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Abstract

DNA microarrays are perfectly suited for comparing gene expression in different
populations of cells. An important application of microarray techniques is identifying
genes which are activated by a particular drug of interest. This process will allow
biologists to identify therapies targeted to particular diseases, and, eventually, to gain
more knowledge about the biological processes in organisms. Such an application is
described in this paper. It is focused on diabetes and obesity, which is a genetically
heterogeneous disease, meaning that multiple defective genes are responsible for the
diseases. The paper is divided in three parts, each dealing with a different problem
addressed to our study. First we validate the data from our microarray experiment. We
identified significant systematic sources of variability which are potentially issues for
other microarray datasets. Second, we applied multiple hypothesis testing to identify
differentially expressed genes. We found a set of genes which appear to change in
expression level over time in response to a drug treatment. Third, we tried to address
the problem of identification of co-expressed genes using cluster analysis. This last
problem is still under discussion.

1 Overview

This paper is a statistical study which puts together data validity and investigation of genes
which respond to the drug treatment. The analysis of the response to the drug treatment
is based on two approaches: multiple hypothesis testing with rejection decision according to
False Discovery Rate and cluster analysis of the cosine transformed expression profiles.
We first pre-process the data by normalization/transformation. An analysis of data va-

lidity is necessary because these data are being studied for the first time. It is important to
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filter out the genes which don’t provide reliable information, and eliminate incorrect direc-
tions in the further analysis. Related to data validity, we present an evidence of a significant
cross-hybridization artifact on spotted single-dye cDNA microarrays. With the information
gained in the data validity study, the two statistical methods, multiple hypothesis testing
and clustering, are presented and applied to our microarray data. We consider three dif-
ferent applications of hypothesis testing to capture those genes which change in expression
level under different hypothesis. They are the 2-time-difference test, Wilcoxon rank sum test
and runs test. The identification of the differentially expressed genes is followed by their
validation using a different experimental technology, Northern blot. The cluster membership
of the genes which respond similarly to the drug treatment can then be analyzed for further
insights. We cluster expression profiles by clustering the cosine transformed data. In addi-
tion to global clustering, we test for local clusters and introduce a cluster stability assessment
procedure.
This paper is organized as follows. In section 2, we present the biological and experimental

background and the main questions of interest raised by the experiment, and describe the
data format and data pre-processing. Section 3 is reserved entirely for data validation with
a description of all the filters we applied to our data and a discussion of two of them.
The problem of identification of differentially expressed genes is addressed in section 4. It is
followed by a cluster analysis of the expression profiles in section 5. Section 4 and 5 have three
parts: background on the method, the results of its application and a short discussion of the
related results. A summary of the methods applied to the data and of our reconsiderations
(section 6) finalize the analysis.

2 Introduction

2.1 Biological background and microarray technology

Gene expression. The biological information in a gene is read by proteins that initiate a
series of biochemical reactions referred to as gene expression which is a two stages process: 1.
transcription of the DNA into mRNA (with a pre-transcription into RNA and the mRNA is
isolated from RNA) and 2. translation of the mRNA into the protein. The gene expression is
measured as the abundance of mRNA. Not all the genes are expressed in all cells all the time.
Thus we need to quantify the mRNA abundance of genes in order to identify those which
are expressed under specific experimental conditions. This is what microarray technology
tries to capture.
Microarray Technology. There are 4 main steps in quantifying mRNA abundance

simultaneously for a set of genes with microarray technology: 1. mRNA extraction from the
total RNA and reverse transcription into complementary DNA, 2. hybridization1 to a mi-
croarray of complementary DNA, 3. geiger counter detection (scanning) of the microarray in
order to capture the presence of bound DNA, and 4. interpretation of the scanned microar-
rays.The output is an image as the one in figure 2.1. Each spot corresponds to a DNA probe
and the intensity of each spot measures the mRNA abundance of the corresponding DNA

1A cDNA probe binds to the spot where it finds the matching complementary sequence.
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probe. Thus a measurement will provide an array of intensities, each intensity quantifying
the mRNA abundance of a DNA probe. Each array comprises intensities for the same set of
DNA probes.

Figure 2.1: Microarray of one of the measurements in

the experiment. Each spot corresponds to a DNA probe.

2.2 Background on the experiment and motivation

Why is our experiment significant? We study a family of drugs which are used in
humans to treat diabetes and obesity by increasing insulin sensitivity. Decreased insulin
sensitivity is a hallmark of both diabetes and obesity, and may be one of the major causes
of their development. The ability of those drugs to increase insulin sensitivity is understood
by identifying whichgenes change expression in response to the drug treatment in adipose
tissue. In short, if we find that expression level of gene A is increased in our experiment, the
biologist will ask: Does increasing the expression of this gene increase insulin sensitivity in
adipose tissue?. If the answer is ’yes’ then biologists can begin to develop other drugs that
will increase the level of expression of this gene. It is also a good chance to understand more
about how this family of drugs and insulin work.
What is the experiment? We examined data from a spotted cDNAmicroarray(Research

Genetics, Carlsbad, California) experiment. The experiment was finalized on February, 2002
at the University of Pittsburgh (Peters et al. published data). The spotted cDNA microar-
ray experiment consists of a time sequenced sampling of differential expression in mRNA
from (3T3L1 cultured) fat cells originally obtained from mice. These cells were treated with
a drug, troglitazone2, which is a member of a family of drugs known as thiazolidendiones
(TZD’s). In our experiment, the drug treatment of the cells lasted for different periods of
time ranging from 0 hours to 24 hours.

2.3 Scientific questions

For all its strengths, microarray technology has its drawbacks. They start with the fact
that mRNA is unstable and they end with errors in scanning the images. All the limitations

2The drug was mixed with a chemical DMSO (detergent) which makes the drug soluble.
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in microarray process add error to the signal. The variability between and within arrays that
is not due to the difference in the abundance of mRNA should be identified and removed. It
is difficult to identify all undesirable sources of variability, but at least it is possible to focus
on those induced by the experiment.
In summary, the analysis of the gene expression data set from the microarray experiment

is addressing two different problems.
1. Identify and remove systematic sources of variation and bias.
2. Determine the effect of the drug treatment on the gene expression level under the

experimental conditions in our study.

2.4 Data

Genes. There are 5355 DNA probes which are hybridized to the microarray. Those
probes are either fragments from DNA or total genomic DNA (tgDNA). Among all probes,
there only 4696 sequences of DNA with identifiable sequences of nucleotides3 and 139 probes
consisting of tgDNA. Those fragments of DNA which are not genes are called expressed
sequence tags (EST’s)4. There are only 962 known genes5. For the ease of formulation,
all the probes are called genes and the difference between EST’s, genes and tgDNA will be
pointed out any time it is necessary.
Measurements. The data consist of 47 measurements of mouse endothelial cells. These

measurement were reported on 20 chips (filters), each chip being used at least twice (seven
of them were used three times). For each measurement, target cDNA was obtained by
mRNA extraction and reverse transcription (into complementary DNA). Then the cDNA
targets were hybridized to microarrays containing 5355 probes. Each of the 47 hybridizations
produced images, which were processed using the software package Pathways 3. The main
quantity of interest reported by the image analysis methods is the intensity for each probe
on each array. After image processing, the gene expression data can be summarized by a
matrix of intensities with 47 columns (number of arrays) and 5355 rows (number of probes).
Treatments. The fat cells were treated in three different ways, with a detergent called

DMSO (control C+) or without (control C-), and test drug, a mixture of drug and DMSO
(T). It is necessary to see the difference between treating with or without DMSO in order
to distinguish between the genes which respond to the drug and genes which respond to the
chemical, DMSO. A comparison between the two control groups will help in identification
of any unexpected effect of DMSO.

minutes 0 15 30 45 60 75 90 105 120 135 150 165 180 240 300 360
treatment T T T T T T T T T T T T T T T
use no. 2 2 2 2 2 2 2 1 2 1 2 1 1 2 1
chip no. 3 4 5 6 7 8 9 3 10 4 11 5 6 12 7-11
control C- C+/C- C+
use no. 1/2 1/3 2
chip no. 1 2/1 2

3Nucleotides are basic molecular units which form the genetic code.
4ESTs are DNA sequences read from both ends of expressed gene fragments. ESTs are widely used in

the discovery of new genes, and identification of coding regions in genomic sequences.
5A gene is a fragment of DNA which codes for a particular protein.
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hours 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
treatment T T T T T T T T T T T T T T T T T T
use no. 2 1/2/3 2 1 2 1 2 1 2 1 2 1 2 1 3 1 3 1
chip no. 13 12/20/4 14 13 15 14 16 15 17 16 18 17 19 18 5 19 6 20
control C+ C+
use no. 3 3
chip no. 2 3/7

Table 2.1: Within a cell the first letter indicates whether it is a treatment or a control with or

without DMSO, the first number indicates the use number of the array specified underneath.

Sampling scheme for treatment time. Each measurement lasted for a period of time
ranging from 0 to 24 hours. The sampling scheme is in table 2.1. In the first table the time
ranges from 0 to 6 hours (360 minutes) and in the second table the time ranges from 7 to 24
hours.
Note that at time 6 hours (360’) there are 5 measurements for the first use reported on

chips 7,8,9,10 and 11, and a control measurement for the second use on the chip 2. At time
0 there are only measurements in the control group without DMSO for chip 1, for the first
and second use. At 24 hours there are measurements for the test drug and for the control
with DMSO for chips 3 and 7, for the third use.

2.5 Preprocessing the data

Why do we transform and normalize? A rule of thumb in dealing with microarray
data is to transform the data. There are a few reasons. One is that it makes the data
normalization additive. Moreover, it makes variation of intensities more independent of
magnitude, and gives a more realistic sense of variation as it is shown by the two histograms
in figure 2.2 (a), first on the unlogged scale6 and the second on the log scale of the same
measurement. Another different reason is to attain constant variance across arrays. However,
the constant variance cannot be realized without a good normalization to the data.
Next, we normalize the data in order to account for chip-to-chip variability. Individual

microarray experiments may yield sampled intensities which are generally brighter or darker
than similar intensities for a reference image. In order to compare different experiments, it
is therefore necessary to adjust for global shifts in intensity levels.
What is our transformation and normalization? Normalization can be performed

in different ways depending on the availability of control DNA sequences, the number of genes
that are expected to react to the drug or other considerations. The method we consider for
our data is a global linear normalization based on a constant adjustment. A global linear
normalization forces the log intensities to have median equal to zero at each array, making
the median of the experiment array the same as that of the baseline array.
That is, for each measurement of the same sample the corresponding intensity value

of each gene is divided by the median of the all intensities in the considered microarray.
After logarithm transformation and normalization, an array is transformed into log(array)−
median(log(array)) (figure 2.2 (b)). This appears to perform well because we expect only

6The scale cannot be finer because there are few genes with an extremely large intensity. The maximum
is 21420 and the minimum is 12.54.
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a relative small proportion of the genes will vary significantly in expression between mRNA
samples[23].
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Figure 2.2: (a) Histogram of the intensity data from one array on unlogged (left) and logged scale (right);(b)

The QQ-plots of the normalized measurements (log scale) for the chip 2 (different (different uses, control

with DMSO).

3 Can the data support the analysis?

In the context of our microarray dataset, the main question to be addressed is to detect
differentially mRNA abundance as cellular responses to the environmental change.
Systematic sources of variation. Microarray data typically contain many sources of

variation, from unavoidable random error introduced during the performance of the experi-
ment to measurement error associated with analysis of raw intensity data. A large portion
of the statistical analysis of microarray data involves identifying and quantifying sources of
variation, and this is aimed at distinguishing between experimental error (noise) and inher-
ent variability (signal) resulting from the actual biological phenomena under study. These
sources of systematic variability and bias could lead to the misinterpretation of the expression
data.
We accounted for chip-to-chip variability using normalization in the previous section.

Additionally, we identified four other sources of systematic variability or bias in our mi-
croarray data. Two of those sources of systematic variability are discussed. They are the
systematic error in the data introduced by the filter reuse and by the sequences with long
initial poly-dT tracts which is a systematic bias potentially common in single-dye spotted
cDNA microarrays. The last two can be reduced by improving the experimental technology.

3.1 Filtering the data

The four source of systematic variability are removed as follows.
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Reuse-Filter. A first filter applied to the data is over arrays. We accounted for chip-use
to chip-use systematic variability because we would expect random error added to the signal
due to chip reuse. We keep only the measurements which are reported on chips used the first
time because the intensity data reported on reused filters appear to be unreliable. This will
be discussed in section 3.2. This step reduced the data from 47 arrays to 20.
Poly(dT) tracts-Filter. The impact of the long poly-dT tracts sequences as discussed

in section 3.3 is to be considered. The large variability of those genes which are prefixed
by long poly-dT tracts suggests that they are a source of systematic variability that is
not explained by the biological process. For this reason, these genes are filtered out and
the normalization procedure is applied to the filtered data. Because the variance increases
sharply starting with a poly-dT tract of length 11 the filtered data will contain only those
genes whose sequences are prefixed by a T string of length smaller than 11[11]. The data
after removing these sequences contain 3824 DNA sequences.
Replicate-Filter. Another source of systematic variability is due to genes which are

not constantly expressed over replicates. The replicates in our data are 5 measurements at
treatment time 6 hours for test drug. However, the 5 arrays at 6 hours are reported on 5
different chips. Even though the normalization is designed to remove the variation from an
array to another, we may still find genes which are not approximately constantly expressed
over the 5 replicates. Thus the second filter to the data (3824 genes) is as follows.
For each gene i, consider the intensity values replicated for 6 hours, xi1, .., xi5, and form

the ratios of any combination of two intensities rikj =
xik
xij
. Then all those genes which have

|maxk=1,..,5;j=1,..,5(rikj)| < 1.5 are “good” genes and included in the set of genes to be further
analyzed. The number of genes after first and second filters is 1150.
Control-Filter. We would expect to see genes which respond to DMSO, the chemical

added to the drug troglitazone in the test drug treatment. Thus the genes which are differ-
entially expressed under the test drug could respond either to the drug, troglitazone, or to
the DMSO. In order to remove the effect of this chemical, we compared C+ (with DMSO)
to C− (without DMSO) and eliminate the genes which are not constantly expressed under
both controls. In this way the genes which are responding to the chemical are eliminated and
we are certain that the ones which are differentially expressed under the test drug respond
to the drug and not to the DMSO. These genes are filtered out. We consider only the genes
which have the ratio of the intensities from the two controls in use-1 data less than ±1.5.
The data were reduced from 5355 DNA sequences to 1055, and from 47 measurements to

20. These are the data will be further analyzed.

3.2 Reuse-Filter

The current data contain 27 reuses of the arrays (second and third uses). Thus a problem
may be raised by the random variability due to filter reuse.
Comparing use-1 data to use-2 data. There are several ways to compare use-1

data (the 20 arrays which are measured on filters used first time) to use-2 data. One way is
plotting the expression levels for the same set of genes over time for use-1 data and use-2 data
separately. This might be the most informative way to look at the two data sets expecting
that the time series of the expression levels of each gene will follow a similar pattern in use-1
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and use-2 data.
In Figure 3.1(a) the curves of the 20 genes with the highest activity across experimental

conditions are plotted for both use-1 and use-2 data over ordered time (in minutes).
It’s interesting to observe that the expression profiles in use-2 plot (the second in the

figure 3.1 (a)) follow a similar pattern to the ones in use-1 data but with a shift in time.
On the other hand, there is a relationship between the chip number and time. For use-1
data the chips are ordered in time, i.e. chip 1 corresponds to the earlier time (150 minutes)
and chip 20 corresponds to the latest time (24 hours). For the use-2 data there is a slight
mismatch between chip number and time. Except for two chips, 2 and 20, all of the others
are ordered by time. This difference might influence the shift shown in the curves.
Smoothed time curves for the 20 genes in use-1 and use-2 data. Another

way to look at the time series plots is to smooth the pattern using generalized additive
models[12]. Time is smoothed by applying generalized additive model (smoothing splines)
with the response variable the use-1 data (top plot in figure 3.1(b)) and then the use-2 data
(bottom plot in figure 3.1(b)) of the 20 genes with the highest variability.
Again, the two plots show that there isn’t a similar pattern over time for the two data

sets. The difference in expression pattern over time for use-1 data and use-2 implies that the
biological process is not consistently replicated over the two data sets. One would expect
to see similar biological variation for the 20 genes under the same test drug treatment no
matter what use we consider.
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Figure 3.1: (a)Time series plots of the use-1 data and use-2 data of the 20 most

variable genes; (b) Smoothed time series plots from part (a);

Use-2 vs. use-1 vs. chip index. In this case, a more careful analysis of use-2 vs. use-1
data is necessary. Plotting the same 20 genes vs. chip indexes, the pattern in the use-2 plot
follows the sha- pe in the use-1 plot (on a different scale only). The arrays in the control
groups are included. The concern is whether use-2 is a replication of use-1 with additional
noise.
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Figure 3.2: The time series plots of the 20
genes with the highest variance vs. the

chip order for use-1 data and use-2 data
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Figure 3.3: Time series of Ucp2 and Lpl on the unlog

scale; Use-1 is line 1 and use-2 is line 2; intensities

are normalized using filtered data only.

Changing genes. There are two known genes that were observed being differentially
expressed during the experiment. They are uncoupling protein 2 (Ucp2) and lipoprotein
lipase(Lpl). In the use-1 data, the first gene, Ucp2, has the 488th largest variance and the
second gene, Lpl, has the 166th largest variance. One would expect to see high activity for
those genes which change significantly in expression level over time.
Changing genes in use-2 data for filtered data. The use-1 intensity data and use-2

intensity data curves over time for the two genes are are in figure 3.3. The first line (blue)
corresponds to use-1 intensities and the second line (red) is the use-2 intensities. There are
measurements at 8 hours for both use-1 and use-2 which allow a comparison between control
and 8 hours treatments over different uses. In use-1, there is a rise from control, C− (at
time 0 in the plot), to 8 hours (480 minutes). On the other hand, there is a depression from
control, C− to 8 hours for use-2.
Northern blot on the two changing genes. We checked the difference in expres-

sion level for the two genes with the Northern Blot. (A description of this technique is in
the Appendix.) The two genes showed a similar expression over time for the microarray
experiment, use-1 arrays, and the Northern Blot experimental method. There is a slightly
amplified change from control to different hours in the Northern Blot method (for example,
Northern blot reported 3 fold raise from control to 8 hours for Ucp2 compared to the time
series plots in figure 3.3 where control is around 0 and 8 hours is around 3). Thus the North-
ern blot experiments agree with use-1 microarray data but conflict the use-2 data for the two
changing genes. In this context, it might be useful to perform Northern blots on other genes
in the data and validate the data from the three uses.
Is the filter reuse a significant source of variability in the data? The starting

point of these data explorations is the source of variability due to chip reuse. The time series
plots and the Northern blots for the two changing genes showed that the use-2 data needs a
more detailed exploration before these data are analyzed for the identification of differentially
expressed genes. For the moment, only the use-1 data is considered. The reliability of the
intensity data from reused filters is still an open question.
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3.3 Poly-dT tracts - Filter

Differentially expressed genes. The idea of ordering genes in the data according to
their variance across different measurements (over time) comes from the fact that one would
expect to see a quite large variance over time for the genes which change significantly in
expression level. Of course, this variability could come either from different undetectable or
detectable sources of variability or from the relevant signal.
How did we find the poly-dT7 tracts to be an important source of variation?

First, the sets of DNA sequences, whose expression levels were analyzed, had their sequences
obtained from NCBI’s Entrez nucleotide database. Browsing over the sequences of the 200
most changing (variable) gene expression levels over experimental conditions, about 85% of
them were prefixed by a sequence of consecutive 5’ dT residues of length greater than 5. In
comparison, 39% of the total number of sequences had poly-dT tracts of length at least 5.
Even going further to the 500 most variable genes in the expression data, we similarly find
a large percentage of sequences with long poly-dT tracts.
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Figure 3.4: The time series plots for the 100 sequences (50 in the upper plot

and 50 in the bottom one) with the largest variance under experimental conditions.

Similar pattern. Those sequences with large variance follow a similar pattern over time.
Among the first 100 most variable sequences in these data, only one of them8 is off the
pattern as figure 3.4 shows. On the other hand, only 8 of those 100 sequences don’t contain
long poly-dT tracts. One wouldn’t expect to see such a similarity in expression pattern over
time for the most changing DNA sequences. These results raise the question of whether
there might be a systematic source of variation in the data due to cross-hybridization.
We presented this artifact in the paper Evidence of cross-hybridization artifact in Ex-

pressed Sequence Tags(ESTs) on cDNA microarrays, by Handley, D., Serban, N., Peters, D.,
O’Doherty, R., Field, M., Wasserman, L., Spirtes, P., Scheines, R., Glymour, C. (nov. 2002).
We conclude that this cross-hybridization is potentially an issue for any single-dye spotted

cDNA microarrays. In the two-dye design, we would expect that any cross-hybridization

7We defined by consecutive 5’ T residues or poly-dT tracts a string of T’s which appears in front of the
nucleotide sequence of a gene.

8It has the accession number AI428396 and starts with one T followed by a C.
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would be equally (or nearly) represented by each dye, and therefore the resulting artifactual
signal components would cancel. Our analysis of a two-dye data set supports this.

4 Which genes are responding to the drug treatment?

Next, we use multiple hypothesis testing to find a set of genes that respond to the drug
treatment. In this context, we say that a gene responds to the test drug if it changes
significantly in expression level over time.

4.1 Multiple hypothesis testing – Methods

Why multiple hypothesis testing? The gene expression data provided by the mi-
croarray experiments are large-scale data that capture the behavior of thousands of genes
simultaneously. This suggests approaching multiple inferences. To control the multiplicity
problem different methods were proposed. Among the most popular are Bonferroni correc-
tion, and more recently False Discovery Rate(FDR).
Comparison of Bonferroni correction and FDR. The Bonferroni method controls

the probability of making one or more Type I errors among all hypotheses. The limitation
of this procedure is the strong control. In many multiple inference problems the number of
erroneous rejections should be considered and not only the question of whether any error
was made. In this context, an error rate may be the expected proportion of errors among the
rejected hypotheses (“discoveries”) which defines the False Discovery Rate (FDR). However,
the FDR procedure assumes independent test statistics and the gene expression levels tend
to be correlated. This issue is bypassed by the argument given in Storey & Tibshirani [21].
That is, under “loose dependence” and large number of tests, FDR behaves as if the tests
were independent. The “loose dependence” applies to the microarray data because genes
tend to depend in clusters9.
FDR application. To use FDR, the computation of the p-values is necessary. For

a detailed description of the procedure for the decision rule according to False Discovery
Rate I refer to the Appendix (section 7.3). In the next subsections, three applications of
hypotheses testing are applied with final goal of finding the p-value corresponding to each
gene under specific assumptions. Finally, the rejection rule is a function of p-values according
to FDR controlled at the level of significance α = 0.05. In the last section, a discussion about
modified FDR under a different estimate of a, Bonferroni correction and uncorrected case
will be compared with respect to an application of the hypothesis testing considered in the
analysis.
Only one application of hypothesis testing is described here. It is the 2-time-difference

test. Other two applications are described in the Appendix. One is the Wilcoxon rank sum
test which was previously applied to microarray data[5] (see section 7.4). The second is the
runs test which often is used with time series data (see section 7.5).
The 2-time-difference test. This test provides candidates for genes whose expression

level changes between two time points.

9“Genes tend to work in pathways, that is, small groups of genes interact to produce some overall process.”
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Assume that the genes are divided into two classes: genes which change between the two
treatment times (“affected”) and genes which don’t change (“unaffected”). Thus the test for
gene i is: Hi0 : gene is unaffected vs. Hi1 : gene i is affected for i = 1, ..., g (where g is the
number of genes which are tested). The task is to test simultaneously for all g genes if the
difference in the expression levels at the same time point t1 has the same distribution as the
difference in the expression levels at the different time points t1 and t2.
P-value estimation in the 2-time-difference test. Assume that at time t1 there

are n replications (i.e. there are n measurements under the treatment which lasted for the
period of time t1). Denote the replications at time t1 for gene i by Xi which is a vector of
the form (Xi1, Xi2, ..., Xin). Consider also a measurement at time t2 for gene i: Yi.
Define the observed null difference for gene i and a fixed j (in 1, ..., n) as follows:

D̂ij =
∣∣∣∣
1

n− 1
∑

k=1,..,j−1,j+1,..,n

Xik −Xij

∣∣∣∣.

Define the differences in expression between time t1 and time t2

d̂ij =
∣∣∣∣
1

n− 1
∑

k=1,..,j−1,j+1,..,n

Xik − Yi

∣∣∣∣

The distribution of the null difference called F0 can be estimated by the empirical distri-
bution of D̂ij with i = 1, ..., g which are identically distributed F0:

F̂0(t) =
1

g

g∑

i=1

I(D̂ij < t).

It follows that the p− values can be estimated using the estimated F̂0 such as:

P̂i = 1− F̂0(dij) =
1

g

g∑

k=1

I(D̂kj > dij)

where I() is the indicator function.
We have evidence against the “unaffected” hypothesis (H0) for gene i if Pi < Pk̂(.05)

according to FDR.

4.2 Multiple Hypothesis Testing–Results

In this section, I present the results according to each application of the hypothesis testing.
2-time-difference test. The 2-time-difference test was described in section 4.1. The

test compares the normalized intensities for two different time points, one of them has to
have replicates. Fortunately, our microarray experiment has 5 replicates at 6 hours, arrays
measured under treatment time of 6 hours and test drug. Thus it is possible to find single
differentially genes between 6 hours and 4 hours, 6 hours and 8 hours and so on.
Using the 2-time-difference test (FDR controlled at the significance level α = 0.05), the 5

replicates at time 6 hours were compared to arrays of intensities at 3 hours, 4 hours, . . ., 24
hours and 2 controls in the use-1 data (table 4.1). The 2nd column consists of the number
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of genes which are significant for 2-time-difference test applied to 6 hours and each of the
other time point. The 3rd and 4th columns indicate whether the two changing genes are
significant (1) or not (0) based on the corresponding test.

Compare # of signif Ucp2 Lpl
6 hours vs. genes
2 hours 218 1 1

2 1/2 hours 313 1 1
3 hours 257 1 1
4 hours 140 1 1
8 hours 182 0 1
10 hours 360 1 1
12 hours 358 1 1
14 hours 270 1 1
16 hours 282 1 1
18 hours 153 1 1
20 hours 158 1 1
22 hours 227 1 1
24 hours 195 0 1
control C- 4 0 0
0 hours

control C+ 158 0 1
1 hour

Table 4.1: Testing with the 2-time-difference test

applied to the screened 1055 genes

Agreement between the 2-time-
difference test and time series plots.
There is a close relationship between test-
ing hypothesis results and the time series
plots of the two changing genes (see figure
3.3). The time series plot of the Ucp2 gene
shows that there is a mild rise from 6 hours
to 8 hours, and roughly no change between 6
hours and control C−, and between 6 hours
and 24 hours. This is also replicated by the
test of 6 hours vs. control C−, 8 hours
and 24 hours for Ucp2 (see column 3 in table
4.1). In any other case, there is a conside-
rable change between 6 hours and any other
time was tested against 6 hours which is
also displayed in the time series plots.

Intersect the set of significant10 genes according to 2-time-difference test. The
intersection of the significant genes from the tests 6 hours vs. 3 hours, 10 hours, 12 hours,
14 hours, 16 hours contains 99 genes. There are 21 known genes among the 99 from the
intersection. The 21 genes found by intersecting the significant genes of the 5 tests are not
among the genes which are significant from testing 6 hours to control C−, which has only
one known gene, adipsin. Because they do not change significantly from control to 6 hours,
but they change significantly from 6 hours to other different hours, these genes will be good
candidates for the genes which change in expression level from control C− to the other
different hours (but 6 hours). I considered the intersection of sets of significant genes from
testing 6 hours vs. the 5 treatment times because they are not very close to 6 hours but not
very far away. One might expect no change in expression level in 2 hours (for example, 4
hours vs. 6 hours) or no significant change when measured between 6 hours and 20 hours.
We also observe that the largest change happens around 10 hours. Thus our intersection is
neither restrictive nor extremely wide.
The list of 21 known genes and the list of the genes which change from C− to 6 hours

are in appendix.
Wilcoxon rank sum test. There are no time points other than 6 hours in the data

with replicates on the same treatment. For this reason, the Wilcoxon test is applied only to
compare the arrays before and after a single treatment time or to compare the replications
at a time point (6 hours) to the data after or before that treatment time.
Testing for changes at 6 hours with Wilcoxon rank sum test. A first test

compares the distribution of the 5 replicates at time 6 hours with the distribution of the
arrays at 10 hours, 12 hours, 14 hours, 16 hours, 18 hours, 20 hours, 22 hours and 24 hours
(two sided alternative) at the level α = 0.05 (the level of significance at which we control

10In this context, a significant gene is one whose expression level changes between two time points.
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FDR). There is a quite large number of genes which encounter significant change according
to this test. About half of the genes (471 out of 1055) encounter significant change from 6
hours to the hours after. The same test is applied for one-sided alternative encountering for
a depression (138 significant gene expression levels) or a rise (327 significant gene expression
levels among them being the two changing genes, Ucp2 and Lpl) between 6 hours and the
times after. Among the 471 genes, there are 87 known genes including the two changing
genes, Ucp2 and Lpl.
Testing for changes at 8 hours with Wilcoxon rank sum test. A second approach

to the Wilcoxon rank sum test is to consider a time point, let say 8 hours, and compare the
arrays before and after this time point at the level α = 0.05. Between 8 hours and 10 hours
is when the genes with long initial poly-dT tracts showed a sharp depression. According to
this test, 169 gene expression levels from which 38 known genes change significantly between
the early time points and the late ones. The two changing genes don’t significantly change
according to this test.
Runs test There are different versions of this test. First, the sign vector corresponding

to each gene is determined from comparison to the median level or from the differences of
the intensities of consecutive treatment times. Then, there are two different ways to test
the randomness, by using the number of runs or the length of the longest run. The level of
significance for FDR control is α = 0.05.
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Figure 4.1: 6 genes which change in expression level (unlogged scale) over time according to runs test

The difference between the two rules is the following. When the magnitude of each
gene expression level is compared to the median then the runs test is testing for fluctuations
around the median level or a very long sequence of intensities above or below the median level
(up-regulation or down-regulation). When the differences of the consecutive gene expression
levels across time give the sign vector, then a large number of runs corresponds to a large
number of rises and depressions, and a long run corresponds to a trend over time. The runs
test based on the number of runs and on the longest run under the Rule 2 (signs of the
differences of the consecutive time points) provide no significant genes. That is, there is
not a significant trend over time for the gene expression levels and the pattern over time
is random. On the other hand, there is no significant gene for the runs test based on the
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number of runs using Rule 1, but there are 118 genes significant under the same Rule 1 but
with the test based on the longest run. That is, all the genes are tested have random pattern
in distribution above and below the median level, but there are significant genes which are
up-regulated (above median level) or down-regulated (below median level) for a long time.
The two changing genes are not significant according to this test.
There are 21 known genes whose expression levels change significantly according to runs

test based on the longest run (see Appendix for a complete list).

4.3 Discussion

Common significant genes. Generally, the three tests don’t agree on the set of sig-
nificant genes. For example, the 2-time difference test (99 significant gene expression levels
considered) and runs test (118 significant gene expression levels) have only 9 gene expres-
sion levels in common (only 1 known gene, gamma-glutamyl transpeptidase). However, a
noticeable agreement exists between the 2-time-difference test and Wilcoxon rank sum test
(6 hours compared to the time points after) set of changing gene expression levels including
the ones for the two changing genes, Ucp2 and Lpl. This last agreement on the set of sig-
nificant gene expression levels is explained by the fact that both tests compare roughly the
same sets of arrays: replicates at 6 hours and the measurements for the time points after
6 hours. Thus the set of significant genes depends on the treatment times we test, on the
hypothesis we make and the correction of multiplicity we consider.
Runs test vs. 2-time-difference test. The runs test (based on the longest run)

provides genes whose expression levels are low for a while (over some of the time points) and
then high or vice versa. This is different from what the 2-time-difference test tries to capture.
The latter counts for the changes between time points over a period of time (considering the
intersection), but these changes are not necessarily in the same direction. For example, the
former test might give genes which are very low before 6 hours and very high after 6 hours.
On the other hand, the latter test might provide genes which are depressed from 6 hours to
10 hours but rise from 6 hours to 12 hours.
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Figure 4.2: Common significant known genes from testing with runs test and Wilcoxon rank

test applied to the arrays 3-8 hours vs. arrays 10-24 hours

Wilcoxon rank sum test vs. 2-time-difference test and runs test. There are only
12 genes in intersection of significant genes according to the 2-time-difference test and the
significant genes according to Wilcoxon rank sum test when the arrays from the early treat-
ment times (3-8 hours) are compared to the arrays of late times (10-24 hours). Two of them
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are known genes: ”gamma-glutamyl transpeptidase” and ”zinc finger protein 46”. On the
other hand, there are 99 common significant genes for the runs tests and the same Wilcoxon
test. Among them 15 are known genes. Their expression curves are in figure 4.2. The large
number of genes in the later intersection suggests that most of the genes identified with runs
test are low before 8 hours with a rise after or are high before hours with a depression after.
Correction for multiple inference. We corrected the p-values provided by different

applications of hypothesis testing with False Discovery Rate at the level of significance α =
0.05 and in the conservative case, a = 0 (corresponding to the case when all the hypotheses
are assumed to be null). We choose FDR with a = 0 because we don’t want to be very
restrictive (as in the case of Bonferroni correction) but we don’t want to allow many genes in
the set of significant genes (as in the case when we would estimate a). In table 4.2, different
test corrections for multiplicity are compared. We control the set of p-values with False
Discovery Rate under different estimates of a (see 7.2 for details), with Bonferroni correction
as well as with uncorrected testing. The Bonferroni correction provides no significant genes
according to our criteria. However, restricting the intersection only to the tests 6 hours
vs 10 hours, 6 hours vs 12 hours, and 6 hours vs 14 hours (they provide the largest sets
of significant genes), the intersection of the sets of significant genes consists of 36 genes
(7 known genes including lipoprotein lipase, and uncoupling protein 2, mentioned in the
appendix). Additionally, three genes, adipsin and 2 EST’s, change in expression from 6
hours to control C−. At the other extreme, the uncorrected testing for multiplicity gives
164 gene expression levels which change from 6 hours to 3 hours, 10 hours etc. We also
notice that the case of â = 0 is the most conservative for the FDR correction.

control with Bonferroni â = 0 â = max
[n/2]
k=1

Ĝ(k)−P(k)

1−P(k)
â = 2(Ĝ( 1

2 )− 1
2 ) Uncorrected

correction FDR FDR FDR tests
number of signi-
ficant genes 0 99 136 150 164

number of signi-
ficant known genes 0 21 31 37 39

Table 4.2: The number of significant genes represent those genes which are change from 6 hours

to 3 hours, 10 hours, 12 hours, 14 hours and 16 hours according to the 2-time-difference test

and with the multiplicity correction specified in the first row.

The set of genes whose expression levels change significantly over time provided by the
2-time-difference test (which are a subset of those given by Wilcoxon rank sum test) and
runs test need to be analyzed further. One experimental methodology is the Northern blot
procedure mentioned earlier in the text and described briefly in the Appendix.
A statistical tool applied next is cluster analysis. The goal is to evaluate those significant

genes according to their pattern over time and to identify other genes which vary similarly
to the ones we found to be single differentially expressed or to identify common clusters for
those genes.

5 Which Genes Vary Together?

The second approach in the analysis, clustering, is used to group genes with similar
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patterns (co-expression). This similarity in pattern over time doesn’t necessarily imply co-
regulation of the genes in the same cluster. Grouping genes by co-regulation is a more
complex and harder problem.

5.1 Cluster analysis – Methods

The main objective is to find at least well-defined clusters of genes which are expressed
similarly over time. A better distance for quantifying the closeness between the two curves
is the correlation coefficient rather than the Euclidean distance.
Clustering in the Fourier space. An alternative to clustering using correlation is

to cluster in Fourier space. The profiles/curves of the gene expression levels over time are
quite smooth. (The smoothness assumption implies that the curve functions are in a Sobolev
space; estimating a function under a smoothness constraint can be reduced to the problem
of estimating Normal means in an ellipsoid.)
We choose the Fourier transformation rather than “decorrelation” by Principal Compo-

nent Analysis (PCA), which is a common approach to this problem, because each gene has
a small number of observations over time (only 15 different time points). In this case, we
would prefer to deal with a known orthogonal, orthonormal basis rather than estimating it
from the data (as in PCA case).
The transforms of the observed expression profiles are obtained as follows.
Algorithm.

Let Yij be the expression level for gene i and time tj. Here 1 ≤ i ≤ N and 1 ≤ j ≤ m, where
N is the number of genes andm is the number of time points. Assume that Yij = fi(tj)+σjεij
where E(εij) = 0.
Step 0: Estimate σ2i , variance for gene i over time with

σ̂2i =
1

m− 2
m−2∑

j=2

(C2
j (AjYi(j−1) +BjYi(j+1) − Yij)

2)

where Aj =
tj+1−tj
tj+1−tj−1

, Bj =
tj−tj−1

tj+1−tj−1
, and C2

j = (A
2
j +B

2
j + 1)

−1[8].

Step 1: Transform time to go from 0 to 1. Let 0 = t1 < t2 < · · · < tm = 1 denote the
ordered time points.
Step 3: Choose k ≤ m, the smooth parameter (see below).
Step 4: Let φ0(t) ≡ 1, φ1(t) =

√
2 cos(πt), φj(t) =

√
2 cos(jπt), etc. the cosine basis.

Step 5: Let

Φ =




φ1(t1) φ2(t1) · · · φk(t1)
φ1(t2) φ2(t2) · · · φk(t2)
...

...
...

...
φ1(tp) φ2(tp) · · · φk(tp)



.

Now perform a Gram-Schmidt orthogonalization on the columns of Φ to make the columns
orthogonal. Denote the new matrix by Ψ.
Step 6: Given a profile Yi = (Yi1, . . . , Yim), define θ̂i = (θ̂i1, . . . , θ̂ik) by θ̂ir =

1
m

∑m
j=1 ψrjYij.

Thus θ̂i is the cosine transform of Yi. Note that f̂i(tj) =
∑k
r=1 θ̂irψrj is a smoothed version
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of the profile Yi (we estimate f̂i(t) =
∑k
r=1 θ̂irψr(t)) .

Step 7: Now cluster the θ̂ vectors using Euclidean distance. Omit the first component θ̂1
(which corresponds to the average) from each θ̂ vector. This forces the clustering to use shape
information only (a cluster will contain genes whose curves are similar but not necessary on
the same scale).
One left detail is to choose k, the smooth parameter. We found this parameter using

decision theory. The method is described in section 7.6 of the Appendix.
Clustering Routine. The clustering algorithm applied in this study is k-means. It is

a non-hierarchical clustering method.
The problem with non-hierarchical clustering methods is that the number of clusters has

to be known a priori. There are different ways to identify the number of clusters in the
literature, but in the current analysis only one is used. This is estimating the number of
clusters using the gap method [22].
The gap method. Tibshirani et al. proposed testing under the null hypothesis whether

the number of clusters is 1 versus the alternative hypothesis, the number of clusters is
greater than 1. The null distribution, called the reference distribution, is considered to be
the uniform distribution under which a clustering method would provide only one cluster.
The test statistics is called the “gap” statistics.
Tibshirani et al. proposed simulation from the hyper-rectangle over the range of the

observed data which is a rougher approximation to the observed data convex hull than
the hyper-ellipsoid. Along the same lines, the generated data could be also from a uniform
distribution over the hyper-ellipsoid or hyper-rectangle shaped with the principal components
of the data[22].
Simulation study on the the gap method. A simulation study with 8 different

models according to Fridlyand & Dudoit[6] was performed. The gap method fails to find the
number of clusters when there is overlap between the clusters and when there are noise vari-
ables in the data. Changing from hyper-rectangle to hyper-ellipsoid, not much improvement
was gained (the 8 models are on low-dimensional data only).
Unfortunately, we would expect to see both overlap and noise variables in our data.
Local clustering. The gap procedure is a global test for determining the number of

clusters in the data. We propose a test for local clustering in addition to a global clustering.
With this procedure, we aim to find local clusters which are not identified by the gap method.
Our local clustering is based on hypothesis testing. The null hypothesis is that a set of

data points is uniformly distributed over the hyper-ellipsoid which bounds the data points.
The alternative hypothesis is that the data points come from a sum of two uniform distribu-
tions. This alternative hypothesis can be extended over a sum of more than two uniforms.
However, we only want to test whether a set of data points forms a single cluster thus the
alternative over two uniforms may suffice.
Simulation study on local clustering. I mentioned previously that the gap statistics

fails when the clusters are overlapped or when noise variables are in the data. The same
8 models from Fridlyand & Dudoit[6] were applied to the local cluster test. As one would
expect, the p-values are significantly large when the data is formed by three very well-
separated clusters. On the other hand, irrelevant variables (noise), overlapping clusters and
elongated clusters are handled by the local cluster test.
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Cluster stability. The larger is the gap between those local clusters, the better is the
clustering. We proposed to quantify the separation between local clusters by a stability
assessment.
There exist several attempts to cluster stability assessment. One method developed for

the microarray setting proposes to bootstrap the residuals from an ANOVA which would
model the gene expression levels taking into account the gene effect, the variety effect (that
could be the time) and other variables that may represent a source of inherent variation in
the data (for example, array effect)[14]. Then the bootstrapped residuals would be added
to the fitted values generating datasets with the same distribution as the observed one. Our
stability algorithm (section 7.9 in Appendix) is along the same lines. We bootstrap from
a multivariate normal distribution with the parameters given by the data to be clustered.
Then we cluster the simulated data and count for those data points which stay in their
cluster.
Our algorithm provides an estimate of the cluster stability (defined by the number of

genes that stay in the cluster) and the corresponding standard error. In the meantime, the
gene frequency in each cluster can be computed. This will give the proportion of genes which
stay in the initial cluster 100% or 95% of the time, and, eventually, it will reveal overlapping
(say, genes that are about 50% of the time in a cluster and 50% of the time in a different
one). Thus we can see this stability assessment as a gap-overlap measure. In the case of a
considerable overlap between clusters we may not separate the overlapped clusters.

5.2 Clustering analysis–Results

The cluster analysis is applied to two different forms of the expression data: the untrans-
formed data and the cosine transformed data of the 1055 gene expression profiles. k-means
routine with Euclidean distance is applied to these datasets.
Cosine transform data. The 1055 gene expression profiles are smoothed according to

the procedure outlined in 5.1.
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The smoothing parameter is k=6

Figure 5.1: Curves of two genes randomly chosen; for each gene, the observed

(red line) and the smooth data with smooth parameter k̂ = 6 (blue curve) is plotted.

First, the 1055 genes are divided in 20 groups (to account for different wiggliness in the
curves), each containing about 52 genes. The mode is attained at k = 6 which is the smooth
parameter for most of the curves in the data. For two randomly chosen genes, the data
(brown line) and the smoothed data (blue line) with the smoothing parameter k = 6 are in
figure 5.1.
Identifying the number of clusters. The untransformed expression profiles, and

cosine transforms are evaluated with the gap method (the clustering algorithm is k-means)
in order to estimate the number of clusters.
The first data set discussed is the untransformed expression profiles. The algorithm gap

method is applied to intensity dataset for the 1055 profiles. The reference distribution is
either uniform from the hyper-rectangle or from hyper-ellipsoid which covers the observed
data. In the two cases, the number of clusters is estimated to be K̂ = 16 and, respectively,
K̂ = 3. Then when reference distribution takes into account the shape of the data[22], the
number of clusters is estimated with K̂ = 6 (hyper-rectangle) and K̂ = 3 (hyper-ellipsoid).
Second, the dataset is formed by the cosine transforms. For these transformed data with

all 6 components, the number of clusters is estimated to be K̂ = 6 when the reference datasets
are not corrected for the data shape (both hyper-rectangle and hyper-ellipsoid) and K̂ = 3
when the reference distribution takes into account the shape of the data. However, we omit
the first component in each cosine transforms (the space dimension is 5). In this case, the
gap method estimates the number of clusters as follows. When the reference datasets are
uniform on the hyper-rectangle K̂ = 3. Then when the reference datasets are uniform on
the ellipsoid, the number of cluster is estimated to be K̂ = 2.
Local clustering. The number of clusters is estimated to be K̂ = 3 for the untrans-

formed dataset and to be K = 2 for the cosine transforms when the first component is
omitted.
Next, the k-means algorithm and the local cluster test are applied in order to check for

possible local clusters.
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Figure 5.2: Clustering for transformed data according to gap statistics procedure (start with 2 clusters)

and local testing, with a final number of 5 clusters at the level of significance 0.0111

The local cluster test applied to the untransformed intensity data (with 5000 reference
datasets) gives p-values approximately 0 for the two largest clusters and about 0.0044 for the
smallest cluster. Those small p-values indicates possible local clusters which are not iden-
tified by the gap statistics. We conclude that for each of the 3 global clusters identified by
the gap statistics the test provides evidence against the null hypothesis. The p-values from
testing the split of the six local clusters are large. The final clustering with the untransformed
data is into 6 clusters.
Similarly, testing the null hypothesis of one cluster over the two global clusters obtained

with the cosine transforms (omitting the first component) the p-values are as in figure 5.2.
The final clustering with these data is: the first global cluster is not split but the second
global cluster could be split into two and then into four other local clusters. However, the
testing over the local clusters obtained from the first split is unnecessary. We may not want
a significant overlap between clusters. The data are not so complex in structure that they
need to be divided in very fine subclusters. We would like to capture a few patterns such as
a depression followed by a rise or vice versa. This might be another reason to find clusters
over the smoothed data. We keep the first global cluster and the two local clusters from the
first split of the second global cluster, thus we obtained only three clusters for the cosine
transform data.
Average curves in each cluster for the untransformed data. The average curves,

over time, of the gene expression levels in each cluster are shown in figure 5.3 for each of the
6 clusters. There are three different plots in this figure. Each corresponds to a global cluster
from which two local clusters are formed (only one split level). The curves were rescaled to
the median 0 in order to be plotted on the same scale.
Stability for the untransformed data. The summary of the stability procedure is in

tables 5.1 and 5.2). All 6 clusters have a high stability (higher than 90% for all of them). This
fact shows an extremely small overlap within the hyper-balls estimated from the data points

11Tests are not corrected for multiplicity.
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in each cluster. Similarly, all clusters have a quite large number of genes which fall in their
cluster 100% of the time (among the 5000 simulations). This shows well-separated clusters.
The two changing genes, Ucp2 and Lpl, have a similar pattern over time thus we would like
to find them in the same cluster. However, they are in clusters 5 and 3, respectively.
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Figure 5.3: Rescaled average curves of the genes in each cluster over time for untransformed data;
first plot corresponds to the clusters which are formed from the first global cluster etc.

Local vs. global clustering for untransformed data. The local clusters coming
from the same global cluster have similar average expression pattern over time. However,
the stability assessment shows that there is not much overlap between all 6 clusters, thus
between clusters with the same global cluster. Even though the local clusters have similar
curves over time they are well-separated.

cluster no. size estimated cluster estimated standard
of the cluster stability error of stability

1 340 99% 2.36
2 85 96% 2.1
3 263 90% 7.19
4 162 94% 5.28
5 141 93% 3.52
6 64 97% 2.5

Table 5.1: Estimated cluster stability for the untransformed data

cluster cluster no. genes that no. of genes that no. of genes that no. of genes that
index size stays in the cluster stays in the cluster stays in the cluster stays in the cluster

100% of the time 95% of the time 90% of the time 85% of the time
1 340 275 320 328 331
2 85 30 67 72 76
3 263 108 182 206 216
4 162 69 121 130 135
5 141 66 103 109 117
6 64 40 53 57 59

Table 5.2: The number of stable genes for each cluster according to the stability percentage
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Figure 5.4: Average curves of the genes in local clusters over time for transformed data

Average curves in each cluster in the transformed data. The average curves over
time of the genes in each cluster are shown in figure 5.4 for each of the 3 clusters. The two
different curves represent the average curve over the gene expression level in each clusters
(brown line) and the smoothed average curve (blue line).
Stability for the transformed data. Next, the stability of each cluster in the trans-

formed data is estimated. First estimates of the cluster stability and their standard errors
are computed over 5000 multivariate samples (table 5.3).

cluster no. size estimated cluster estimated standard
of the cluster stability error of stability

1 140 73% 34.3
2 649 32% 29.4
3 266 55% 9.4

Table 5.3: Estimated cluster stability for transformed data

Next, the gene stability is quantified.

cluster cluster no. of genes that no. of genes that no. of genes that no. of genes that overlap with
index size stays in the cluster stays in the cluster stays in the cluster stays in the cluster clusters

90% of the time 80% of the time 60% of the time 50% of the time
1 140 19 57 103 124 –
2 649 0 0 8 97 clusters 3
3 266 19 52 136 168 cluster 2

Table 5.4: The number of stable genes for each cluster according to the stability percentage

There is no gene which falls in its cluster for at least 95% of the 5000 data simulations.
Actually, there are extremely few genes which are stable in their cluster 80% (only 107 out
of 1055).
Local vs. global clustering. The average curves for the local clusters coming from the

same global cluster are similar. In this case, when we are specifically interested in changes
in variation in the first hours or late hours, it would make sense to split the global clusters
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to have a finer grouping of the genes. Otherwise, the global clustering we obtained with gap
method is good enough. This is suggested by the low stability we obtained for the 3 clusters.
We don’t need to introduce unnecessary centers.
The curves of the two global clusters for the transformed data are in figure 5.5.
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Figure 5.5: Average curves over the genes in each of the two global clusters; the brown line is

the observed average curve and the blue line is the smoothed average curve

5.3 Discussion

Methodology. We are interested in finding well-defined clusters of genes whose ex-
pression levels have a similar pattern over time. We applied a classic clustering method,
k-means. It is a non-hierarchical procedure for which the number of clusters is unknown.
In our approach, we use the gap method as a tool of estimating the number of clusters in
the data as it is described in Tibshirani et al., eventually with the change in the reference
uniform distribution.
Euclidean distance vs. correlation coefficient. We propose a method which takes

into account the correlation between curves. We believe that clustering the expression pro-
files has to be based on correlation and not on the Euclidean distance. The 99 significant
genes according to 2-time-difference test are spread out over all six clusters obtained from
untransformed data and Euclidean distance. Cluster 5 and 6 have most of the genes, 61 and
18, respectively. The plots of the significant genes according to their cluster are in figure 5.6.
The four plots show that Euclidean distance is not a good measure of curve similarity.
The uniform over the hyper-ellipsoid vs. hyper-rectangle. In high dimensions,

the difference between the hyper-rectangle (used by Tibshirani et al.) and hyper-ellipsoid
which contains a given set of data points is large. (It increases with the number of dimen-
sions.) Thus the convex hull which covers a set of data points is more closely estimated by
a hyper-ellipsoid than by a hyper-rectangle in a high-dimensional space. A simulation study
showed that the gap method fails to determine the number of clusters when there is overlap,
and when some noise is added to the data. By replacing the reference uniform distribution
on hyper-rectangle with the uniform on hyper-ellipsoid, there is not a significant gain in the
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cluster estimation according to our simulation study in which we were actually considered
data on a low-dimensional space only. However, a significant improvement is on the elon-
gated clusters on a low-dimensional space where Fridlyand & Dudoit found their algorithm,
Clest, very effective (in fact the only improvement over the gap method)[6].
In our case, the number of clusters appears to be better estimated when the uniform is

from an hyper-ellipsoid. The number of clusters is K̂ = 3 for the hyper-rectangle reference
datasets and K̂ = 2 for the hyper-ellipsoid reference datasets when the cosine transforms are
clustered. The average curves for the three clusters are in figure 5.7. Cluster 1 and cluster 3
have similar average curves. From this point of view, we may want to merge the two clusters
as the gap method with the reference datasets from hyper-ellipsoid estimates.
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Figure 5.6: Smoothed expression profiles of the 99 significant genes clustered with

k-means and Euclidean distance over untransformed data

Omitting the first component in the cosine transforms. Our cluster analysis was
applied to the cosine transforms omitting the first component of the cosine transforms.
There is a considerable difference between clustering with all the components in the cosine
transforms and clustering with only 5 of them (omitting the first one). For example, when
all six components are considered the gap method estimates 3 clusters instead of 2. The
average curves for the 3 clusters in figure 5.8 are quite different from the ones in figure 5.7.
Additionally, the smoothed expression profiles for the 99 significant genes from the multiple
hypothesis testing reveal the importance of omitting the first component (see figure 5.9 and
figure 5.10).
Global vs. local clustering. On the other hand, the gap procedure is a global estimate

of the number of clusters which provides well-separated clusters but not local clusters. In
figure 5.11, the three global clusters are the ones which are recognized by the gap procedure.
The small local clusters can be identified by a lcoal testing as discussed in previous section.
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Figure 5.7: Average curves over the genes in each

of the three clusters identified with the gap method

when the reference datasets are from a uniform on a

hyper-rectangle; the brown line is the observed average

curve and the blue line is the smoothed average curve
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Figure 5.8: Average curves over the genes
in each of the three global clusters; the brown

line is the observed average curve and the

blue line is the smoothed average curve
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Figure 5.9: Smoothed expression profiles for the 99

significant genes according to 2-time-difference

test and their clusters from clustering the cosine

transforms without omitting the first component
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Figure 5.10: Smoothed expression profiles for the 99

significant genes according to the 2-time-difference

test and their clusters from clustering the cosine

transforms omitting the first component

We identified 3 global clusters for the untransformed and 2 global clusters for the cosine
transforms (omitting the first component) with the gap method, and applied the local test
to the those global clusters recursively. The clusters formed by splitting global clusters
should have their average curves similar because they come from the same global cluster. It
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is the case of clustering both the untransformed data and the cosine transforms (see figures
5.3 and 5.4).

OVERLAPPING

LARGE  GAP
SMALL
GAP

CLUSTER 1

CLUSTER 3

CLUSTER 2

Figure 5.11: Three global clusters vs. small local clusters contained in the global clusters

Role of the cluster stability. The stability assessment showed a considerable overlap
between the local clusters of the same global cluster for the transformed profiles. On the
other hand, the 6 clusters coming from the untransformed data are quite stable. It followed
that it might be a better clustering when we don’t take into account the local clustering
for the cosine transform data but not for the untransformed data. However, for a high-
dimensional space, like the space where the untransformed data lie, one would expect to
see a better separation between those hyper-balls (between the clusters). The transformed
data in the Fourier space has only 5 dimensions. This is one third of the initial dimension
(15 different time points). The difference in dimensions explains the overlap between the
hyper-balls which cover the 3 clusters (unstable clusters under multivariate data samples).

6 Summary

Statistical methodology. So far two different statistical methodologies were applied to
the microarray data: multiple hypothesis testing and clustering.
Two tests, the 2-time-difference test and the runs test based on the longest run provide

quite different sets of genes. From the first one, we’ve found a set of 21 known genes (99
genes and EST’s) and from the second one we’ve found 21 known genes (118 genes and
EST’s) whose expression level changes over time. The two lists of known genes are provided
in the appendix for those who have the biological background to interpret those results.
Moreover, a clustering algorithm was implemented with the final goal of finding well-

defined clusters of genes whose expression levels over time have similar profiles. The cluster-
ing algorithm is applied to the transformed (normalized) data in the Fourier space to capture
the similarity in expression profile. Two clusters are formed using the cosine transforms and
omitting the first component.
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The two statistical methods complement each other. That is, we might want to know if
the genes whose expression levels significantly change over time share the same cluster and
to find other genes which fall in the clusters where we find the genes of interest. For example,
the two changing genes, uncoupling protein 2 (Ucp2) and lipoprotein lipase(Lpl) are in the
second cluster which contain most of the significant genes according to 2-time-difference test.
The significant genes grouped by their co-expression according to our cluster analysis are in
figure 6.1 (a) and (b) (the known genes with the clusters they fall in are in appendix). The
significant genes according to 2-time-difference test are quite well grouped by our clustering.
For the first cluster the genes have a sharp depression before 14 hours and then a rise in
expression level. The second cluster is formed by genes with an expression rise around 10-12
hours. On the other hand, most of the significant genes according to runs test are in the
first cluster. Similarly, the first group contains those genes with a depression and genes with
low variation in expression level. The second group consists of those genes with a rise in
expression level or low variation in expression.
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(b)

Figure 6.1: (a) Smoothed expression profiles for the significant genes according to 2-time-difference test;

the second plots contains the smoothed expression profiles for a sample of 10 genes out of 88; (b) Smoothed

expression profiles for the significant genes (a sample of 10 genes in each cluster) according to runs test.

Thus a way to look at the clustering connected to the multiple hypothesis testing is to
consider each of the single differentially expressed gene, known or unknown genes, reported
by the hypothesis testing and check the cluster it is in. In this way we may find new genes
which are co-expressed with the ones we have information about and give it a meaning in
the biological process. For example, a biologist could test whether the 11 genes and EST’s in
cluster 1 which are differentially expressed according to the 2-time-difference test are truly
co-expressed, and even better, whether they are truly co-regulated.
Filtering the data. We applied different filters to the data in order to remove the

systematic variation and bias. Considering the two statistical methodologies applied to the
filtered data, one would may wonder about the difference in results over the filtered and
unfiltered data.
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Use-2 data. We removed 27 arrays quantified on reused filters. Of course, we may have
a better understanding of the biological variation over time with 47 measurements than with
20. Thus it is essential to prove (un)reliability on the 27 filters.
We saw that two genes which were observed as being differentially expressed during

the performance of the experiment have quite different expression profiles from use-1 and
use-2 data. Both use-1 and use-2 have measurements for the treatment time 8 hours and
test drug. There are only 104 genes among 1055 (filtered data) and 649 genes among 3824
(data excluding the DNA sequences with long poly-dT tracts) which have the ratio of the
normalized intensity in the two arrays larger than the threshold 1.5. We may conclude that
there is not a significant difference between the two arrays (as one would expect when the
two arrays were from the same use). On the other hand, 8-hour array is measured on the
20th chip under use-2 which corresponds to 24 hours under use-1. Additionally, 884 genes

Compare Gene Known Ucp2 Lpl
6 hours vs. Set genes
1/4 hours 341 81 1 1
1/2 hours 334 79 1 1
3/4 hours 0 0 0 0
1 hours 0 0 0 0

1 1/4 hours 0 0 0 0
1 1/2 hours 0 0 0 0
1 3/4 hours 0 0 0 0
2 1/4 hours 348 99 1 1
2 3/4 hours 352 80 1 1
5 hours 215 45 0 1
7 hours 505 106 1 1
8 hours 160 34 0 0
9 hours 461 92 1 1
11 hours 484 104 1 1
13 hours 434 90 1 1
15 hours 174 35 0 1
17 hours 281 60 1 1
19 hours 157 26 0 0
control C- 396 99 1 1
0 hours

control C+ 368 85 1 1
6 hour

Table 7.1: Testing with the 2-time-difference

test applied to the screened 1055 genes

out of 1055 and 2773 genes out of 3824 have
both the ratio of the intensity at 8 hours from
use-2 and intensity at 24 hours under use-1
and the ratio of the intensity at 8 hours from
use-1 and intensity at 24-hour array under
use-1 smaller than 1.5. This shows that it
might be possible that the signal from use
1 to be carried through use-2. Two significant
genes according to the 2-time-difference test
have their curves over time from use-1 and use-
2 separately in figure 7.1. The first gene has
equal intensities at 8 hours but different inte-
nsities at control C− which corresponds to 0
hours from the two uses. On the other hand,
the early hours are quite different for the first
gene. The smoothed profiles of the same gene
shows a quite different expression for the use-1
data and use-2 data. For the second gene, there
is not approximately equal expression levels for

8 hours but the curves over time are similar (on a different scale).
Impact of use-2 data. Table 7.1 provides the number of genes which change signifi-

cantly according to the 2-time-difference test from 6 hours (measured under use-1) and all
the other 20 measurements from use-2. In this case, a large number of genes, 368, change
in expression level from 6 hours to the control C− as well as for very early treatment times
(1/4 and 1/2 hours). Then a dramatic change happens at 3/4 hours until 2 1/4 hours when
no gene changes in expression level as compared to 6 hours. Additionally, about half of the
genes are changing in expression level from the 6 hours at use-1 and 7 hours at use-2.
Reliability of intensity data from reused chips. Based on the analysis of the

intensity data from reused chips in section 3.2 and these reconsiderations, the intensity data
from reused filters appear to be unreliable. It is possible that some of chips are not affected
by the reuse. It is also possible that only some of the DNA probes on the microarrays to be
altered due to reuse. In any case, it is not safe to draw conclusions from the data which is
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partially unreliable.
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Figure 6.1: Time series on the unlogged scale of two significant genes; the blue line is the curve over the

first use and the brown curve is over the second use in upper plots for the two genes; the bottom plots are

the smoothed profiles of the same genes for use-1 and use-2 curves.

Impact of poly-dT tracts. Another important issue we found to have an impact on our
analysis is the variability of DNA sequences with long initial poly-dT tracts. When those
sequences are not removed the intersection of significant genes from testing 6 hours vs. 3
hours, 10 hours, 12 hours, 14 hours, and 16 hours contains 165 genes (19 known genes). In
this set of significant genes there are 71 which are among the 99 identified with the filtered
data and the same 2-time-difference test. There are three known genes which are among the
19 but not among the 21 significant genes found with the 1055 DNA sequences. They are
”macrophage expressed gene 1”, ”upstream transcription factor 2”, ”hydroxysteroid 17-beta
dehydrogenase 1”.
Applying the Wilcoxon test with the alternative that genes are down-regulated between

8 hours and 10 hours, 554 genes in the set of 5355 DNA sequences are significant according
to this test (with the rejection rule according to FDR controlled at the level of significance
0.05). Among those 339 have initial poly-dT tracts longer than 10 and 435 have poly-dT
tracts of any length. In contrast, there are only 123 genes which are significant when the
same test is applied to the set of genes excluding those ones with long initial poly-dT tracts.
Thus the DNA sequences with long initial poly-dT tracts affect the multiple hypothesis

testing. Additionally, we would expect to see a different clustering of the unfiltered gene set.
Validity of the known genes we found. There are reasons we may want to validate

our DNA sequences we found. The most important one is the experimental error which so
greatly affects the inherent variability. We identified several sources of systematic errors
but we don’t know whether some other sources of systematic error are still present. On
the other hand, the rejection rule in the context of multiple hypothesis testing is based on
False Discovery Rate controlled at the level of significance α = .05. Thus, in average, we
would make 1 out of 20 false positive. Thus we are not 100% certain about our results. The
experimental methodology we use to validate our results is Northern Blot which was applied
to the two ’changing genes’.
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Cluster Analysis. The cluster analysis we proposed can be improved upon. Instead
of applying it to the cosine transform data with the Euclidean distance, we can also cluster
the smoothed profiles using the correlation coefficient as the distance between two data
points. Further, a reliability assessment and a simulation study are important to rely on the
conclusions we make about co-expression we identified with our cluster analysis.
These are the next steps in our analysis of the microarray data for treated fat cells and

maybe different other experiments.

7 Appendix

7.1 Correlation analysis with respect to reuse issue

Correlation between arrays. The correlation coefficients for each pair of arrays which
are measured on the same filter, different use (use-1 vs. use-2) are summarized as following
(the first coefficient corresponds to the correlation between the array reported on chip-1,
use-1 vs. array experimented on chip-1, use-2 and so on):

0.93 0.96 0.97 0.97 0.97 0.97 0.91 0.91 0.89 0.91 0.90 0.98 0.98 0.97

0.98 0.97 0.98 0.98 0.99 0.97

The lowest correlation happened to be for chip 9 which has use-1 at 6 hours and second
use at 105 minutes, quite far away from each other. The largest correlation is for chip 19
which has use-1 at 22 hours and use-2 at 19 hours, reasonably close to each other. Thus the
high correlation between arrays coming from the same filter could be induced by the time
difference in use-1 and use-2. However, the correlation coefficients are quite large supporting
the previous statement.
Use-1 vs. use-2 correlation by gene. Another way to look at the correlation is to

calculate the correlation coefficient for each gene given its data from use-1 vs. the data from
use-2 ordered by the chip index. These coefficients reflect the correlation between use-1 vs.
use-2 according to the chip variable for each gene. There are in total 188 DNA fragments
with correlation coefficients larger than 0.8. The summary of the correlation coefficients for
all genes is as follows.

Minimum 1st Quantile Median Mean 3rd Quantile Maximum

-0.665 0.159 0.370 0.348 0.555 0.936

Even the 100 genes with the highest variance have those coefficients in the interval (-
0.356,0.410). A large correlation would imply that the measurements reported on first-use
chips replicate a similar expression profile over chip number to the one reported on second-use
filters. However, the correlation coefficients are not extremely large to make this assertion.
From this point view, it is uncertain if the use-2 filters report similar signal to use-1 filters
(because the filters weren’t cleaned correctly after first use, for instance).
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7.2 Northern blot

The Northern blot is a method of detecting and quantifying specific RNA sequences. RNA
is separated by molecular weight on an electrophoretic gel, then transferred to a membrane
where it is allowed to hybridize with an oligonucleotide probe specific to the RNA of interest.
Excess probe is washed off, and the probe that remains is visualized through either an
immunohistochemical stain or a radioactive tracer. The presence of a band on a Northern
blot indicates RNA of the correct (or approximately so) expected nucleotide sequence, and
the intensity of the band gives an indication of the amount of RNA present. The position
of the band on the membrane is compared against known molecular weight markers, and is
used to help verify the RNA detected is of the expected size.

7.3 Multiple hypothesis testing – False Discovery Rate

Suppose we test n identical hypothesis tests with independent statistics (or “loose depen-
dence when n large) T1,..,Tn. The n test define the same rejection region. Each test will
provide a p-value (Pi of the i

th test).
Define the variable Hi = 0 if the ith null hypothesis is true, and 1 otherwise. The

Pr(Hi = 0) = a and Pr(Hi = 1) = 1−a are given a priori, following that Hi ≈ Bernoulli(a).
The distribution of the p-values under the null hypothesis is uniform: Pi|Hi = 0 ≈

U(0, 1). The distribution of the p-values under the alternative hypothesis is usually unknown
and is estimated by the data: Pi|Hi = 1 ≈ F . Then the marginal distribution of Pi is:
G = (1− a)U + aF .
The false discovery rate is defined as

FDR = E
[
V

R

∣∣∣∣R > 0
]
P (R > 0)

where V is the number of rejections among the true null hypothesis and R is the number of
total rejections. “The Benjamini & Hochberg method guarantees that E[FDR] = (1− a)α
in the continuous case, which is conservative because E[FDR] is controlled below the level
α”.
The threshold that define the rejection rule for the multiple testing is estimated by the

sequential p-values method to control FDR [1]:
Step 1: Set α (the level of significance at which FDR is controlled).
Step 2: Compute the p-values of n tests based on independent test statistics.
Step 3: Order the p-values: p(1), ..., p(n).

Step 4: Choose k̂α such that k̂α = argmax{pk) ≤ i
n
α
p0
} where p0 is the proportion of true

null hypotheses.
Step 5: Reject the null H0k if pk ≤ pk̂α .

Modified FDR. Under the mixture model, G = (1− a)U + aF and the B&H threshold
k̂ is equivalent to: TBH = sup{t : G(t) = t

α
}.

In fact, a more powerful test is obtained when the threshold is given by:
sup{t : G(t) = (1−a)t

α
} = sup{t : (1−a)t

G(t)
= α} because E[FDR] ≤ (1− a)α [20,7].

In the modified FDR, all the steps in the algorithm described above are the same but adding
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a step (2’) in which a is estimated by â = Ĝ(p)−F0(p)
1−F0(p)

= Ĝ(p)−p
1−p

where p can be chosen as

p = 1
2
[20]. This is a good estimate because for any p in (0,1), the following inequality is true:

a ≥ G(p)−F0(p)
1−F0(p)

. Another estimate of a could be taken as â = max
[n/2]
k=1

Ĝ(k)−P(k)

1−P(k)
which is based

on the same inequality[7]. Also, replace in step 4, α by α
1−â
.

7.4 Application of hypothesis testing – Wilcoxon rank sum test

What does it test? This test can differentiate genes which are potentially up-regulated
or down-regulated at one time point t, comparing the measurements before t to the ones after
t. It can also test if genes change from a time point to another comparing the replications
provided for each of the time points (it will require replicates at both treatment times).
Setting. Suppose for each gene i, two independent samples of size n and m, (Xi1, .., Xin)

and (Yi1, ..., Yim) for each gene i = 1, .., g which are observations from two continuous distri-
butions Fi, and Gi, respectively.
The null hypothesis is H0 : Fi ≈ Gi (identical distributions) vs. a two-sided (H1 : Gi(x) =
Fi(x− θ), θ 6= 0) or one-sided alternative such as H1 : H1 : Gi(x) = Fi(x− θ), θ > 0 (gene i
is up-regulated at the given time point t).
P-values estimation. Merge the two samples into one sample of length N = (n+m),

sort it, assign ranks to the sorted values (giving the average rank to any ’tied’ observation)
and define Ri1, Ri2, ..., Rin, the positions (ranks) taken by Xi’s in the combined sequence of
length N . The Wilcoxon rank-sum test statistic is WN =

∑n
k=1Rik.

The distribution of the test of lengths (n,m) is given by the Wilcoxon distribution,
W (n,m), when n and m are small. The exact distribution can be expressed by a recursive
scheme[9]. For large m and n, the distribution of WN under H0 can be approximated by the

normal distribution with mean E(WN) =
m(N+1)

2
and variance V (WN) =

m×n(N+1)
12

.
The p-values are computed with Pr(WN < Wi,obs) for one-sided alternative H1 : Gi(x) =

Fi(x− θ), θ > 0, for example.
Then the p-values are used in defining the rejection rule according to FDR.

7.5 Application of hypothesis testing – Runs test

What does it test? Tests based on runs test for randomness in the data against
the tendency of genes to cluster or tendency of genes to mix. They can be applied to both
qualitative and quantitative observations, and they are good tools to test randomness in time
series. With runs test, we will capture genes whose expression changes over all treatment
times. Here, the change is defined according to the test setting.
Settings. First the intensity vector over ordered time for each gene is transformed in

a sign vector that will contain (+1)’s and (-1)’s according to a specific rule. Two rules are
considered:
Rule 1: For each gene, find the median of the intensities over time. Then replace the

intensity value with (+1) if it is above the median level and (-1) if it is below the median
level.
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Rule 2: For each gene, take the difference of consecutive time observations Xi−Xi−1 and
assign (-1) if the difference is negative and (+1) if the difference is positive.
The definition of a “run” is a consecutive sequences of (+1)’s or (-1)’s only.
The null hypothesis, H0, is ’gene i is random’ vs. the two-sided alternative, Ha, ’gene i

is not random’ or one-sided alternative depending on the specific runs test used. The runs
tests are based either on the number of runs or on the longest run. There is a third type
runs test called runs up and down test which won’t be discussed here [9].
P-values estimation. The exact distribution under the null hypothesis of the runs test

based on the number of runs is easier to define than for the runs test based on the longest
run.
The distribution of the number of runs R (Feller’s distribution) can be derived from the

joint distribution of the number of runs of (-1)’s, R1, and the number of runs of (+1)’s, R2.
That is, given n1 the number of (-1)’s and n2 the number (+1)’s, then the probability of

having an even R number of runs is: P (R runs) = 2
(n1−1
r/2−1)(

n2−1
R/2−1)

(n1+n2
n1
)

and of having an odd R

number of runs is: P (R runs) = 2
( n1−1
(R−1)/2)(

n2−1
(R−3)/2)+(

n1−1
(R−3)/2)(

n2−1
(R−1)/2)

(n1+n2
n1
)

.

The distribution of the length of the longest run K of (-1) or (+1) can be derived from
the joint distribution of the Rij, the number of runs of length j corresponding to the two
types i = 1, 2 . This distribution is not described here. It’s a complicated sum over many
indexes [9,16].
The alternative hypothesis can be one-sided or two-sided. For the test based on the

number of runs, if the one-sided alternative is that the number of runs is large - a tendency
of like genes to cluster - then p−value = Pr(R ≤ r.observed) and if the one-sided alternative
is the the number of runs is small - tendency of genes to mix - then p − value = Pr(R ≥
r.observed). Similarly, the p-values are computed for the test based on the longest run
according to the alternative.

7.6 Cluster Analysis – Clustering routines

The clustering routines applied in our cluster analysis is k-means. It is a non-hierarchical
clustering method for which the number of clusters needs to be specified.
K-means clustering. The algorithm can be summarized as follwos:

Step 1: Partition the items into k initial clusters (given for example by the hierarchical
clustering).
Step 2: Assign an item to the cluster whose centroid (mean) is the nearest and then recal-
culate the centroids.
Step 1 and Step 2 are reiterated until the assignments do not change.
In the analysis of the microarray data, the k-means procedure was applied with the initial
division of the set of genes from the hierarchical clustering, average linkage.

7.7 Cluster Analysis – Choosing the smooth parameter

The cosine transform data is formed by the first k coefficients from the data transforma-
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tion according to cosine basis. It remains to choose the smooth parameter, k.
We would expect to choose a small k because the gene profiles are quite smooth. Instead

of choosing a random k, we use decision theory to decide k. The reasoning is as follows.
Let R(k) = E

∫
(f(t)− f̂(t))2dt denote the risk. It is hard to estimate the risk based on

a small number of observations. Instead, we choose the same k for curves grouped by their
gene expression level variance over time (otherwise we combine curves with very different
amounts of wiggliness) and minimize the average risk within each group containing N genes:
R(k) = 1

N

∑N
i=1Ri(k).

First, E(θ̂ir) =
1
m

∑m
j=1 fi(tj)ψr(tj) =≈

∫
f(t)ψr(t) = θir andV(θ̂ir) =

1
m2

∑m
j=1 σ

2
iψ

2
r(tj) ≡

ν2r .

We can estimate ν2r by inserting σ̂i for σi: ν̂
2
r =

1
m2

∑m
j=1 σ̂

2
i ψ

2
r(tj).

Now V(f̂i(t)) =
∑k
r=1 ν

2
rψ

2
r(t) so the integrated variance is

V(k) ≡
∫
V(f̂i(t))dt =

k∑

r=1

ν2r .

The estimate is V̂(k) = ∑k
r=1 ν̂

2
r .

Also, E(f̂i(t)) =
∑k
r=1 θirψr(t). Hence the bias is

b(t) = E(f̂i(t))− fi(t) =
∞∑

r=k+1

θirψr(t)

and the integrated squared bias is

B2i (k) =
∫
b2(t)dt =

∞∑

r=k+1

θ2ir ≈
m∑

r=k+1

θ2ir.

Since E(θ̂2ir − ν2r ) = θ2ir, an estimate of the squared bias is B̂2i (k) =
∑m
r=k+1

(
θ̂2ir − ν2r

)
+
here

we have taken the positive part to avoid negative estimates.
Finally, our estimate of R(k) is

R̂(k) = V̂(k) + 1

N

N∑

i=1

B̂2i (k).

Now we choose k by minimizing R̂(k) over 1 ≤ k ≤ (m−1). For each group of genes, Cg, say
g = 1, ..., 20, the corresponding kg is estimated. Then the mode mode

20
g=1(kg) is considered

the smoothing parameter.

7.8 Cluster Analysis – Gap method

Notation. The data consist of N genes with different intensities at m time points:
(xij)i=1,..,N,j=1,..,m. Denote with Dc the sum of the distances of any two genes in cluster c.
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In Tibshirani et al., the within-dispersion measure is defined as Wk =
∑K
c=1

1
2nc
Dc with K

being the number of clusters, which in fact is the pooled within-cluster variance under the
Euclidean distance.
Algorithm for estimating the number of clusters.

Step 1: Cluster12 the data with the number of clusters varying from 1 to a large value K
(usually, in the analysis K = 20) and find Wk for each number of clusters (where Wk was
defined above).
Step 2: Generate B (B ≥ 1000) reference datasets from the uniform distribution. Then
cluster each of the new data and find the within-dispersion measure W ∗

kb with b = 1, .., B
and k = 1, .., K. The estimated gap statistic will be: Gap(k) = 1

B

∑B
b=1 log(W

∗

kb)− log(Wk).

Step 3: Compute the standard deviation sk as:
√
(1 + 1

B
) 1
B

∑B
b=1 (log(W

∗

kb)− 1
B

∑B
b=1 log(W

∗

kb))
2

and estimate the number of clusters with k̂ = argmink=1,..,K(Gap(k)−Gap(k+1)+sk+1 ≥ 0).
The algorithm is based on estimating the number of clusters k for which the observed

log(Wk) is the furthest away from the estimated expectation of log(Wk) found from the
reference (uniform) distribution.

7.9 Cluster Analysis – Local clustering

The gap procedure is a global test for determining the number of clusters in the data.
We propose a test for local clustering in addition to a global clustering. With this procedure,
we aim to find local clusters which are not identified by the gap method.
Algorithm. After breaking up the data in C1, . . . , Ck clusters (using the gap method),

we test them to see whether each cluster contains local clusters. The test for deciding whether
Cj should be split into other clusters is the following:
Step 1: Run k-means (or any other clustering algorithm) with k = 2 on the data in cluster
Cj only. Denote the two new clusters by Cj1 and Cj2.
Step 2: Let C̃j be the hyper-ellipsoid

13 containing the points in Cj and similarly define C̃j1
and C̃j2.
Step 3: We will test H0: the data are uniform over C̃j versus H1: the data are a sum of
uniforms over C̃j1 and C̃j2. Let µ = volume(C̃j), µ1 = volume(C̃j1), µ2 = volume(C̃j2). Under
H0 the density is f(x) = 1/µ for x ∈ C̃j. Under H1 the density is

g(x) =
1

2µ1
I1(x) +

1

2µ2
I2(x)

where I1 is the indicator function for C̃j1 and I2 is the indicator function for C̃j2.
Step 4: The Neyman-Pearson test statistic is

T =

∏
i g(Xi)∏
i f(Xi)

=

(
1

2r1

)n1
(
1

2r2

)n2

where n1 is the number of points in Cj1, and r1 = µ1/(µ1 + µ2) and similarly for n2, r2.
Step 5: Now we need to get the null distribution of T . Let n be the number of points in

12The clustering algorithm is k-means or Partition around menoids.
13We take the hyper-ellipsoid instead of the smallest convex set which covers Cj because, estimating the

convex hull of a set of points is O(N [d/2]+1) or exponential in the dimensions.
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Cj (over the hyper-ellipsoid which covers Cj). Simulate n observations from a uniform over
Cj, compute T and repeat. Repeat B times (B ≥ 1000) to get T1, . . . , TB. The p− value is
B−1∑B

b=1 I(T < Tb).
Step 6: If the p-value is less than .05, split Cj otherwise stop.

7.10 Cluster Analysis – Cluster Stability

An important limitation of clustering methods is their interpretation. The methods
themselves don’t quantify cluster stability.
We propose the following algorithm to quantify the cluster stability.
Step1. Estimate the number, K, of clusters using the gap algorithm and local clustering.
Step2. Cluster the data into k clusters C1, ..., CK and get the covariance matrices

Ŝ1, ..., ŜK of the clusters. Let µ1, ..., µK denote the cluster centers.
Estimate the stability of clusters as follows.
Step3. For each cluster k, generate a sample of length 1 from the multivariate normal

distribution with mean given by the intensities of the genes in the cluster and the covariance
matrix Ŝk. Denote it by X

∗

k .
Step4. Count the number of genes in the initial cluster Ck which minimizes the distance

||X∗

k(i) − µj|| when j is in 1, .., K. This will give us the number of genes that stay in the
cluster Ck (k = 1, ..., K).
Repeat 3-4 5000 times.

7.11 Lists of genes provided by multiple hypothesis testing and
clustering

In the followings, the list of genes which change in expression level according to hypothesis
testing (the 2-time-difference test and the runs test) are included. It is also specified the
clusters they fall in according to our cluster analysis over.

Genes whose expression level changes significantly according to 2-time-difference
test with FDR correction.
In cluster 1 there is 1 known gene
[1] ”gamma-glutamyl transpeptidase”
In cluster 2 there are 20 known genes
[1] ”tissue inhibitor of metalloproteinase 3” [2] ”zinc finger protein 46” [3] ”tumor necrosis

factor receptor superfamily, member 7” [4] ”inhibin beta E” [5] ”nuclear receptor subfamily
4, group A, member 2” [6] ”zinc finger protein 147” [7] ”aldolase 1, A isoform” [8] ”neurob-
lastoma ras oncogene” [9] ”ribosomal protein L27a” [10] ”lipoprotein lipase” [11] ”Ngfi-A
binding protein 2” [12] ”ATPase-like vacuolar proton channel” [13] ”uncoupling protein 2,
mitochondrial” [14] ”integral membrane protein 2 B” [15] ”Unc-51 like kinase 1 (C. elegans)”
[16] ”glutathione transferase zeta 1 (maleylacetoacetate isomerase)” [17] ”phosphoenolpyru-
vate carboxykinase 1, cytosolic” [18] ”ADP-ribosylarginine hydrolase” [19] ”transformed
mouse 3T3 cell double minute 2” [20] ”T-box 2”
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Genes whose expression level changes significantly according to 2-time-difference
test with Bonferroni correction.
[1] ”tumor necrosis factor receptor superfamily, member 7” [2] ”ribosomal protein, mi-

tochondrial, S7” [3] ”inter-alpha trypsin inhibitor, heavy chain 2” [4] ”lipoprotein lipase”
[5] ”uncoupling protein 2, mitochondrial” [6] ”RAB11a, member RAS oncogene family” [7]
”ATPase, Na+/K+ beta 3 polypeptide”

The list of known genes among the genes whose expression levels change
significantly according to Wilcoxon rank sum test (compare 3-8 hours vs. 10-24
hours arrays).
In cluster 1 there are 16 known genes
[1] ”gamma-glutamyl transpeptidase” [2] ”homer, neuronal immediate early gene, 3” [3]

”inter-alpha trypsin inhibitor, heavy chain 2” [4] ”tenascin C” [5] ”homeo box B5” [6] ”DNA
segment, Chr 13, Wayne State University 50, expressed” [7] ”neuronal d4 domain family
member” [8] ”dopa decarboxylase” [9] ”DNA segment, Chr 2, Wayne State University 88,
expressed” [10] ”cysteine knot superfamily 1, BMP antagonist 1” [11] ”wee 1 homolog (S.
pombe)” [12] ”bisphosphate 3’-nucleotidase 1” [13] ”RAB11a, member RAS oncogene family”
[14] ”DNA segment, human DXS9928E” [15] ”ATPase, Na+/K+ beta 3 polypeptide” [16]
”DNA polymerase epsilon, subunit 2”
In cluster 2 there are 22 known genes
[1] ”solute carrier family 20, member 1” [2] ”fos-like antigen 2” [3] ”high mobility group

protein I” [4] ”cytochrome c oxidase, subunit VI a, polypeptide 1” [5] ”collagen binding
protein 1” [6] ”hormonally upregulated Neu-associated kinase” [7] ”poly(rC) binding protein
2” [8] ”selenoprotein P, plasma, 1” [9] ”CASP2 and RIPK1 domain containing adaptor with
death domain” [10] ”zinc finger protein 46” [11] ”suppressor of K+ transport defect 3” [12]
”Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed (fox de-
rived)” [13] ”branched chain keto acid dehydrogenase E1, beta polypeptide” [14] ”branched
chain keto acid dehydrogenase kinase” [15] ”ribosomal protein, mitochondrial, S7” [16] ”hy-
droxysteroid sulfotransferase” [17] ”cytochrome c oxidase, subunit VIIIa” [18] ”hemoglobin
beta chain complex” [19] ”beta-2 microglobulin” [20] ”calmodulin” [21] ”ribosomal protein
S6 kinase, 90kD, polypeptide 2” [22] ”small inducible cytokine subfamily A, member 22”

The list of known genes among the genes whose expression levels change
significantly according to runs test (based on the longest run).
In cluster 1 there are 15 known genes
[1] ”gamma-glutamyl transpeptidase” [2] ”homer, neuronal immediate early gene, 3”

[3] ”carbonyl reductase” [4] ”complement component 3” [5] ”inter-alpha trypsin inhibitor,
heavy chain 2” [6] ”homeo box B5” [7] ”adipsin” [8] ”DNA segment, Chr 13, Wayne State
University 50, expressed” [9] ”proteasome (prosome, macropain) subunit, alpha type 1”
[10] ”solute carrier family 27 (fatty acid transporter), member 2” [11] ”neuronal d4 domain
family member” [12] ”bisphosphate 3’-nucleotidase 1” [13] ”RAB11a, member RAS oncogene
family” [14] ”ATPase, Na+/K+ beta 3 polypeptide” [15] ”DNA polymerase epsilon, subunit
2”
In cluster 2 there are 6 known genes
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[1] ”solute carrier family 20, member 1” [2] ”collagen binding protein 1” [3] ”selenoprotein
P, plasma, 1” [4] ”hemoglobin beta chain complex” [5] ”ribosomal protein S6 kinase, 90kD,
polypeptide 2” [6] ”complement component 1, q subcomponent binding protein”
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