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1 Introduction 

Practically, causation matters. Juries must decide, for example, whether a pregnant 
mother’s refusal to give birth by caesarean section was the cause of one of her twins 
death. Policy makers must decide whether violence on TV causes violence in life.  
Neither question can be coherently debated without some theory of causation.   
Fortunately (or not, depending on where one sits), a virtual plethora of theories of 
causation have been championed in the third of a century between 1970 and 2004.   

Before we sketch a few of the major ones, however, consider what we might want out 
of a theory of causation.  First, although we can all agree that causation is a relation, what 
are the relata?  Are causes and effects objects, like moving billiard balls?  Are they 
particular events, like the Titanic hitting an iceberg in 1912? Or are they kinds of events, 
like smoking cigarettes and getting lung cancer?  As it turns out, trying to understand 
causation as a relation between particular objects or events is quite a different task than 
trying to understand it as relation between kinds of occurrences or events (See sidebar 1).  

Second, we want a theory to clarify, explain, or illuminate those properties of 
causation we can agree are central.  For example, whatever causation is, it has a direction. 
Warm weather causes people to wear lighter clothing, but wearing lighter clothing does 
not cause warm weather.  A theory that fails to capture the asymmetry of causation will 
be unsatisfying.  

Third, we know that in many cases one thing can occur regularly before another, and 
thus appear to be related as cause and effect, but are in fact effects of a common cause, a 
phenomenon we will call spurious causation.  For example, flashes of lightning appear 
just before and seem to cause the thunderclaps that follow them, but in reality both are 
effects of a common cause: the superheating of air molecules from the massive static 
electric discharge between the earth and the atmosphere. A good theory of causation 
ought to successfully separate cases of real from spurious causation.    

                                                
1 (in press: New Dictionary of the History of Ideas, Charles Scribner and Sons) 
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The history of thinking on causation from 1970-2004 can be organized in many ways, 
but the one that separates matters best, both temporally and conceptually is captured 
eloquently by Clark Glymour: 

 
Philosophical theories come chiefly in two flavors, Socratic and 
Euclidean. Socratic philosophical theories, whose paradigm is The Meno, 
advance an analysis (sometimes called an “explication”), a set of 
purportedly necessary and sufficient conditions for some concept, giving 
its meaning; in justification they consider examples, putative 
counterexamples, alternative analyses and relations to other concepts. 
Euclidean philosophical theories, whose paradigm is The Elements, 
advance assumptions, considerations taken to warrant them, and 
investigate the consequences of the assumptions. Socratic theories have 
the form of definitions. Analyses of “virtue,” “cause,” “knowledge,” 
“confirmation,” “explanation,” are ancient and recent examples. Euclidian 
theories have the form of formal or informal axiomatic systems and are 
often essentially mathematical: Euclid’s geometry, Frege’s logic, 
Kolmogorov’s probabilities, … . That of course does not mean that 
Euclidean theories do not also contain definitions, but their definitions are 
not philosophical analyses of concepts. Nor does it mean that the work of 
Euclidean theories is confined to theorem proving: axioms may be 
reformulated to separate and illuminate their contents or to provide 
justifications. (Glymour, 2004). 

For causation,  Socratic style analyses dominated from approximately 1970 to the mid 
1980s. By then, it had become apparent that all such these theories either invoked non-
causal primitives that were more metaphysically mysterious than causation itself, or were 
circular, or were simply unable to account for the asymmetry of causation or separate 
spurious from real causation.  Slowly, Euclidean style theories replaced Socratic ones, 
and by the early 1990s a rich axiomatic theory of causation had emerged that combined 
insights from statisticians, computer scientists, philosophers, economists, psychologists, 
social scientists, biologists, and even epidemiologists.   

 

2 The 1970s and Early 1980s: The Age of Causal Analyses  

2.1 The Counterfactual Theory 
     In the late 1960s, Robert Stalnaker began the rigorous study of sentences that assert 
what are called contrary to fact conditionals. For example, “If the Sept. 11th, 2001 
terrorist attacks on the U.S. had not happened, then the U.S. would not have invaded 
Afghanistan shortly thereafter.” In his classic 1973 book Counterfactuals, the late David 
Lewis produced what has become the most popular account of such statements.  Lewis’ 
theory rests on two ideas: the existence of alternative “possible worlds,” and a similarity 
metric over these worlds.  For example, it is intuitive that the possible world identical to 
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our own in all details except for the spelling of my wife’s middle name (“Anne” instead 
of “Ann”) is closer to the actual world than one in which the asteroid that killed the 
dinosaurs missed the earth and primates never evolved from mammals.   

For Lewis, the meaning and truth of counterfactuals depend on our similarity metric 
over possible worlds.  When we say “if A hadn’t happened, then B wouldn’t have 
happened either,” we mean that for each possible world W1 in which A didn’t happen and 
B did happen, there is at least one world W2 in which A didn’t happen and B didn’t 
happen that is closer to the actual world than W1.  Lewis represents counterfactual 
dependence with the symbol: →, so P → Q means that, among all the worlds in which 
P happens, there is a world in which Q also happens that is closer to the actual world than 
all the worlds in which Q doesn’t.    

That there is some connection between counterfactuals and causation seems obvious.  
We see one event A followed by another B.  What do we mean when we say A caused B?  
We might well mean that if A hadn’t happened, then B wouldn’t have either. If the 
Titanic hadn’t hit an iceberg, it wouldn’t have sunk. Formalizing this intuition in 1973, 
Lewis analyzed causation as a relation between two events A and B that both occurred 
such that two counterfactuals hold: 

1. A  →   B,  and 
2. ~A  →  ~B 

 
Because A and B both already occurred, 1 is trivially true, so we need only assess 2 in 
order to assess whether A caused B.   

Is this analysis satisfactory? Even if possible worlds and a similarity metric among 
them are clearer and less metaphysically mysterious than causal claims, which many 
dispute, there are two major problems with this account of causation.  First, in its original 
version it just misses cases of overdetermination or pre-emption, that is, cases in which 
more than one cause was present and could in fact have produced the effect (see sidebar 
2).2    

Even more importantly, Lewis’ counterfactual theory has a very hard time with the 
asymmetry of causality and only a slightly better time with the problem of spurious 
causation.  Consider a man George who jumps off the Brooklyn Bridge and plunges into 
the East River.3  On Lewis’ theory, it is clear that it was jumping that caused George to 
plunge into the river, because had George not jumped, the world in which he didn’t 
plunge is closer to the actual one than any in which he just happened to plunge for some 
other reason at approximately the same time.  Fair enough.  But consider the opposite 

                                                
2 Lewis (2000) and many others have amended the counterfactual account of causation to handle 

problems of overdetermination and pre-emption, but neither his nor others have yet satisfactorily handled 
the asymmetry of causality.  

3 This example is originally from Horacio Arlo-Costa,  and discussed in Hausman, 1998, pp. 116-117. 
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direction: if George hadn’t plunged, then he wouldn’t have jumped. Should we assent to 
this counterfactual? Is a world in which George didn’t plunge into the river and didn’t 
jump closer to the real one than any in which he didn’t plunge but did jump?  Most 
everyone except Lewis and his followers would say yes.  Thus on Lewis’ account 
jumping off the bridge caused George to plunge into the river, but plunging into the river4 
also caused George to jump. 

For the problem of spurious causation, consider Johnny, who gets infected with the 
measles virus, runs a fever and shortly thereafter gets a rash.  Is it reasonable to assert 
that if Johnny had not gotten a fever, he would not have gotten a rash?  Yes, but it was 
not the fever that caused the rash, it was the measles virus.  Lewis responded to this 
problem  by prohibiting “backtracking” (Lewis, 1986), and  to the problem of 
overdetermination and pre-emption with an analysis of “influence” (Lewis, 2000), but the 
details are beyond our scope. 

2.2 Mackie’s Regularity Account 
Where David Lewis tried to base causation on counterfactuals, John Mackie tried to 

extend Hume’s idea that causes and effects are “constantly conjoined,” and use the 
logical idea of necessary and sufficient conditions to make things clear.  In 1974, Mackie 
developed an analysis of causation in some part aimed at solving the problems that 
plagued Lewis’ counterfactual analysis, namely overdetermination and pre-emption.  
Mackie realized that many factors combine to produce an effect, and it is only our 
idiosyncratic sense of what is “normal” that draws our attention to one particular feature 
of the situation, such as hitting the iceberg.  It is a set of factors, e.g., A: air with 
sufficient oxygen, B: a dry pile of combustible newspaper and kindling, and C: a lit 
match that combine to cause D: a fire.   Together the set of factors A, B, and C are 
sufficient for D, but there might be other sets that would work just as well, for example A, 
B, and F: a bolt of lightning.  If there was a fire caused by a lit match, but a bolt of 
lightning occurred that also would have started the fire, then Lewis’ account has trouble 
saying that the lit match caused the fire, because the fire would have started without the 
lit match, or put another way, the match wasn’t necessary for starting the fire.  Mackie 
embraces this idea, and says that X is a cause of Y just in case X is an Insufficient  but 
Necessary part of an Unnecessary but Sufficient set of conditions for Y, that is, an INUS 
condition.  The set of conditions that produced Y need not be the only sufficient set,  thus 
the set isn’t necessary, but X should be an essential part of a set that is sufficient for Y.  

Again, however, the asymmetry of causality and the problem of spurious causation 
wreak havoc with Mackie’s  INUS account of causation.  Before penicillin, 
approximately ten percent of those people who contracted syphilis eventually got a 
debilitating disease called paresis, and nothing doctors could measure seemed to tell them 

                                                
4 As distinct from the idea or goal of plunging into the river. 
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anything about which syphilitics got paresis and which did not. As far as we know, 
paresis can result only from syphilis, so having paresis is by itself sufficient for having 
syphilis.  Consider applying Mackie’s account to this case.  P paresis is an INUS 
condition for of syphilis, because it is sufficient by itself for having syphilis, but it is 
surely not a cause of it.    

Consider the measles.  If we suppose that when people are infected, they either show 
both symptoms (the fever and rash) or their immune system controls it and they show 
neither, then the INUS theory gets things wrong. The fever is a necessary part of a set 
that is sufficient for the rash: {fever, infected with measles virus}, and for that matter the 
rash is a necessary part of a set that is sufficient for fever: {rash, infected with measles 
virus}.  So, unfortunately, on this analysis fever is an INUS cause of rash and rash is also 
a cause of fever.   

2.3 Probabilistic Causality 
Twentieth century physics has had a profound effect on a wide range of ideas, 

including theories of causation. In the years between about 1930 and 1970, the 
astounding and unabated success of quantum mechanics forced most physicists to accept 
the idea that, at bedrock, the material universe unfolds probabilistically.  Past states of 
sub-atomic particles, no matter how finely described, do not determine their future states, 
they merely determine the probability of such future states.  Embracing this brave new 
world in 1970, Patrick Suppes published a theory of causality that attempted to reduce 
causation to probability.  Whereas electrons have only a propensity, that is, an objective 
physical probability to be measured at a particular location at a particular time, perhaps  
macroscopic events like getting lung cancer  have only a probability as well. We observe 
that some events seem to quite dramatically change the probability of other events, 
however, so perhaps causes change the probability of their effects. If Pr(E), the 
probability of an event E, changes after we are told that another event C has occurred, 
notated  Pr(E | C), then we say E and C are associated.  If not, then we say they are 
independent. Suppes was quite familiar with the problem of asymmetry, and he was well 
aware that association and independence are perfectly symmetric, that is,      Pr(E) = Pr(E 
| C) ⇔ Pr(C) = Pr(C | E).  He was also familiar with the problem of spurious causation, 
and knew that two effects of a common cause could appear associated.  To handle 
asymmetry and spurious causation, he used time and the idea of conditional 
independence.  His theory of probabilistic causation is simple and elegant: 
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1. C is a prima facie cause of E if C occurs before E in time, and C and E are 
associated, i.e., Pr(E) < Pr(E | C).  

2. C is a genuine cause of E if C is a prima facie cause of E, and there is no 
event Z prior to C such that C and E are independent conditional on Z, i.e., 
there is no Z such that Pr(E | Z) = Pr(E | Z, C).    

Without doubt, the idea of handling the problem of spurious causation by looking for 
other events Z that screen off C and E, although anticipated by Hans Reichenbach, I. J. 
Good and others, was a real breakthrough, and remains today a key feature of any 
metaphysical or epistemological account that connects causation to probability.  Many 
other writers have elaborated a probabilistic theory of causation with metaphysical 
aspirations, e.g.,. Ellery Eells, David Papineau, Brian Skyrms, and Wolfgang Spohn. 

Probabilistic accounts have drawn criticism on several fronts. First, defining causation 
in terms of probability just replaces one mystery with another.  Although we have 
managed to produce a mathematically rigorous theory of probability, the core of which is 
now widely accepted, we have not managed to produce a reductive metaphysics of 
probability. It is still as much a  mystery as causation.  Second, there is something 
unsatisfying about using time explicitly to handle the asymmetry of causation and at least 
part of the problem of spurious causation (we can only screen off spurious causes with a 
Z that is prior in time to C).   

 
 

+ 

- 

+ 

Smoking

Exercise

Heart 
Disease

 
Figure 1: Cartwright’s Counterexample 

Third, as Nancy Cartwright persuasively argued in 1979, we cannot define causation 
with probabilities alone, we need causal concepts in the definiens as well as the 
definiendum. Consider her famous (even if implausible) hypothetical example, shown in 
Figure 1: smoking might cause more heart disease, but it might also cause exercise, 
which in turn might cause less heart disease.  If the negative effect of exercise on heart 
disease is stronger than the positive effect of smoking, and the association between 
smoking and exercise is high enough, then the probability of heart disease given smoking 
could be lower than the probability of heart disease given not smoking, making it appear 
as if smoking prevents heart disease instead of causing it.   
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The two effects could also exactly cancel, making smoking and heart disease look 
independent.  Cartwright’s solution is to look at the relationship between Smoking and 
heart disease within groups that are doing the same amount of exercise, that is, to look at 
the relationship between smoking and heart disease conditional on exercise, even though 
exercise does not in this example come before smoking as Suppes insists it should.  Why 
doesn’t Suppes allow Zs that are prior to E but after C in time?  Because that would allow 
situations in which although C really does cause E, its influence was entirely mediated by 
Z, and by conditioning on Z it appears as if C is not a genuine cause of E, even though it 
is (Figure 2). 

 
 C Z E

 
Figure 2: Z Mediates the relation between C and E 

In Cartwright’s language: Smoking should increase the probability of heart disease in all 
causally homogenous situations for heart disease.  The problem is circularity.  By 
referring to the causally homogenous situations we invoke causation in our definition.  
The moral Cartwright drew and one that is now widely accepted, is that causation is 
connected to probability, but cannot be defined in terms of it.  

2.4 Salmon’s Physical Process Theory 
A wholly different account of causation comes from Wes Salmon, one of the pre-

eminent philosophers of science in the later half of the 20th century.  In the 1970s, 
Salmon developed a theory of scientific explanation that foundered partly on an 
asymmetry very similar to the asymmetry of causation. Realizing that causes explain 
their effects but not vice versa, Salmon made the connection between explanation and 
causation explicit. He then went on to characterize causation as an interaction between 
two physical processes, not a probabilistic or logical or counterfactual relationship 
between events.  A causal interaction, according to Salmon, is the intersection of two 
causal processes and the exchange of some invariant quantity, like momentum.   For 
example, two pool balls that collide each change directions (and perhaps speed), but their 
total momentum after the collision is (ideally) no different than before.  An interaction 
has taken place, but momentum is conserved.  Explaining the features of a causal process 
is beyond the scope of such a short review article, but Phil Dowe has made them quite 
accessible and extremely clear in a 2000 review article in the British Journal for 
Philosophy of Science. 

It turns out to be very difficult to distinguish real causal processes from psuedo-
processes, but even accepting Salmon’s and Dowe’s criteria, the theory uses time to 
handle the asymmetry of causation and has big trouble with the problem of spurious 
causation.  Again, see Dowe’s excellent review article for details. 
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2.5 Manipulability Theories 
Perhaps the most tempting strategy for understanding causation is to conceive of it as 

how the world responds to an intervention, or manipulation.  Consider a well-insulated, 
closed room containing two people. The room is 58 degrees Fahrenheit, and each person 
has a sweater on.  Later, the room is 78 degrees Fahrenheit and each person has taken 
their sweater off.  If we ask whether it was the raise in room temperature that caused the 
people to peel off their sweaters, or the peeling off of sweaters that caused the room 
temperature to rise, then unless there was some strange signal between the taking off of 
sweaters and turning up a thermostat somewhere, the answer is obvious.  Manipulating 
the room temperature from 58 to 78 degrees will cause people to take off their sweaters,  
but manipulating them to take off their sweaters will not make the room heat up.  

In general, causes can be used to control their effects but effects cannot be used to 
control their causes.  Further, there is an invariance between a cause and its effects that 
does not hold between an effect and its causes.   It doesn’t seem to matter how we change 
the temperature in the room from 58 to 78 degrees or from 78 to 58, the co-occurrence 
between room temperature and sweaters remains.  When the room is 58, people have 
sweaters on.  When the room is 78, they don’t.  The opposite is not true for the 
relationship between the effect and its causes.  It does matter how they come to have their 
sweaters on.  If we let them decide for themselves naturally, then the co-occurrence 
between sweaters and temperature will remain, but if we intervene to make them take 
their sweaters off or put them on, then we will annihilate any co-occurrence between 
wearing sweaters and the room temperature, precisely because the room temperature will 
not respond to whether or not people are wearing sweaters.  Thus, manipulability 
accounts nail the asymmetry problem.   

They do the same for the problem of spurious causation.  Tar-stained fingers and lung 
cancer are both effects of a common cause – smoking. Intervening to remove the stains 
from one’s fingers will not in any way change the probability of getting lung cancer, 
however.   

The philosophical problem with manipulability accounts is circularity, for what is it to 
“intervene” and “manipulate” other than to “cause.”  Intervening to set the thermostat to 
78 is just to cause it to be set at 78.   Manipulation is causation, so defining causation in 
terms of manipulation is, at least on the surface of it, circular.  

Perhaps we can escape from this circularity by separating human actions from natural 
ones.  Perhaps forming an intention and then acting to execute it is special, and could be 
used as a non-causal primitive in a reductive theory of causation.  Writers like von 
Wright and Mackenzie have pursued this line. Others, like Paul Holland, have gone so far 
as to say that we have no causation without human manipulation.  But is this reasonable 
or desirable?  Virtually all physicists would agree that it is the moon’s gravity that causes 
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the tides.  Yet we cannot manipulate the moon’s position or its gravity.   Are we to 
abandon all instances of causation where human manipulation was not involved?  If a 
painting falls off the wall and hits the thermostat, bumping it up from 58 to 78 degrees, 
and a half hour later sweaters come off, are we satisfied saying that the sequence: 
thermostat goes up  room temperature goes up  sweaters come off was not causal?   

Because they failed as reductive theories of causation, manipulability theories drew 
much less attention then perhaps they should have. As Jim Woodward (2003) elegantly 
puts it: 

Philosophical discussion has been unsympathetic to manipulability 
theories:  it is claimed both that they are unilluminatingly circular and that 
they lead to an implausibly anthropocentric and subjectivist conception of 
causation.  This negative assessment among philosophers contrasts sharply 
with the widespread view among statisticians, theorists of experimental 
design, and many social and natural scientists that an appreciation of the 
connection between causation and manipulation can play an important role 
in clarifying the meaning of causal claims and understanding their 
distinctive features. (Woodward,  2003, p. 25). 

 

3 The Axiomatic and Epistemological Turn: 1985-2004 

Although there will always be those unwilling to give up on a reductive analysis of 
causation, by the mid 1980s it was reasonably clear that such an account was not 
forthcoming.  What has emerged as an alternative, however is a rich axiomatic theory that 
clarifies the role of manipulation in much the way Woodward wants and connects rather 
than reduces causation to probabilistic independence, as Nancy Cartwright insisted. The 
modern theory of causation is truly interdisciplinary, and fundamentally epistemological 
in focus. That is, it allows a rigorous and systematic investigation of what can and cannot 
be learned about causation from statistical evidence. Its intellectual beginnings go back at 
least eighty years. 

Path Analysis 

Sometime around 1920, the brilliant geneticist Sewall Wright realized that standard 
statistical tools were too thin to represent the causal mechanisms he wanted to model. He 
invented “path analysis” to fill the gap. Path analytic models are causal graphs (like those 
shown in Figure 1 and Figure 2) that quantify the strength of each arrow, or direct cause, 
which allowed Wright to quantify and estimate from data the relative strength of two or 
more mechanisms by which one quantity might affect another.  By mid-century, 
prominent economists (e.g. Herbert Simon and Herman Wold), and sociologists (e.g., 
Hubert Blalock and Otis Dudley Duncan) had adopted this representation. In several 
instances they made important contributions, either by expanding the representational 
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power of path models, or by articulating how one might distinguish one causal model 
from another with statistical evidence.   

Path models, however, did nothing much to help model the asymmetry of causation.  
 

X Y ε 
Y = β X + ε 
ε ~ N(0,σ2) 

β 

Path Diagram Statistical Model 

 
Figure 3: Path Analytic Model of X  Y 

In the simplest possible path model representing that X is a cause of Y (Figure 3), we 
write Y as a linear function of X and an “error” term ε that represents all other 
unobserved causes of Y besides X. The real-valued coefficient β quantifies X’s effect on 
Y.  Nothing save convention, however, prevents us from inverting the equation and 
rewriting the statistical model as:   

X = α Y + δ,           where α = 1/β  and   δ = - 1/β ε 

This algebraically equivalent model makes it appear as if Y is the cause of X instead of 
vice versa.  Equations are symmetric, but causation is not. 

Philosophy 

In the early 1980s, two philosophers of causation, David Papineau and Dan Hausman, 
paying no real attention to path analysis, nevertheless provided major insights into how to 
incorporate causal asymmetry into path models and probabilistic accounts of causation.  
Papineau, in a 1985 article titled “Causal Asymmetry” considered the difference between 
1) two effects of a common cause and 2) two causes of a common effect (Figure 4). 

 Smoking

Tar-stained 
fingers 

Lung  
cancer 

Asbestos

 
Figure 4: The Asymmetry of Common Cause and Common Effect 

He argued that two effects of a common cause (tar-stained fingers and lung cancer) are 
associated in virtue of having a common cause (smoking), but that two causes of a 
common effect (smoking and asbestos) are not associated in virtue of having a common 
effect (lung cancer).  In fact, he could have argued that the two effects of a common 
cause C are associated in virtue of C, but are independent conditional on C, whereas the 
two causes of a common effect E are not associated in virtue of E, but are associated 
conditional on E.   



 11

Dan Hausman, in a 1984 article (and more fully in a 1998 book Causal Asymmetries) 
generalized this insight still further by developing a theory of causal asymmetry based on 
“causal connection.” X and Y are causally connected if and only if X is a cause of Y,  Y a 
cause of X, or there is some common cause of both X and Y.  Hausman connects 
causation to probability by assuming that two quantities are associated if they are 
causally connected, and independent if they are not.  How does he get the asymmetry of 
causation?  By showing that when X is a cause of Y, anything else causally connected to 
X is also connected to Y, but not vice versa (see sidebar 3).  

Papineau and Hausman handle the asymmetry of causation by considering not just the 
relationship between the cause and effect, but rather by considering the way a cause and 
effect relate to other quantities in an expanded system.  How does this help locate the 
asymmetry in the path analytic representation of causation?  First, consider the apparent 
symmetry in the statistical model in Figure 3.  X and ε are not causally connected, and 
have Y as a common effect. Thus following both Papineau and Hausman, we will assume 
that X and ε are independent, and that in any path model properly representing a direct 
causal relation C  E, C and the error term for E will be independent.  But now consider 
the equation X = α Y + δ, which we used to make it appear that Y  X.  Because of the 
way δ is defined, Y and δ will be associated, except for extremely rare cases. 

Statistics and Computer Science 

Path analytic models have two parts, a path diagram and a statistical model (see Figure 
3).  A path diagram is just a directed graph, a mathematical object very familiar to 
computer scientists and somewhat familiar to statisticians.  As we have seen,  association 
and independence are intimately connected to causation, and they happen to be one of the 
fundamental topics in probability and statistics.   

Paying little attention to causation, in the 1970s and early 1980s statisticians Phil Dawid, 
David Spiegelhalter, Nanny Wermuth, David Cox, Stefan Laurizten and others developed 
a branch of statistics called graphical models that represented the independence 
relationships among a set of random variables with undirected and directed graphs. 
Computer scientists interested in studying how robots might learn began to use graphical 
models to represent and selectively update their uncertainty about the world, especially 
Judea Pearl and his colleagues at UCLA.  By the late 1980s, Pearl had developed a very 
powerful theory of reasoning with uncertainty using Bayes Networks and the Directed 
Acyclic Graphs (DAGs) attached to them.  Although in 1988 he eschewed interpreting 
Bayes Networks causally, Pearl made a major epistemological breakthrough by 
beginning the study of indistinguishability.  He and Thomas Vermacharacterized when 
two Bayes Networks with different DAGs entail the same independencies, and are thus 
empirically indistinguishable on evidence consisting of independence relations.  

Philosophy Again 
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In the mid 1980s, Peter Spirtes, Clark Glymour, and Richard Scheines (SGS 
hereafter), philosophers working at Carnegie Mellon, recognized that path analysis was a 
special case of Pearl’s theory of DAGs. Following Hausman, Papineau, Cartwright and 
others trying to connect rather than reduce causation to probabilistic independence, they 
explicitly axiomatized the connection between causation and probabilistic independence 
in accord with Pearl’s theory and work by statisticians Kiiveri and Speed. Their theory of 
causation is explicitly non-reductionist.  Instead of trying to define causation in terms of 
probability, counterfactuals, or some other relation, they are intentionally agnostic about 
the metaphysics of the subject. Instead, their focus is on the epistemology of causation, in 
particular on exploring what can and cannot be learned about causal structure from 
statistics concerning independence and association. SGS formulate several axioms 
connecting causal structure to probability, but one is central: 

Causal Markov Axiom: Every variable is probabilistically independent of 
all of its non-effects (direct or indirect), conditional on its immediate 
causes.   

The axiom has been the source of a vigorous debate,5 but it is only half of the SGS 
theory.  The second half involves explicitly modeling the idea of a manipulation,  or 
intervention.  All manipulability theories conceive of interventions as coming from 
outside the system.  SGS model an intervention by adding a new variable external to the 
system which: 

1. is a direct cause of exactly the variable it targets, and 
2. the effect of no variable in the system,   

 
and by assuming that the resulting system still satisfies the Causal Markov axiom.  

If the intervention completely determines the variable it targets, then the intervention 
is ideal.  Since an ideal intervention determines its target and thus overrides any influence 
the variable might have gotten from its other causes, SGS model the intervened system 
by “x-ing out” the arrows into the variable ideally intervened upon. In Figure 5-a for 
example, we show the causal graph relating room temperature and wearing sweaters.  In 
Figure 5-b, we show the system in which we have intervened upon room temperature 
with I1, and in Figure 5-c, the system after an ideal intervention I2 on sweaters On.   

                                                
5 See the British Journal for the Philosophy of Science between 1999 and 2002. 
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Figure 5: Ideal Interventions in SGS Theory 

This basic perspective on causation, elaborated powerfully and presented elegantly by  
Judea Pearl (2000), has also been adopted by other prominent computer scientists (e.g.,  
David Heckerman and Greg Cooper), psychologists (Alison Gopnik and Patricia Cheng), 
economists (e.g., David Bessler, Clive Granger, and Kevin Hoover), epidemiologists 
(Sander Greenland and Jamie Robins, biologists (e.g., William Shipley), statisticians 
(e.g., Stefan Lauritzen, Thomas Richardson and  Larry Wasserman), and philosophers 
(e.g., Jim Woodward and Dan Hausman).    

How is the theory epistemological?  Researchers have been able to characterize 
precisely, for many different sets of assumptions above and beyond the Causal Markov 
axiom, the class of causal systems that are empirically indistinguishable, and they have 
also been able to automate discovery procedures that can efficiently search for such 
indistinguishable classes of models, including models with hidden common causes.  Even 
in such cases, we can still sometimes tell just from the independencies and associations 
among the variables measured that one variable is not a cause of another, that two 
variables are effects of an unmeasured common cause, or that one variable is a definite 
cause of another. We even have an algorithm for deciding, from data and the class of 
models that are indistinguishable on these data, when the effect of an intervention can be 
predicted and when it cannot.  For a compendium of these results and dozens of 
applications to real data, see (Spirtes, Glymour and Scheines, 2000; Pearl, 2000; Glymour 
and Cooper, 1999).  

 

Like any new theory in town, the theory has its detractors.  Philosopher Nancy 
Cartwright, although having herself contributed heavily to the axiomatic theory, is the 
most vocal recent critic of its core axiom, the Causal Markov axiom.  Cartwright 
maintains that common causes do not always screen off their effects.  Her chief 
counterexample involves a chemical factory, but the example is formally identical to 
another that is easier to understand. Consider a TV with a balky on/off switch. When 
turned to “on,” the switch doesn’t always make the picture and sound come on, but 
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whenever it makes the sound come on, it also makes the picture come on (Figure 6).  The 
problem is this: knowing the state of the switch doesn’t make the sound and the picture 
independent.  Even having been told that the switch is on, for example, also being told 
that the sound is on adds information about whether the picture is also on.   

 

Switch 
Circuit 
Closed 

Sound

Picture
 

Figure 6: Non-screening off 

The response of SGS and many others (e.g., Hausman and Woodward), is that it only 
appears as if we do not have screening off because we are not conditioning on all the 
common causes, especially those more proximate to the effects in question. They argue 
that we must condition on the Circuit Closed, and not just on the Switch, in order to 
screen off Sound and Picture.   

A deeper puzzle along these same lines arises from quantum mechanics.  In a famous 
thought experiment, Einstein, Podolosky, and Rosen consider a coupled system of 
quantum particles that are separated gently and allowed to diverge.  Each particle is in 
superposition, that is, it has no definite spin until it is measured.  Bell’s famous inequality 
shows that no matter how far apart we allow them to drift, the measurements on one 
particle will be highly correlated with the other, even after we condition on the state of 
the original coupled system. There are no extra hidden variables (common causes) we 
could introduce to screen off the measurements of the distant particles. Although the 
details are quite important and nothing if not controversial, it looks as if the Causal 
Markov axiom might not hold in quantum mechanical systems.  Why it should hold in 
macroscopic systems when it might not hold for their constituents is a mystery.  

The SGS model of an intervention incorporates many controversial assumptions.  In a 
recent tour-de-force, however, Jim Woodward (2003) works through all the philosophical 
reasons why the basic model of intervention adopted by the interdisciplinary view is 
reasonable.  For example, Woodward considers why a manipulation must be modeled as 
a direct cause of only the variable it targets. Not just any manipulation of our roomful of 
sweater wearing people will settle the question of whether sweater wearing causes the 
room temperature.  If we make people take off their sweater by blowing super hot air on 
them - sufficient to also heat the room - then we have not independently manipulated just 
the sweaters.  Similarly, if we are testing to see if confidence improves athletic 
performance, we can’t intervene to improve confidence with a muscle relaxer that also 
reduces motor coordination. These manipulations are “fat hand” - they directly cause 
more than they should. 
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Woodward covers many issues like this one, and develops a rich philosophical theory 
of intervention that is not reductive but is illuminating and rigorously connects the wide 
range of ideas that have been associated with causation.  For example, the idea of an 
independent manipulation illuminates and solves the problems that we pointed out earlier 
when discussing the counterfactual theory of causation.  Instead of assessing 
counterfactuals like 1) George would not have plunged into the East River had he not 
jumped off the Brooklyn Bridge,  and 2) George would not have jumped off the bridge 
had he not plunged into the East River, we should assess counterfactuals about 
manipulations: 1’) George would not have plunged into the East River had he been 
independently manipulated to not jump off the Brooklyn Bridge,  and 2’) George would 
not have jumped off the bridge had he been independently manipulated not to have 
plunged into the East River.   The difference is in how we interpret “independently 
manipulated.”  In the case of 2’, we mean if we assign George to not plunging but leave 
everything else as it was, e.g., if we catch George just before he dunks.  In this way of 
conceiving of the counterfactual, George would have jumped off the bridge, and so we 
can recover the asymmetry of causation once we augment the counterfactual theory with 
the idea of an independent manipulation, as Woodward argues. 

 

4 Conclusion 

Although the whirlwind tour in this short article is woefully inadequate, the references 
below (and especially their bibliographies) should be sufficient to point interested readers 
to the voluminous literature on causation produced in the last 30 years.  Although vast 
and somewhat inchoate, it is safe to say that no reductive analysis of causation has 
emerged from this literature still afloat and basically sea-worthy.  What I have described 
as the recent interdisciplinary theory of causation takes direct causation as a primitive, 
defines intervention from direct causation, and then connects causal systems to 
probabilities and statistical evidence through axioms, including the Causal Markov 
Axiom. Although it provides little comfort for those hoping to analyze causation 
Socratically, the theory does open the topic of causal epistemology in a way that has 
affected statistical and scientific practice, hopefully for the better.  Surely that is some 
progress.   
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Sidebar 1:  Event Causation vs. Causal Generalizations 

Legal cases and accident investigations usually deal with a particular event and ask 
what caused it.  For example, when in February 2003 the Space Shuttle Columbia burned 
up during re-entry, investigators looked for the cause of the disaster.  In the end, they 
concluded that a chunk of foam insulation that broke off and hit the wing during launch 
was the cause of a rupture in the insulating tiles, which was the cause of the shuttle’s 
demise during re-entry. Philosophers call this event causation, or actual causation, or 
token-causation.   

Policy makers, statisticians and social scientists usually deal with kinds of events, like 
graduating from college, or becoming a smoker, or playing lots of violent video games.  
For example, epidemiologists in the 1950s and 1960s looked for the kind of event that 
was causing a large number of people to get lung cancer, and they identified smoking as a 
primary cause.  Philosophers call this type-causation, or causal generalization, or 
causation among variables.  

The properties of causal relationships are different for actual causation and for causal 
generalizations. Actual causation is typically considered transitive, anti-symmetric, and 
irreflexive.  If we are willing to say that one event A, say the Titanic hitting an iceberg on 
April 12th, 1912, caused another event B, its hull ripping open below the water line and 
taking on water moments later, which in turn caused a third event C, it sinking a few 
hours later, then surely we should be willing to say that event A (hitting the iceberg) 
caused event C (sinking).  So actual causation is transitive.6 It is anti-symmetric because 
of how we view time. If a particular event A caused a later event B, then B did not cause 
A.  Finally, single events don’t cause themselves, so causation between particular events 
is irreflexive.   

Causal generalizations, however, are usually but not always transitive, definitely not 
anti-symmetric and definitely not irreflexive.  In some cases causal generalizations are 
symmetric, for example, confidence causes success, and success causes confidence, but 
in others they are not, for example, warm weather causes people to wear less clothing, but 
wearing less clothing doesn’t cause the weather to warm.  So causal generalizations are 

                                                
6 Plenty of philosophers disagree, for example see the work of Christopher Hitchcock.  
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asymmetric, not anti-symmetric, like actual causation.  When they are symmetric, causal 
generalizations are reflexive.  Success breeds more success, etc.   

 

 

Sidebar 2: Overdetermination and Pre-emption 

A spy, setting out to cross the desert with some key intelligence, fills his canteen with 
just enough water for the crossing and settles down for a quick nap. While he is asleep, 
Enemy A sneaks into his tent and pokes a very small hole in the canteen, and a short 
while later enemy B sneaks in, and adds a tasteless poison.  The spy awakes, forges ahead 
into the desert, and when he goes to drink from his canteen discovers it is empty and dies 
of thirst before he can get water.  What was the cause of the spy’s death?  According to 
the counterfactual theory, neither enemy’s action caused the death.  If enemy A hadn’t 
poked a hole in the canteen, then the spy still would have died by poison.  If enemy B 
hadn’t put poison into the canteen, then he still would have died from thirst.  Their 
actions overdetermined the spy’s death, and the pinprick from enemy A pre-empted the 
poison from enemy B. 

In the beginning of the movie Magnolia, a classic causal conundrum is dramatized.  A 
15-year-old boy goes up to the roof of his 10-story apartment building, ponders the abyss 
and jumps to his death.  Did he commit suicide?  It turns out that construction workers 
had installed netting the day before that would have saved him from the fall, but as he is 
falling past the 5th story, a gun is shot from inside the building by his mother and the 
bullet kills the boy instantly.  Did his mother murder her son?  As it turns out, his mother 
fired the family rifle at his drunk stepfather but missed and shot her son by mistake. She 
fired the gun every week at approximately that time after their horrific regular argument 
which the boy cited as his reason for attempting suicide, but the gun was never usually 
loaded.  This week the boy secretly loaded the gun without telling his parents, 
presumably with the intent of causing the death of his stepfather.  Did he, then, in fact 
commit suicide, albeit unintentionally? 
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Sidebar 3: The asymmetry of causation through causal connection 

Two variables A and B are “causally connected” is either A is a cause of B, B a cause 
of A, or a third variable causes them both.  If causation is transitive, then it turns out that 
everything causally connected to X is connected to its effects,  but not everything 
connected to Y is connected to its causes. When X  Y, everything causally connected 
to X is causally connected to Y (Figure 7 -A), but something causally connected to Y is 
not necessarily causally connected to X (Figure 7-B).  
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Figure 7: The  Asymmetry in the Transitivity of Causal Connection 

 


