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Exploring Causal Structure
with the TETRAD Program

Clark Glymour, Richard Scheines and Peter Spirtes*

1. INTRODUCTION

This paper describes some aspects of a new approach to the
search for adequate causal explanations of nonexperimental and
quasi-experimental data. The ideas are embodied in a computer pro-
gram, TETRAD, and are described in much more detail in a recent
book, Discovering Causal Structure: Artificial Intelligence, Philosophy of
Science and Statistical Modeling (Glymour et al. 1987). In addition, some
new results about our methods are reported in what follows.

For quantitative sociologists and psychometricians, the methods
should have a familiar heritage. They are computerized extensions of
ideas that were proposed in the early days of correlation analysis by
followers of Charles Spearman. In more recent decades, Herbert Simon,
Hubert Blalock, Herbert Costner, O. D. Duncan, and many others
have worked on model specification through the analysis of constraints
on covariances; Simon not only contributed to some of the central
ideas connecting multivariate analysis with causal explanation, he is
also the most articulate exponent of the role of heuristic search in
scientific discovery. The TETRAD program uses new mathematical
results to combine these lines of work into a computer package to aid in
model specification. In what follows, we briefly describe the kind of
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problem to which the program is addressed, the mathematical results
that make it possible, and the search strategy used, and we give a
number of illustrations of the application of the procedures.

2. MODEL SPECIFICATION PROBLEMS

Social science research papers that use causal modeling tech-
niques usually contain an explicit specification problem: Something about
causal relations among measured or unmeasured variables is unknown
and is to be discovered. Examples abound:

1. Maruyama and McGarvey (1980) are concerned with whether
variation in a latent variable interpreted as student peer popularity
causes variation in a latent variable interpreted as disposition for
academic achievement, or whether the causal relation is in the other
direction, or whether the variables have no direct effects on one
another.

2. Miller, Slomczynski, and Schoenberg (1981) and Schoenberg and
Richtand (1984) are concerned with whether correlations among
responses to a survey questionnaire can be accounted for by a single
latent variable, or whether further causal dependencies are needed
to explain the data, and if so, what dependencies.

3. McPherson, Welch, and Clark (1977) are concerned with whether
correlations among responses to a questionnaire administered to the
same cohort at two different times can be explained as the result of
a single latent factor acting at each time, or whether further causal
dependencies are present.

In each of these examples, and in many other modeling prob-
lems, a partial model is specified, and the researchers are interested in
how, if at all, it should be extended. Sometimes the number of a priori
possible extensions is very large, even in cases such as these. Costner
and Schoenberg (1973) discuss a model of industrial and political
development to which they recommend adding two additional causal
connections (see Figure 1). Two directed edges or correlated errors can
be added to their initial model in more than 9,900 different ways.

There is often no well-confirmed justification even for the initial,
partial model, which means that a serious scientific case requires
the consideration of alternative initial models. A recent study by
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FIGURE 1. Costner and Schoenberg’s initial model.
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Timberlake and Williams (1984), for example, treats data for four
variables concerning foreign investment and economic and political
development in “peripheral” nations. Parameter estimates from a
particular regression model are used to support their causal conclu-
sions, even though there are 262,144 alternative specifications of the
connections among four variables (including models with correlated
errors, but not counting latent variable models), which include several
plausible models that explain patterns in the Timberlake and Williams
data, that are testable, that show excellent fit, and that support causal
hypotheses contrary to the ones Timberlake and Williams favor. The
number of alternatives grows exponentially with the number of mea-
sured variables. Jay Magidson (1977, p. 413) put the problem this
way:
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The problem we face is that there is an infinite
number of ways to formulate a causal model, and it is
not a straightforward matter to determine how to go
about doing it, particularly when the causes are un-
known and/or unobserved. It is important for re-
searchers to formulate not one but many models so
that they can determine whether their conclusions may
differ if they accept a different set of assumptions. It is
also important to follow some general guidelines in
building (formulating) models when the researcher has
limited information about the causal process.

Similar concerns have been voiced by many other authors. Clearly, in
many cases there are a lot of alternative causal models, even granted
the assumption of linearity and the usual statistical assumptions made
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in structural equation modeling. Any real scientific effort, therefore,
has to make a case for the causal hypotheses that are proposed, and it
looks as though that may be a very difficult thing to do. Exactly for
this reason, several critics claim that causal modeling in practice
amounts to a kind of pseudoscience. There are at least three ways in
which a case could be made for the causal assumptions of a model:

1. Prior knowledge or well-justified theory could imply a unique set of
causal assumptions, or at least reduce the alternatives that need to
be considered to a very small number. That is not usually the case
in social scientific work. It is certainly not enough to appeal to
‘““theory” when the theory to which appeal is made has not been
subjected to severe tests and is not well confirmed.

2. Experimental controls could be systematically introduced to isolate
causal effects. That is rarely feasible in social scientific work and has
limited feasibility even in medical science, epidemiology, and other
areas.

3. Using whatever prior knowledge may be available, one could
conduct a systematic search for alternative models, showing that the
proposed explanation provides, or is likely to provide, the best
available explanation of the data.

A considerable body of work in social science methodology has
focused on the third of these alternatives. Although a variety of
approaches to model specification have been sketched, two approaches
have dominated investigations in sociology and related subjects. One of
them, associated with Joreskog and Sérbom (1984) and the LISREL
program, uses maximum likelihood estimation and any of several
associated fitting statistics; the other, illustrated in the work of Blalock,
Costner, Duncan, Simon, and others, compares the constraints implied
by models with constraints satisfied by the data.

2.1. Maximum Likelihood Methods

Maximum likelihood specification techniques focus on elabora-
tions of an initial model. Several techniques have been employed, all of
which share a dependency on properties of maximum likelihood esti-
mates of the parameters in an initial model or in elaborations of the
initial model. Joreskog and Sérbom use a general procedure in the
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more recent editions of the LISREL program. Essentially, the method
is to consider partial derivatives of the LISREL fitting statistic taken
with respect to each of the fixed parameters of the model. Provided the
difference in chi-square values is significant, the method recommends
freeing that fixed (usually at zero) parameter with the largest partial
derivative (and the right sign for the second derivative). McPherson
et al. (1977), who are concerned with whether or not a certain
measurement model is stable over time, examine the size of the
coefficients connecting a latent variable at two different times with the
respective measures of an observed variable at two different times.
Many authors compare correlations computed from an estimated
model with the empirical correlations. Maruyama and McGarvey
(1980), interested in the direction of a hypothetical causal relation
between latent variables, modify their initial model in two ways, once
by adding the hypothetical causal relation in one direction and estimat-
ing the coeflicient with LISREL, and a second time by adding instead
a hypothetical causal relation in the other direction and estimating the
coefficient with LISREL. They then infer that the numerically larger
coeflicient is associated with the real direction of causation.

2.2. Analyzing Constraints on Correlations

Blalock’s (1961) method analyzed the constraints on partial
correlations that are implied by path models. Two models such as those
in Figure 2 can in principle be discriminated empirically because they
robustly imply different constraints on the population covariances. Model
I robustly implies that p,,, =0, but model II does not. A model
robustly implies a constraint if it implies that the constraint is satisfied
no matter what the values of the free linear coefficients of the model

FIGURE 2.
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may be. Blalock called such constraints prediction equations and empha-
sized that they may be used to test a model. The Spearman school,
which originated the analysis of covariance constraints, emphasized
that models that robustly imply empirically correct constraints are to
be preferred to models that are merely consistent with the constraints
for particular values of their linear coeflicients. Similar methodological
ideas were developed for latent variable models by Costner, Duncan,
and others. Multiple indicator latent variable models do not robustly
imply vanishing partial correlations for their measured variables, but
they can in principle be discriminated by the vanishing tetrad differences
they imply. Thus, in Figure 3, model III implies the constraints

P12P34 = P13P24 = P14P235

while model IV implies only that p,;p,, = P40, Costner and
Schoenberg (1973) proposed a kind of mixture of the LISREL and the
constraint analysis approaches. Given a multiple indicator model, their
method for model revision proposed to examine those submodels like
IV and to test them by maximum likelihood chi-square procedures. If
a submodel failed the test, the larger model was to be modified by
correlating an indicator of one of the latent variables in the submodel
with an indicator of the other latent variable in the submodel.

2.3. Comparisons of Maximum Likelihood and Constraint
Analysis Methods

Each of these approaches has advantages and disadvantages,
and the limitations also affect combined methods such as Costner and
Schoenberg’s. The disadvantages of Joreskog and Sérbom’s modifica-
tion procedure in LISREL are that it leads to a narrow “beam” search



EXPLORING CAUSAL STRUCTURE 417

through the space of possible elaborations of a model, it may stop too
soon, and the derivatives of the fitting statistic may miss plausible
modifications. The considerable advantage is that it is computerized
and fast and can therefore be carried out without considerable theoreti-
cal effort or excessive computational demands. Choosing elaborations
on the basis of correlation residuals is known in many cases to be
unreliable (see Herting and Costner 1985). The other methods de-
scribed lack any convincing theoretical justification, although they
sometimes work in the sense that they improve model fit. None of the
methods offers any guidance in constructing an initial model.

The advantage of the analysis of correlation constraints is that it
appeals to intuitions about scientific explanation that go back to the
very beginnings of covariance analysis and that have played a major
role in the historical successes of the natural sciences (see Glymour
et al. [1987] for a discussion of the historical background). The
intuition is that, other things equal, those models that explain patterns
in the data without having to specify particular nonzero values for
various parameters are best. Kepler used the same intuition to argue
for Copernican theory, and Eddington used it to argue for general
relativity. Cannizarro used the same principle to argue for his system of
atomic weights, and it was the fundamental idea behind all the
statistical work done by the Spearman school in the 1920s.

The strategy of searching for models by analyses of constraints
on correlations promises to localize errors in model specification in a
principled way, since particular submodels of a given model may be
responsible for the implication of false constraints. And in principle,
the approach promises guidance in initial model specification. Yet the
disadvantages of the approach may seem overwhelming:

1. No statistical test for vanishing tetrad differences is reported or used
in the sociological literature.

2. Blalock, Costner, and the many other researchers who followed their
lead published no general algorithm for determining the constraints
robustly implied by an arbitrary model. There are scores of papers,
and some books, showing how to use constraints on covariances or
correlations to distinguish between particular sets of alternative
models, but there is no statement of a general algorithm, let alone a
computer implementation. Nothing in the literature, for example,
shows whether or not the property of robustly implying a vanishing
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partial correlation or a vanishing tetrad difference depends on the
distribution assumptions of the model. Heise (1975) gives the basis
for an algorithmic procedure for computing implied constraints
from the graphs of acyclic standardized models, but it is left open
how to calculate the implications when the model is not acyclic, a
problem that we have only partially solved.

3. Save for Costner and Schoenberg’s (1973) mixed and partly infor-
mal procedure, no scheme has been developed for organizing the
search for the elaborations of an arbitrary initial model that will
best explain the constraints satisfied empirically.

3. THE TETRAD PROJECT

In the last several years we have attempted to answer the
technical questions just raised concerning the foundations of the con-
straint analysis strategy and to apply the answers we have obtained to
form a computerized aid for model specification. Our procedures rest
on strong methodological sensibilities, but they are free of many of the
metaphysical concerns that are the focus of other papers in this
volume.

3.1. Causality

We assume only two things about causal relations. Suppose 4
and B are quantities that can take any of a continuum of values in a
population, and assume that the population is unbounded in size. We
assume, first, that if 4 causes B, then B is a function of 4 and perhaps
of other variables. Our specific methods apply when the function is
linear. Second, if A does not cause B and B does not cause A and there
are no common causes of 4 and B, then 4 and B are statistically
independent in the population.

This minimal understanding of causality gives a reading to the
graphs that often accompany or are implicit in linear models: The
graphs encode not only the linear structural equations of the model but
also the independence assumptions of the model.

We do not take any more detailed stand on the nature of
causality because our methods do not depend on these issues.'

' For comments on Holland’s views about causality, see Glymour (1985).
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Because our methods make only these assumptions, they apply
to cases that some would insist do not involve causal relations at all.
Thus, some factor analysis procedures distinguish “measurement mod-
els” from “causal models” or “theoretical models,” and some hold, for
reasons we do not pretend to understand, that relations between a
latent variable and its measured indicators, or relations between differ-
ent measured indicators, are not causal relations. From our perspective,
this is a purely verbal dispute: As long as a model is associated with a
directed graph that represents functional dependencies and statistical
independence assumptions, our methods apply.

Neither do we have any objection to causal models with “latent”
variables.? Since data sets throughout the social and behavioral scien-
ces usually measure only a fragment of the variables that might be
relevant to one another, unmeasured variables should be expected in
plausible causal explanations of many data sets in sociology, eco-
nomics, social psychology, and other areas. Even models that contain
latent variables that are not associated with some factor known to be
directly measurable—e.g., psychometric models—are preferable to
models that do not contain them, provided the latent variable models
have better explanatory power. In Glymour and Spirtes (forthcoming),
we have described one statistically determinable respect in which in
some cases latent variables can have superior explanatory power.

3.2. Mathematical Results

The constraint analysis strategy could be carried out generally
and automatically provided that some mathematical results can be
established.

First, does whether a model implies a vanishing tetrad difference
or a vanishing first-order partial correlation for all values of its linear
coefficients depend on the variances of the independent variables and of
the error terms? If not, then the constraints of these two kinds implied
by a linear model are determined entirely by the directed graph associated

2 We do, however, have various objections to the interpretations often
given to such variables (cf. Blalock 1982).
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with the model. The following theorem has been proved:

Theorem [. For all linear models, the implied tetrad and first-order
partial correlation constraints are independent of the variances of the
independent variables and error terms.

In view of theorem 1, it is proper to speak of the constraints
implied by a graph, since all models that share the same graph of causal
relations will imply the same vanishing tetrad differences and vanish-
ing partial correlations.

Second, given that the constraints implied by a model are
determined by its associated graph of causal relations, what local graph
theoretic properties determine whether or not any particular constraint
is implied? If such properties could be found, then they might be used
in a general algorithm for computing the constraints implied by a
model.

The answers we have found to the second question are a little
complicated, and we give only the simplest case.

Define a trek between vertices vl and 02 in a directed graph G
to be a pair of acyclic paths, one terminating in v1 and one terminating
in 22, having the same origin, called the source of the trek, and
intersecting nowhere save at the origin. We allow one of the paths to be
empty, so that a single path between v1 and v2 also counts as a trek
between vl and v2.

Then we have the following local graph theoretic characteriza-
tion of necessary and sufficient conditions for any graph, whether cyclic
or acyclic, to imply a vanishing first-order partial correlation:

Theorem 2. For any directed graph G and any three distinct variables x,
», and z that are vertices of G, the following two conditions are
equivalent:

1. G implies that p,, —p, p, =0.

2. Every trek between x and z contains y, and either every trek
between y and z is an acyclic path from y to z or every trek
between x and y is an acyclic path from y to x.

A comparably geometric but more complicated necessary and
sufficient condition for the implication of a vanishing tetrad difference
has recently been proved (see Spirtes 1988).
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One can take advantage of these results to construct an al-
gorithm that will compute the vanishing first-order partial correlations
implied by an arbitrary graph and the vanishing tetrad differences
implied by an arbitrary acyclic graph.

Theorem 3. There is an algorithm for computing the vanishing first-order
partial correlations implied by any directed graph and the vanishing
tetrad differences implied by any acyclic graph such that the number
of steps required by the computation increases by no more than the
cube of the number of vertices of the graph.

An easy but important result is that adding additional causal
relations or correlated errors to a graph of causal relations never results
in the implication of additional constraints not implied by the initial graph.

Theorem 4. If graph G is a subgraph of graph G’ and if G’ implies a
vanishing tetrad difference or vanishing first-order partial correlation
among variables occurring in G, then G also implies that vanishing
tetrad difference or vanishing first-order partial correlation.?

3.3. Statistics and Computation

In the 1920s, Spearman’s followers pursued a model specifica-
tion strategy that started, in every case, with a single latent common
cause of every measured variable, compared the implied tetrad con-
straints with the constraints satisfied empirically, and then added
additional latent factors until the modified model implied all and only
the constraints found to be satisfied in the data. The results of the
previous subsection, together with the well-known fact that a one-fac-
tor model implies every possible tetrad equation among the measured
variables, explain why the strategy worked, insofar as it did. In
practice, Spearman’s strategy was limited by the substantive assump-
tions associated with his own psychological theory and by computa-
tional difficulties. Guilford (1936) gave the difficulty of computing the
implied tetrad equations as the chief argument for abandoning con-
straint analysis in favor of factor analysis.

® Because of a typographical error, this result is misstated in one place in
Glymour et al. (1987), but the result stated here is proved there.
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The work of the Spearman school prompted John Wishart
(1929) to investigate the variance of the sampling distribution of tetrad
differences under the assumption that the variables are jointly multi-
normally distributed. Wishart’s results enable us to construct an
asymptotic test of the hypothesis that any particular tetrad difference
vanishes. Tests of hypotheses about vanishing first-order partial corre-
lations can of course be based on the sampling distribution of the
correlation coefficient (see Anderson 1984). For a given data set, a test
of this kind can be automatically conducted separately for each
possible constraint, and the TETRAD program carries out such a
procedure either automatically at a series of significance levels or at a
user-specified significance level. Since in general the tests are not
independent, the procedure is not ideal, but it avoids a vast series of
complicated simultaneous testing problems (see Miller 1981). We re-
gard it as an example of Simon’s recommendation to “satisfice” in
those cases in which the ideal solution is infeasible.

3.4. Automatic Search Strategy

The mathematical results make feasible an automatic search
strategy that shares some features of the strategy of the Spearman
school.

1. Start with a simple model but not necessarily with a one-factor
model.

2. Add directed edges and correlated errors to the graph of the model
until, insofar as possible, you obtain a modified graph (or graphs)
that imply all and only the empirically correct constraints implied
by the initial model.

The strategy is illustrated in Figure 4. TETRAD contains an auto-
matic procedure that carries out a version of this strategy. To make the
program run in tolerable time on personal computers widely available
in 1987, the automatic search is restricted to latent variable multiple
indicator models. New hardware developments and algorithm im-
provements should permit us to relax this restriction in subsequent
versions of the program.
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FIGURE 4.
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3.5. Power

The strategy makes sense only if the constraints considered are
sufficient in many cases to distinguish between alternative models. That
question can be investigated systematically using the TETRAD pro-
gram itself and a little mathematics to generalize the results. We report
here only the simplest relevant results that we have obtained.

Say that a model is skeletal if every measured variable depends
on one and only one latent variable, if no measured variable has a
direct effect or correlated error with any other measured variable, and
if the model is acyclic.

Theorem 5. Consider any set of models consisting of a skeletal model
and all models that can be obtained by adding at most one directed
edge or correlated error to the skeletal model. Assume further that each
latent variable has at least three measured indicators and that there are
at least five measured variables.

Then, all models in such a set imply distinct collections of
vanishing tetrad differences save that

1. if 4 and B are measured indicators of the same latent variable, then
the models formed by adding to the skeleton exactly one of “A
causes B,” “B causes 4,” and “A4 and B have a correlated error”
are indistinguishable from each other;

2. if A is a latent variable and B is a measured indicator of a different
latent variable, then the models formed by adding to the skeleton
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FIGURE 5. Generating skeleton.
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exactly one of “A4 causes B,” “B causes 4,” and “4 and B have a
new common cause” are indistinguishable from each other.

Similar but more complicated results have been obtained for two edge
additions to skeletal models. The power of the result stated here can be
illustrated by a simulation study. Consider the skeletal model in Figure
5. Models with this sort of structure are typical in studies that repeat
measurements for the same cohort at different times. Such simple
skeletal models are often incorrect, and the effect of the common cause
may be confounded with direct effects of earlier measures on later
measures, or with other common causes that produce correlated errors.

Each indicator of the first latent variable can be connected with
each indicator of the second latent variable in three different ways. We
illustrate the possibilities in Figure 6. Each of these elaborations of the
initial model implies a distinct set of tetrad constraints. The inequiv-
alence of these models is shown in Table 1. Every possible tetrad
equation among the six measured variables is listed in a row. A row
contains a y in a column just in case the model corresponding to that
column implies the equation listed in that row.*

It should, therefore, be possible to distinguish data sets gener-
ated by the three models in Figure 6. In fact, the point is much more
general. Rather than focus on the three different ways of connecting x3

* The tetrad equation Pet.x2Pys. x4 = Pyt 1300, o4 15 abbreviated x1 x2, x3 x4
=x1x3, x2 x4.
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FIGURE 6. Three elaborations of the generating skeleton.
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and x4, consider the 27 different ways of connecting one indicator of
T'1 and one indicator of 72, and consider as well the skeletal model of
Figure 5: Each of these models implies a distinct set of tetrad constraints. Thus,
in principle it should be possible to distinguish each of these models
from the others based on the set of tetrad constraints satisfied by the
data.

We generated data sets from models of these kinds using SYS-
TAT BASIC. We produced data for the exogenous variables with a
pseudorandom number generator distributed normally with mean 0
and variance 1. All other variables are linear combinations of their
respective immediate ancestors in the directed graph of the model. The
linear coefficients were also chosen at random, although their values for
each particular model are nonstochastic constants. 7’1 and 72 are to
be interpreted as unmeasured latent variables, and ¢1-¢7 as unmea-
sured error terms. 7’1 and ¢l-¢7 are exogenous, and x1-x6 are our
measured variables. The sample size is 2,000. Choosing at random 5 of
the 27 elaborations of the initial model, we generated five data sets,
each of which, along with the skeletal model shown in Figure 5, was
given to a TETRAD user. The user did not know which of the 27
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TETRAD Implications of Initial Model and its Modifications

TABLE 1

Tetrad Equation

x1x2, x3 x4 =x1x3, x2 x4
x1x2, x4 x3 = x1 x4, x2 x3
x1x3, x4 x2 =x1 x4, x3x2
x1x2, x3x5=x1x3,x2x5
x1x2, x5x3 =x1 x5, x2x3
x1x3, x5x2=x1x5,x3x2
x1x2, x3x6 =x1x3, x2x6
x1x2, x6 x3 = x1 x6, x2x3
x1x3, x6 x2 =x1x6, x3x2
x1x3, x4 x5 = x1 x4, x3x5
x1x3, x5x4 =x1 x5, x3x4
x1 x4, x5x3 = x1x5, x4 x3
x1x3, x4 x6 =x1x4, x3x6
x1x3, x6 x4 = x1 x6, x3 x4
x1 x4, x6x3 = x1 x6, x4 x3
x1 x4, x5x6 = x1x5, x4 x6
x1 x4, x6 x5 = x1 x6, x4 x5
x1 x5, x6 x4 = x1 x6, x5 x4
x2 x3, x4 x5 =x2 x4, x3x5
x2 x3, x5 x4 =x2 x5, x3 x4
x2 x4, x5x3 =x2 x5, x4 x3
x2 x3, x4 x6 =x2 x4, x3 x6
x2 x3, x6 x4 = x2 x6, x3 x4
x2 x4, x6x3 = x2 x6, x4 x3
x2 x4, x5x6 = x2 x5, x4 x6
x2 x4, x6 x5 = x2x6, x4 x5
x2 x5, x6 x4 = x2 x6, x5 x4
x3 x4, x5x6 =x3x5, x4 x6
x3 x4, x6 x5 =x3x6, x4 x5
x3 x5, x6 x4 =x3x6, x5 x4

Implied by
Initial Model a Model b Model ¢
Model x3 - x4 x4 > x3 x3 > x4
y
)
y J Y J
y Y )
Y J J
y Y ) Y
J Y Y
J Y Y
Y y ) Y
¥
¥
Y J )
Y ) )
Y Y y y
J
J
Y Y J
Y J J
J Y Y Y
¥
y
) Y Y )
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models had generated which data set. His task was to identify the
model from the data. The chance of randomly choosing the correct
sequence of models is less than 1 in 14 million. In five minutes a
TETRAD user identified the sequence perfectly.

It should be noted that the inferences TETRAD makes with
such simulated data are much more demanding than the application to
longitudinal measurement models requires. In such applications, one
knows that the measurements taken at the later time cannot cause the
measurements made at an earlier time, and thus one can rule out
a priori models in which, say, x4 has a direct effect on x3. Under
appropriate conditions, TETRAD can discriminate among such mod-
els even without the information provided by time ordering. This
means that in empirical cases in which there are additional direct
effects between measurements made at different times, TETRAD can
be used to infer the time order from the correlations. Such inferences
may sometimes provide a useful nonstatistical test of a model.

3.6. The TETRAD Program

The TETRAD program lets the user specify an initial model by
means of a graph of proposed causal relations. No equations or distribution
assumptions need to be described. The error terms do not have to be
explicitly entered (the program infers that they are present). An
alternative initial model can be specified simply by adding or deleting
edges from whatever graph the program is previously given. Thus, a
model that would require a page of specifications in an easily used
maximum likelihood estimation package, such as EQS, can be de-
scribed in TETRAD simply by giving a list of the variables between
which there are direct causal connections.

The simplification of input and operation is possible because of
the purpose of the TETRAD program and because of some mathe-
matical facts. The purpose of the program is not to estimate values of
free parameters in a model, since there are already plenty of programs
that do that. The purpose of the TETRAD program is instead to
explore causal specifications and to discover those causal models that
have mathematical properties that are important in explaining the
data.
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TETRAD helps the user search in the following way:

1. The user provides covariance data and an initial model.

2. TETRAD determines all the vanishing partial correlations and all
the vanishing tetrad differences that pass a statistical test at a
significance level specified by the user.

3. TETRAD determines all the vanishing partial correlations and all
the vanishing tetrad differences implied by the initial model.

4. TETRAD compares the implied constraints with the constraints
that hold empirically.

5. TETRAD provides the user with a similar comparison for every
elaboration of the initial model that adds one causal connection or
correlated error to the initial model.

6. If the initial model is a multiple indicator model, the automatic
TETRAD search strategy will find the elaborations of the initial
model that imply the same empirically correct constraints as the
initial model while implying as few empirically incorrect constraints
as possible. This information is given in the form of suggested trek
additions to the initial model, and the user must judge how best (if
at all) to realize the suggested trek additions by directed edges or
correlated errors.

In addition, the information the program provides can be used to

search for other models not suggested by the automatic search proce-

dure. In what follows, we describe such searches as TETRAD-aided.
We imagine TETRAD to be used in the following way:

1. The researcher uses prior knowledge (e.g., about what the variables
mean, how they were measured, how they cluster, etc.) to formulate
a class of alternative initial models. The TETRAD program may
help in this process by locating constraints satisfied in the data that
perhaps ought to be explained.

2. The initial models are elaborated with TETRAD, either using the
automatic search component or step by step using the information
the program gives at each stage about the properties of one-step
additions to a model and using substantive knowledge.

3. The investigator applies whatever is known about the domain to
rule out models suggested by TETRAD that contradict established
principles or are nonsensical.
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4. The remaining models are subjected to statistical test, or if possible
to nonstatistical testing.

4. EXAMPLES

In what follows, we present a series of studies of empirical data
using the TETRAD program. Most, but not all, of these cases are
described in more detail in Glymour et al. (1987), where a variety of
other cases are considered in detail. Here, we will simply state the task
and the TETRAD results. The examples are chosen because they
illustrate a variety of ways in which the program may be used, but
they do not begin to exhaust the wealth of kinds of applications for the
TETRAD procedures.

In few of these cases do we mean to endorse the substantive
claims of the particular models we consider. The point of the exercise is
to illustrate the power of the program and its heuristics in finding
alternative elaborations of real models for real data, alternatives that
are at least as plausible as published models, that provide comparable
or better fit, and that explain constraints found to be satisfied by the
data. Details of the models, their interpretation, and the procedures by
which the data were obtained can be found in the references given in
each case.

4.1. Finding Omtted Correlated Errors

A study by Wheaton et al. (1977) on the stability of alienation
has become a standard example in manuals for computer programs
that perform statistical analyses of structural equation models. Joreskog
and Sorbom (1984) discuss the example in the LISREL manuals, and
Bentler discusses the example in the EQS manual. The initial causal
model considered by these authors is shown in Figure 7. Alienation is a
latent construct measured by anomie and powerlessness at two different
times, 1967 and 1971. SES is the latent construct interpreted as
socioeconomic status and measured by Duncan’s index (SEI) and by
an index of educational achievement . The probability of this model’s
chi-square statistic (with 6 degrees of freedom) is less than 0.01.

Using the LISREL technique for model revision, Joreskog and
Sérbom revise the initial model by freeing two parameters that corre-
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FIGURE 7. Alienation: Original model.
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spond to correlations for error terms for the same indicator measured at
different times. The revised model, shown in Figure 8, has 4 degrees of
freedom and p = 0.335. The revised model is plausible enough and has
acceptable fit, by the usual standards. But are there other models,
based on the same initial causal hypotheses, that are substantively
plausible and have comparable or better fit?

The automatic portion of the TETRAD program finds one such
model, illustrated in Figure 9. The model has one less degree of
freedom than the previous revision, but the p value of its chi-square
statistic is 0.91. One other model with comparable fit ( p = 0.8, same
degrees of freedom) can be located by a TETRAD-aided search.

4.2. Alternatives to Regression Models

Timberlake and Williams (1984) claim that foreign investment
in Third World or “peripheral” nations causes the exclusion of various
groups from the political process within a peripheral country. Put more
simply, foreign investment promotes dictatorships and oligarchies. They
also claim that “foreign investment penetration increases government
repression in noncore countries” (p. 144). It is clear that such theses, if
true, have important policy implications. Timberlake and Williams try
to support their first claim by means of a simple regression model.
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FIGURE 8. Alienation: Amended model.
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Their more complicated argument for the second thesis depends on the
correctness of the regression model they propose. We will concentrate
on their regression model and its alternatives. In this case, TETRAD
does not itself construct alternative models, but it provides the user
with information and heuristics that make it easy to find plausible
alternatives.

Timberlake and Williams develop measures of political exclu-
sion ( po), foreign investment penetration (fi), energy development
(en), civil liberties (cv), population, and government sanctions and
political protests. The last two variables, which do not figure in our
analysis, were measured over two time spans (1968-72 and 1973-77),
but the other variables were measured for one and the same period;
therefore, time of occurrence cannot be used to restrict the causal
relations among those variables. Timberlake and Williams correlate
these measures for 72 ‘“noncore” countries. All the variables, save
population, have substantial positive or negative correlations with one
another; absolute values range from 0.123 to 0.864. It should be noted
that their investment data concern a period preceding the increase in
petrodollars loaned to Third World countries following the dramatic
OPEC increases in oil prices.

A straightforward embarrassment to the theory is the finding
that political exclusion is negatively correlated with foreign investment
penetration and that foreign investment penetration is positwely corre-
lated with civil liberties and negatively correlated with government
sanctions. Everything appears to be just the opposite of what the theory
requires. The gravamen of the Timberlake and Williams argument is
that these correlations are misleading, and when other appropriate
variables are controlled for, the effects are reversed.

To sustain their first hypothesis, they regress the political exclu-
sion variable on foreign investment penetration together with energy
development and civil liberties (measured on a scale whose increasing
values measure decreases in civil liberties) (see Figure 10). They find a
statistically significant positive regression coefficient for foreign invest-
ment penetration and conclude that their first hypothesis is supported.

Timberlake and Williams thus claim to have found evidence
that foreign investment in Third World nations causes governments to
be unrepresentative and undemocratic. Their conclusion suggests that
the development of democracy and human rights would have been
furthered in the early 1970s if international corporations, private
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FIGURE 10. Timberlake and Williams’s first hypothesis.
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banks, and other organizations based in industrial countries had not
invested in Third World nations.

There are some puzzling features of the data, which we might
expect a good theory to explain. For example, there are in the data
some relations among the correlations that hold much more exactly
than we expect by chance. Using TETRAD, we find that the following
relations hold almost exactly in the sample data:

ppo,fi - ppo,enpm,fi = 0’ (1)
pen,cv_pen,poppo,tv=0' (2)

These equations are interesting exactly because they are the kind of
relationship among correlations that can be explained by causal structure. Equa-
tion (1) can be explained by supposing that the only effects of political
exclusion on foreign investment, or of foreign investment on political
exclusion, or of any third factor on both political exclusion and foreign
investment, are mediated by per-capita energy consumption; one vari-
able affects another only through its effect on energy consumption.
More visually, equation (1) will be explained provided the causal
connections between political exclusion and foreign investment are as
illustrated in Figure 11.

In the same way, equation (2) can be explained by supposing
that any correlations between energy consumption and absence of civil
liberties are due to the effects of political exclusion; e.g., if increases in
per-capita energy consumption cause an increase in civil liberties, they
do so because of their direct effect on totalitarianism.

Timberlake and Williams’s model does not provide any causal
explanation of relations (1) and (2), but it is easy to find assumptions
that do explain these patterns, and explain them rather neatly. We
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FIGURE 11. Causal explanations of equation (1).
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exhibit some alternative explanations in Figure 12. T signifies a latent
common cause. The causal hypotheses in all alternatives, under the
assumption of linearity, imply that both (1) and (2) hold in the
population, no matter what the values of the linear coefficients may be.

Model 1, for example, gives a chi-square statistic for 2 degrees of
freedom with p = 0.94. If we accept model I, then we conclude that
foreign investment in peripheral nations neither promotes nor inhibits
the development of democracy and civil liberties but that raising the
energy consumption per capita promotes both foreign investment and
more representative government and, through representative govern-
ment, increases respect for civil liberties. On this data, and given the
alternatives, we would not argue that model I should be accepted. We
do claim that it, and very likely the alternatives suggested here, are
preferable to Timberlake and Williams’s regression model.

4.3. The Stability of Measurement Models

McPherson et al. (1977) consider a model of responses to a
four-item scale assumed to measure indicators of political efficacy or,
more clearly, the respondents’ judgments of their political influence.
Measures of the same four items were obtained from a chart of 978
persons in 1956 and in 1960. Their initial model is shown in Figure 13.

After considerable discussion, the authors conclude that there is
a factor acting on v6 and v0 and some other factor acting on ¢6 and
¢0. The conclusion is based on the fact that the linear coefficients
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FIGURE 12. Alternatives to the regression model.
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connecting these variables with their parent latent variables are the
smallest of the eight and the difference between estimated and em-
pirical correlations is the largest for the ¥6-20 and ¢6-c0 pairs.

TETRAD automatically suggests that v6 and v0 must have a
further common cause. The program also tells the user that a further
common cause of ¢6 and ¢0 will improve fit with a minimal reduction
in the number of empirically correct tetrad constraints implied by the
model.

The basis for TETRAD’s discriminations in this case has al-
ready been partly demonstrated in the study with simulated data
described in a previous section.

4.4. Determining Causal Order from Correlations in One-Factor Models

Kohn (1969) describes several large studies that investigate the
relationships among social class, attitudes, and personality structure.
For data from five questions intended to measure an authoritarian-con-
servative personality trait, Kohn suggests a simple factor model, shown
in Figure 14. Schoenberg and Richtand (1984) suggest the revision
shown in Figure 15. The sample size is larger than 3,000.

One reason for residual correlations in measurement models for
survey data may be that responses to earlier questions set a mood or
create a desire for consistency and thus, independently of the value of
the latent variable the items are intended to measure, influence the
responses given to later items (see Campbell et al. 1966). On this
assumption, we gave the data and Kohn’s initial model to TETRAD
and considered only revisions that postulate direct effects between

FIGURE 14. Initial authoritarian-conservatism measurement model.

el e2 ed e4d e5



EXPLORING CAUSAL STRUCTURE 437

FIGURE 15. Schoenberg and Richtand’s revised model.
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measured variables. For reasons to be explained shortly, we did so in
ignorance of the order in which the five questions had been asked. We
found two “best” revisions of the initial model under these assump-
tions, namely, models that add to the model in Figure 14 either the
edges

q1 43,92 45,9543
or the edges
q1 = 43,95 42,95 > ¢3.

Each of these models gives a chi-square statistic with p = 0.994. The
hypothesis that the data was generated by one or the other of these
models implies restrictions on the order in which four of the five
questions were asked. There are 24 possible orderings of four questions,
and only eight of them are consistent with the hypothesis, namely,

1-5-3-2
5-1-3-2
1-5-2-3
5-1-2-3
5-2-1-3
1-2-5-3
2-1-5-3
2-5-1-3.
The actual order of the five questions on Kohn’s survey is 2-1-4-5-3,

which is consistent with the seventh ordering in the list permitted by
our hypotheses.
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The case provides an unintended illustration of the power of
TETRAD’s methods to distinguish causal order and illustrates a kind
of nonstatistical prediction that can sometimes be derived from a model
or small set of alternative models. In this case, we took the data from
Schoenberg and Richtand’s (1984) study. They number the questions
in an order different from the order of the questions on Kohn’s
questionnaire. We discovered, initially to our dismay, that the best
TETRAD models were inconsistent with the order of the questions given
by Schoenberg and Richtand. After consulting Kohn’s book, we dis-
covered that the program and the substantive hypothesis about anchor-
ing had led us unwittingly to a correct prediction of the order of the
questions.

5. OBJECTIONS AND QUESTIONS

The very idea of using heuristic search in applied statistics
creates a variety of misgivings. Many of the objections are mutually
inconsistent: No methodology could satisfy all of them. Others are
misplaced and suppose that heuristic search procedures impose some
condition they do not. Often the misgivings depend on the strictest
application of principles that are unscientific in a straightforward
sense: If the principles were used in the natural sciences, modern
physical science would never have emerged.” Since the objections we
consider are never given as full, clear arguments, we are forced to
reconstruct what we take to be the implicit arguments behind brief
remarks, and we therefore avoid attributions. The most frequent
objections have no explicit argument at all and amount to simple name
calling: Heuristic computerized search is “data dredging” or “ransack-
ing.” In so far as any argument lies behind these epithets, we hope one
or another of the following considerations may capture it.

5.1. Data Separation

Many people believe that a theory or model should always be
tested on samples that are distinct from the sample used to generate the
model, and they may even hold that the data used to generate the

> Most of the objections are considered in more detail in Glymour et al.
(1987).
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model provides no support for it. While we think the general principle
erroneous, it is in any case irrelevant to the appropriateness of the
TETRAD program. TETRAD automatically separates the data in one
respect, since model generation is based on only an aspect of the
data—the covariance constraints—which contain less information than
the full set of covariances. But those who insist on complete sample
separation can use the TETRAD program with equanimity simply by
searching on one sample and testing the models that result on another
sample. We have done exactly that in our studies of the Head Start
program.

5.2. Sample-Dependent Generation

Some writers hold that any procedure in which the model or
models generated depends on the sample obtained, and will vary with
different samples from the same population, is unacceptable. The
prejudice seems to be founded on two very different arguments, which
we will treat separately.

Argument 1. No model-generation procedure should be sample-
dependent, because in the worst case, sample-dependent procedures
will with high probability find spurious dependencies. For example, if
one searches the data for correlations, there are cases (with appropriate
sample sizes and numbers of independent variables) in which a random
sample of values of independent variables will with high probability
exhibit a significant correlation for some pair of variables. A sample-
dependent procedure would therefore with high probability incorrectly
conclude that the variables are correlated even though in reality they
are independent. Therefore, such procedures should not be used.

For several reasons, the conclusion of this argument does not
follow from the case that is imagined:

1. The difficulty can be avoided simply by refusing to make inferences
when the sample size is inappropriately small for the number of
variables considered. The generation procedure can still be sample-
dependent.

2. The difficulty can be avoided by testing any generated model on an
independent sample.

3. The worst-case argument against a general procedure fails to con-
sider the expected case.
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FIGURE 16. Procedure 1.

POPULATION

Sample Sample Sample Sample . .. ..

Test M Test M Test M TestM . .. ..

4. The argument considers only the risk of drawing a false conclusion;
it fails to consider the risk of failing to draw a correct conclusion. No
argument of such a form for a methodological restriction can be
valid.

Argument 2. Model-generation procedures should always be sam-
ple-independent; otherwise, test statistics are ‘““meaningless.” That is, if
model generation is sample-dependent, then the p values of test
statistics such as chi square cannot be given a long-run frequency
interpretation. The usual long-run frequency interpretation of the p
value of a statistic is the frequency with which a value more extreme
than the computed value of the statistic would be obtained in a long
sequence of tests on samples of the same size drawn at random from a
population truly described by the model tested (see Figure 16). The
objection is that if probabilities are long-run (or limits of) frequencies,
the chi-square statistic for a model obtained for a sample is not the
long-run frequency of the following sequence of sampling, model
generation, and statistical testing procedures (see Figure 17).

The last point is correct, but the argument contains a logical
blunder. The claim of the argument is that no long-run frequency
interpretation can be found for the p value of a test statistic of a model
obtained by a sample-dependent generation procedure. But the argu-
ment shows only that the sequence in Figure 17 does not provide such
an interpretation. That is well short of showing that no frequency
interpretation can be given. One can. There is a frequency interpreta-
tion for the chi-square probability obtained when a model generated
by a sample-dependent procedure is tested, and it is the interpretation
associated with the sequence shown in Figure 18.
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FIGURE 17. Procedure 2.

POPULATION

Sample Sample Sample Sample . ... ..
Generate M Generate M' Generate M" Generate M™. . .
Test M Test M’ Test M" . Test M™ ... ..

FIGURE 18. Procedure 3.

POPULATION

Sample Sample Sample Sample . ... ..
Generate M
Test M Test M Test M Test M. ... ...

This sequence gives the correct probability interpretation in
the only relevant sense; namely, the long-run frequency corresponds to
the p value. Any continued argument that this interpretation is not the
“right” frequency interpretation is bootless or tacitly changes the
argument completely. The argument, recall, was that there is no
frequency interpretation that can be given to test statistics for models
obtained with a sample-dependent procedure. But there is such an
interpretation, and there is no relevant objection to be made to it that
does not apply to frequency interpretations generally.

5.3. Is TETRAD Fit for Bayesians?

One question is whether TETRAD is consistent with the philo-
sophical viewpoint of Bayesian statisticians and econometricians.
TETRAD does not do explicitly Bayesian calculations; it does not
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assign prior probabilities and change them by conditioning on the
evidence, and that may give Bayesian statisticians qualms. Yet a
Bayesian statistician would have no qualms about using a pocket
calculator, even though the pocket calculator does not work explicitly
on Bayesian principles. Like the pocket calculator, TETRAD de-
termines mathematical relationships, relationships that humans cannot
conveniently and reliably calculate for themselves. The mathematical
relationships are, moreover, relationships that ought to matter to Bayes-
ians. A Bayesian statistician may entertain a set of alternative hypothe-
ses to account for a body of data, but if he or she is wise, some prior
probability is usually reserved for the catch-all hypothesis that none of
the explicitly considered hypotheses is correct. Since the mathematical
structure and properties of whatever theories may be contained in the
catch-all hypothesis are generally unknown, the Bayesian cannot de-
termine much about the likelihood such hypotheses give to the data or
to features of the data. One way of viewing the TETRAD program is
that it searches the vast space of alternatives encompassed by the
catch-all hypothesis; in its search, TETRAD looks for models that give
a high likelihood to constraints on population covariances that are
suggested by the data. What it reports are mathematical facts about
the existence and properties of such models. In that respect, it is no
different from the pocket calculator. The user, whether a self-conscious
Bayesian or not, is free to use these mathematical facts in many ways
in the light of prior belief, but one would be unwise to ignore them
altogether.

5.4. Hypothesis Testing Only

Some people seem to think that the only meaningful compari-
sons of alternative models are those that test one model against the
other in Neyman-Pearson fashion. They have no use for comparisons
of p values of test statistics of different models on the same data, for
comparisons of explanatory power, or for simplicity. But comparisons
of the p values of alternative models are perfectly meaningful; they are
comparisons of likelihoods. And if the only methodological compari-
sons permitted were hypothesis tests, most of the history of science
would have to be dismissed, along with a great deal of contemporary
natural science.
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5.5. Should We Use Theories Suggested by a Computer?

Someone might take the view that we need to consider only the
hypotheses explicitly proposed by people: Any hypotheses discovered by
computer search can be ignored and thus in effect given zero prior
probability. This prejudice may derive from the conviction that, after
all, people know a lot more than computers do. They know about how
things were measured and what they mean; they know about social
practices, about time order, and about prior theorizing. All of that is
true, but not really relevant. The special knowledge humans have can
interact with the special computational powers computers have in at
least two ways. First, humans can use their knowledge to restrict the
range of search the computer conducts and to edit and choose from
among the results of the computer search. Second, humans can ex-
plicitly represent their knowledge within the computer program and let
the computer automatically apply that knowledge in conducting a
search. The TETRAD program relies on the first procedure rather
than the second, but the second procedure is perfectly feasible in
searching for causal models.

Sometimes, part of discovering a theory can be reduced to
combinatorial analysis, and when it can, why shouldn’t we have a
computer do it? Nothing guarantees us (or even makes it likely) that
the truth about some subject matter must be contained in one of the
theories entertained by some human at some particular time. There is a
world of mathematical possibilities, and we humans cannot very well
search through that world unaided; if computers can aid us in the
search, why shouldn’t we use them? In using the computer to help us
search for models with special mathematical properties or special
relationships to the data, we are simply using a computational device
to help us do the sort of thing that has been fundamental to theory
development in the natural sciences. Newton, for example, did not just
posit the inverse square gravitational force law without searching for
alternatives. A major theorem in Newton’s Principia characterizes
features of the orbits of a body about a central source for every inverse
power law for the attractive force. For decades, physicists have carried
out the same kind of systematic search for alternatives to the general
theory of relativity. If, in the course of such a search, a computer were
needed to provide numerical approximations to solutions of differential
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equations, no one would hesitate to use it. In applied statistics, the
space of possible linear models is usually so large that humans cannot
search it for models that have interesting mathematical relationships to
the data. If a computer can help in that search, and TETRAD shows
that it can, it would be unscientific not to make use of it.

5.6. Varieties of Conservatism

A related doubt about using computer aids for search rests on a
kind of conservatism. Someone might think that we should not search
for alternative theories unless the most popular current theory has run
into trouble. Such a view defies the practice throughout the natural
sciences, in which, for example, research programs have for many years
attempted systematically to search for alternative theories to quantum
mechanics and to general relativity.

Some people think that a body of evidence should never be used
to search for more than a single theory. We may be very glad that our
scientific ancestors did not think the same way. If they had, we would
not have had Copernican astronomy, or Kepler’s laws, or modern
tables of atomic weights, or indeed most of physical science.

5.7. Will Computerized Search Make Modeling Practice Better
or Worse?

Any technical innovation can be used badly. If the possibility
for misuse were grounds for dismissing a technical innovation, then we
should have to do without the telescope, the micrometer, the photo-
graphic plate, the cyclotron, indeed virtually every scientific instru-
ment. All have at times been poorly used to produce erroneous
conclusions. The same is true of statistical innovations and computa-
tional aids. The general principle that says that a technical innovation
ought not to be used if it can be used badly is a policy for ending
science, not furthering it.

All considered, programs such as TETRAD should produce
better, not worse, scientific practice. Perhaps the most striking defect of
causal modeling is the difficulty researchers have in considering alter-
native explanations for their data. That is the chief point in criticisms
of causal modeling that point out that investigators often fail to make
any reasoned, persuasive case for the structural equations they assume.
The difficulty people have in constructing alternatives has two unfor-
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tunate consequences. First, we sometimes rush to embrace a causal
explanation when other, better explanations exist. Second, the case for
a particular causal explanation may sometimes be weaker than it need
be, because even when a researcher has found the very best explana-
tion, he or she cannot provide an argument that there are not better
alternatives that have been overlooked. TETRAD makes a small
contribution toward removing both difficulties. Scientific papers
routinely end with a call for further research, but what further research
is relevant depends in large part on what alternative explanations need
to be distinguished empirically. That kind of question is likely to
become more focused if systematic search procedures find wide use.

5.8. Reliability

There is no bound to the number and variety of bad arguments
and red herrings that can be contrived, and no matter how many are
addressed, others will spring up in their place. It is better to focus on
the central issue about the TETRAD procedures and about any other
discovery procedure, automated or not. The central issue is always this:
Where can the procedure be relied upon, and exactly what can it be
relied upon to do? That question cannot be answered by methodologi-
cal dogmas. It can be addressed through systematic proofs about the
classes of models whose members are asymptotically distinguishable by
constraints of various kinds. It can be addressed by detailed studies of
the behavior of the search strategy on simulated data samples
of varying sizes, generated from known structures with a variety of
probability distributions. And it can be addressed by comparative
studies of alternative search procedures, including search procedures
that employ no computational aids. Some of the results of such studies
have been reported here, and we are conducting further studies of the
same kind.

6. FUTURE DEVELOPMENTS
Consider a system that could do all of the following:
1. The user specifies whatever is known about a domain, including the

knowledge that specific variables are or are not causally connected,
or do or do not have common causes; that connections between



446 CLARK GLYMOUR, RICHARD SCHEINES AND PETER SPIRTES

specific variables must be of a specific sign, positive or negative;
that specific variables are lags of one another; that specific variables
may have a common cause; that specific variables must have
symmetric relationships to other variables; that no cycles occur, etc.
The information might be as detailed as a specific initial model, or
it might be much less definite.

2. The program finds a variety of initial models consistent with the
user’s specifications and lets the user add to them or eliminate any
number of them.

3. The program finds the elaborations of the initial models that best
explain patterns in the data, that are simple, and that fit the
covariances.

4. The program compares the elaborations of different initial models,
eliminating those that are redundant or inferior.

5. The program gives maximum likelihood estimates and chi-square
tests for every remaining model, using whatever data set the user
specifies.

A program of this kind would make it genuinely feasible for re-
searchers to explore a large space of alternative models. It would leave
people free to focus on the aspects of theory construction that good
researchers are really good at—finding restrictions on models based on
prior knowledge, providing substantive constraints on model specifica-
tion, assigning a plausible interpretation to latent variables, wondering
about measurement procedures, putting a causal story in a more
general framework, making policy inferences from a causal explana-
tion—and it would leave to the computer what the computer is really
good at—computing mathematical relationships. A program of this
kind would be elementary to use, and while it might require consider-
able computer time to operate, it would require very little of the wuser’s
time.

TETRAD is not a program of this sort. It is very restrictive in
the kind of prior information it uses, and it gives output that is hard to
interpret without considerable practice. Nonetheless, we believe the
TETRAD program provides the core of a system of the kind just
outlined, and we are in the process of carrying out its development and
implementation. Thus far, we have done the following:

1. We have written an extension of TETRAD that automatically
writes an input file to EQS for any model the user wishes to have
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evaluated; the model is given simply by a list of causal edges or
correlated errors. The input files for EQS are collected in a batch
file. To run EQS on any number of models, the user need only
construct the graphs of the models in TETRAD, tell TETRAD it
wishes EQS files, and type “run.” The result is EQS data on all the
models considered. A similar extension can be written for LISREL.

2. We have written a program to implement an algorithm that consid-
ers additional constraints besides tetrad equations and vanishing
partial correlations. Whether a model implies that a tetrad differ-
ence is positive or negative, or that a partial correlation is positive or
negative, depends only on the graph of the model and on the signs
of the linear coefficients. Peter Spirtes has implemented an al-
gorithm that computes these features for a wide class of models,
given the graph and the signs. This feature will permit us to modify
TETRAD to do a more discriminating search than hitherto possi-
ble.

We expect that over the next two years, these pieces can be expanded
to a fully automatic system of the kind described and that the system
will run successfully on relatively inexpensive personal workstations.
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