLead), which is between 0 and 1. Similarly for 

the other regressors. Using a linear regression to estimate β1 is equivalent to specifying a 

measurement error equal to zero for each regressor.  We could also simply stipulate that 

the measurement error for lead is 0.20, or some other number. 

Klepper and Leamer (1984) showed that in certain circumstances one could, by 

imposing bounds on how much measurement error is present, sometimes bound the 

actual coefficients in the underidentified errors-in-variables model. In 1988 and again in 

1993 Klepper argued that the upper bounds required by his method to bound the true 
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coefficients in the lead errors-in-variables model (with all five covariates) were 

unreasonable. For example, one had to bound the measurement error for Fab (father’s 

age at birth) at approximately 5%, which did not seem justifiable, considering Fab is a 

proxy for physical, emotional, and intellectual factors present in the father that might 

influence a child’s IQ score. Performing Klepper's analysis on the reduced set of 

regressors identified by TETRAD II, one must be willing to bound the measurement of 

Lead, Med, and Piq at .710, .465, and .457 respectively, a combination of bounds of 

which I am reasonably confident. Klepper’s technique, however, provides sufficient but 

not necessary conditions for bounding, and it cannot provide point estimates or standard 

errors. 

The alternative I favor is Bayesian. By putting a prior distribution over the 

parameters and then computing the posterior, one can compute point estimates, e.g., the 

mean or median in the posterior (θEAP and  θMDAP), standard deviations around the point 

estimates (σ(θEAP)), percentiles that can be used to compute posterior credibility intervals 

(θ.025 and θ.975) and many other statistics of interest. If the posterior cannot be computed 

analytically, which is certainly the case for all but the most trivial structural equation 

models, then one can now compute a sample from the posterior by MCMC simulation 

methods with TETRAD III (Scheines, Hoijtink, and Boomsma, 1999).7  One can then use 

the sample from the posterior to estimate the posterior statistics from their sample 

counterparts, i.e., θ̂ EAP , θ̂MDAP, s( θ̂ EAP), θ̂ .025 , and θ̂ .975.  For simplicity, I use a 

multivariate normal prior over the t parameters, i.e., p(θ) ~Nt(µ0,σ2
0), and I enforce 

bounds on the parameters, e.g., variances are bounded below by 0,  by rejecting sampled 

values outside of the legal parameter bounds.8 

To apply the Bayesian solution to the lead problem, we must put a prior over the 

parameters. Needleman pioneered a technique of estimating cumulative lead exposure by 

measuring the accumulated lead in a child’s baby teeth. Needleman guesses that between 

0% and 40% of the variance in his measure of dentine lead is from measurement error, 

with 20% a conservative best guess. For the measures of environmental stimulation and 

                                                 
7 A Gibbs sampler for computing the posterior over the parameters of a structural equation model is now 
available in TETRAD III: http://hss.cmu.edu/philosophy/TETRAD/tetrad.html 
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genetic factors, he was less confident, we guessed that between 0% and 60% of the 

variance in Med and Piq is from measurement error, with 30% as our best guess. Thus I 

began the Bayesian analysis by specifying a multivariate normal prior over the model’s 

13 parameters.  The part of the prior involving measurement error is given in Table 2.  

The prior is otherwise uninformative. 

 
Table 2. Multivariate Normal prior distribution over the measurement error 
parameters in the errors-in-all-variables model. 

Parameter Mean (µ0) Standard Deviation (σ0) 
σ2(εLead) 0.200 0.10 
σ2(εMed) 0.300 0.15 
σ2(εPiq) 0.300 0.15 

 

 Using this partially informative prior, I produced 50,000 iterations with the Gibbs 

sampler in TETRAD III.  The sequence converged immediately. Table 3 shows the 

results of this run, and the histogram in Figure 3 shows the shape of the marginal 

posterior over β1, the crucial coefficient representing the influence of actual lead 

exposure on children’s IQ. The results support Needleman’s original conclusion, but do 

not require unrealistic assumptions about the complete absence of measurement error, or 

assumptions about exactly how much measurement error is present, or assumptions about 

upper bounds on the measurement error for the remaining regressors.  

Table 3. Gibbs sample statistics for the causal parameters in the errors-in-all-
variables model. 

 θ̂ EAP  θ̂MDAP s( θ̂ EAP) θ̂ .025 θ̂ .975 
β1 -0.215 -0.211 0.097 -0.420 -0.038 
β2 0.332 0.307 0.397 -0.358 1.252 
β3 0.321 0.304 0.391 -0.459 1.128 

The Bayesian point estimate of the coefficient reflecting the effect of Actual Lead 

exposure on Ciq is negative, and since the central 95% region of the posterior lies 

between -0.420 and -0.038, I conclude that exposure to environmental lead is indeed 

deleterious according to this model and my prior uncertainty over the parameters. 

                                                                                                                                                 
8 For details about the Gibbs sampler implementation, see Scheines, et al., 1998. 
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 Figure 3. Histogram of relative frequency of β1 in Gibbs sample 

Although my uncertainty about the amount of measurement error associated with Med 

and Piq, which are proxies for environmental stimulation and genetic factors 

respectively, is not sufficient to make β1 insignificant, it is sufficient to make β2 and β3 

insignificant. That is, the central 95% of the sample from the posterior over both β2 and 

β3 includes 0. Since these coefficients represent the effect of environmental stimulation 

and genetic factors on a child’s cognitive abilities, it seems reasonable to insist that they 

are at least positive in sign. I thus reran the analysis, but imposed 0 as a lower bound on 

β2 and β3. The posterior distribution over β1 was slightly less diffuse, and centered over 

roughly the same value.   

In fact I sampled from several posteriors corresponding to different priors, and in 

each case I got similar results. Although the size of the Bayesian point estimate for 

Acutal Lead’s influence on Ciq moved up and down slightly, its sign and significance 

(the 95% central region in the posterior over β1 was always below zero) were robust. 

I also ran the Gibbs sampler on an errors-in-all-variables model that included all six 

of Needleman’s original regressors. In this case the bounds Klepper derived proved 
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important.  Recall that the measurement error on Fab was required to be below .06. 

Using a prior in which substantial mass violated this bound, the sampler did not 

converge.    

 

Table 4. Informative part of the prior in the errors-in-all-variables model including 
all six original regressors. 

Parameter Mean (µ0) Standard Deviation (σ0) 
σ2(εLead) 0.05 0.05 
σ2(εMed) 0.10 0.10 
σ2(εPiq) 0.10 0.10 
σ2(εFab) 0.05 0.05 
σ2(εMab) 0.05 0.05 
σ2(εNlb) 0.05 0.05 

 

Using a prior that was uninformative except for the parameters I show in Table 4, the 

histogram of values for β1 in the Gibbs sample (Figure 4) was substantially different than 

the one in Figure 3. 
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Figure 4. Gibbs sample from model with six regressors. 
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A full Bayesian analysis would incorporate uncertainty over these and other model 

specifications, and in future work I intend to address this problem.  Given the two errors-

in-all-variables models I have considered here, however, I am highly inclined to favor the 

smaller model suggested by TETRAD II’s analysis. Given this model, which is perfectly 

plausible, the data quite clearly support Needleman’s original conclusion.  

 

References 

 

Casella, G., & George, E.I. (1992). Explaining the Gibbs sampler. The American 

Statistician, 46, 167-174. 

Grant, L., et al., (1983). “Draft air lead criteria document” (Environmental Protection 

Agency, Washington, D.C., 14 November, appendix 12-c. 

 Glymour, C., Spirtes, P. and Scheines, R. (1994). "In Place of Regression," in Patrick 

Suppes: Scientific Philosopher, Paul Humphreys (editor), Vol. 1, Kluwer 

Academic Publishers, Dordrecht, Holland. 

Kiiveri, H. and Speed, T. (1982). Structural analysis of multivariate data: A review. 

Sociological Methodology, Leinhardt, S. (ed.). Jossey-Bass, San Francisco. 

Klepper, S. (1988). Regressor diagnostics for the classical errors-in-variables model. 

Journal of Econometrics, 37, 225-250. 

Klepper, S., & Leamer, E. (1984). Consistent sets of estimates for regressions with 

errors in all variables. Econometrica, 52, 163-183. 

Klepper, S., Kamlet, M., and Frank, R. (1993) Regressor Diagnostics for the Errors-in-

Variables Model - An Application to the Health Effects of Polution, Journal of 

Environmental Economics and Management. 24, 190-211. 

Needleman, H., et. al, (1979). New England Journal of Medecine, 300, 389. 

Needleman, H., Geiger, S., and Frank, R. (1985). “Lead and IQ Scores: A Reanalysis,” 

Science, 227, pp. 701-704. 

Robins, J., and Wasserman, L. (1996). On the Impossibility of Inferring Causation 

from Association Without Background Knowledge, Unpublished manuscript, 

CMU Dept. of Statistics, Pittsburgh, PA. 

 14



Scheines, R. (1993). Causation, Indistinguishability, and Regression. Softstat ‘93: 

Advances in Statistical Software 4. pp. 89-99. Gustav Fischer, New York. 

Scheines, R., Hoijtink, H., & Boomsma, A. (1999). "Bayesian Estimation and Testing 

of Structural Equation Models,"  Psychometrika 64, 1, pp. 37-52. 

Scheines, R., Spirtes, P., Glymour, G., & Meek, C. (1994). TETRAD II: Tools for 

causal modeling. User’s manual. Hillsdale, NJ: Erlbaum.   

Smith, A.F.M., & Roberts, G.O. (1993). Bayesian computation via the Gibbs sampler 

and related Markov chain Monte Carlo methods. Journal of the Royal Statistical 

Society, Series B, 55, 3-23 

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction, and search. 

New York: Springer. 

 15


	Introduction.
	A Brief History of Lead and IQ Research
	Variable Selection with TETRAD III
	Estimating the Parameters of an “Underidentified”

