
Scienti½c revolutions are sometimes
quiet. Despite a lack of public fanfare,
there is mounting evidence that we are
in the midst of such a revolution–pre-
mised on the automation of scienti½c
discovery made possible by modern
computers and new methods of acquir-
ing data.

Consider, for example, the following
developments:

· Using data from the 1970s, about eight
years ago a team of data analysts work-
ing in Holland predicted that low-level
lead exposure is more dangerous to
children’s cognitive development than
had previously been thought–a pre-
diction con½rmed by recent reanalyses
of later observations;

· Using measurements of reflected solar
energy (technically, the visible-near

infrared spectrum), a computer iden-
ti½ed minerals in rocks from a Califor-
nia desert lake as accurately as had a
team of human experts at the site who
had access both to the spectra and to
the actual rocks;

· In Antarctica, a robot traversing a ½eld
of ice and stones picked out the rare
meteorites from among the many
rocks;

· Scientists at the Swedish Institute for
Space Physics realized that an instru-
ment aboard a satellite was malfunc-
tioning and they recalibrated it from
Earth;

· An economist working for the World
Food Organization found that current
foreign aid practices have no impact on
extreme poverty;

· Climate researchers traced the global
increase in vegetation and its causes
over the last twenty years;

· A team of biologists and computer sci-
entists reported determinations of the
genes in yeast whose function is regu-
lated by any of a hundred regulator
genes;

· A kidney transplant surgeon measured
the behavior of rat genes that had been
aboard the space shuttle;

· A biologist reported a determination of
(possibly) all of the human genes in
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cells lining the blood vessels that re-
spond to changes in liquid flow across
the cells.1

All of these developments–and they
are simply more or less random exam-
ples I happen to know–reflect a new
way of learning about the world. Thanks
to innovations in computer software, in
laboratory techniques, and in observa-
tional technology, scientists today can
measure things on a scale inconceivable
only a few years ago. New laboratory
and computational methods allow evalu-
ation of vast numbers of hypotheses in
order to identify those few that have a
reasonable chance of being true, and
simple oversights of human judgment
can be corrected by computer. The
change is from the textbook scienti½c
paradigm in which one or a very few hy-
potheses are entertained and tested by a
very few experiments, to a framework in
which algorithms take in data and use it
to search over many hypotheses, as ex-
perimental procedures simultaneously
establish not one but many relation-
ships. While there are consequences
even for small collections of data, the
automation of scienti½c inquiry is
chiefly driven by novel abilities to
acquire, store, and access previously
inconceivable amounts of data, far too
much for humans to survey by hand
and eye. Methodology has moved in
consequence; in a growing number of
½elds, automated search and data selec-
tion methods have become indispensa-
ble.

This may not seem revolutionary, but
it has all of the earmarks of scienti½c
revolution that Thomas Kuhn empha-
sized years ago: novel results, novel
kinds of theory, novel problems, intense
and often irrational hostility from parts

of the scienti½c community.2 We can see
the revolution at work by looking more
closely at three of the examples I men-
tioned above.

Lead was long a component of paint,
and the Mobil Oil Company introduced
tetraethyl lead into gasoline in the 1930s.
From these and other sources, low-level
lead exposure became common in the
United States and elsewhere. Large
doses of lead and other heavy metals
were known to disrupt mental faculties,
but the effects of low-level exposure
were unknown. Besides, low-level expo-
sure was hard to measure: low-level lead
concentrations fluctuate in blood and do
not indicate how much lead the body has
absorbed over time.

In the 1970s, Herbert Needleman
found an ingenious way to measure cu-
mulative lead exposure using the lead
concentration in children’s baby teeth.
He also measured the children’s iq
scores and many family and social vari-
ables that might conceivably be relevant
to the children’s cognitive abilities. Re-
viewing the data by analysis of variance,
a standard statistical technique intro-
duced early in the twentieth century,
Needleman concluded that lead expo-
sure has a small but robust effect–it
lowers children’s iq scores.

Since a lot of money was at stake, crit-
icism naturally followed, and in 1983 a
scienti½c review panel formed by Ron-
ald Reagan’s Environmental Protection
Agency asked Needleman to reanalyze
the data with stepwise regression, a
more modern statistical technique. The
idea behind this technique is very simple
even if the mathematics is not: Suppose
any of several measured variables might
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influence iq scores. But start with the
assumption that none of the variables
influence iq. Change that assumption
by entertaining as a causal factor which-
ever variable is most highly correlated
with iq score, then keep adding causal
factors by a mathematical measure that
takes account of the correlation already
explained by previously considered fac-
tors. Stop when additional variables
don’t explain anything more. (This pro-
cedure can also be run in reverse, start-
ing with the assumption that all of the
measured variables influence iq scores,
and then throwing out the least explana-
tory factors, one by one.) Needleman
had measured about forty variables that
might account for variations in his sub-
jects’ iq scores, and stepwise regression
eliminated all but six of them. Lead ex-
posure remained among the causal fac-
tors, and using a standard method (in-
deed, the oldest method in statistics,
originating with Legendre’s essay on
comets in 1808) to estimate the depen-
dence of iq score on lead exposure, Nee-
dleman again found a small negative
effect.

Many years after the con½rmation of
Needleman’s results had helped to elimi-
nate lead from gasoline, two economists,
Stephen Klepper and Mark Kamlet, re-
analyzed Needleman’s data–with a dif-
ference. Reasonably, they assumed that
the measured values Needleman report-
ed were not perfectly accurate: iq scores
did not perfectly measure cognitive abil-
ity; lead concentrations in teeth did not
perfectly measure lead exposure; and so
on. Each of Needleman’s six remaining
variables perhaps influenced cognitive
ability, but the true values of those vari-
ables were not recorded in his data. The
data consisted of measurements pro-
duced by the true value of each variable
for each child, and also by unknown
measurement errors. Klepper proved an

interesting theorem that implied that for
Needleman’s data, with the assumptions
about measurement error, the true effect
of lead exposure on cognitive ability
could be positive or negative or zero.
The elimination of lead from gasoline, it
seemed, had been based on a statistical
mistake.3 The story doesn’t end here,
however. But before continuing, a di-
gression into the statistics of causality
is necessary.

In the early 1980s, several statisticians
developed a network representation of
probability relations that formalized and
generalized ideas that had been used for
a long while in biology, social science,
and elsewhere. According to their repre-
sentation, suppose we have data for a
number of variables, each of which takes
a de½nite value in each individual object
or case (the variables might be height,
weight, ratio of Democrats to Republi-
cans, whatever; the individual objects,
or cases, could be people, rats, cells, state
governments, whatever). Represent each
variable as a node and draw arrows from
some nodes to other nodes, e.g., C B

A. This particular diagram represents the
claim that the information that the val-
ues of A and B together provide about
the value of C is the same as the informa-
tion that the value of B provides all by
itself. And, symmetrically, the informa-
tion that values of C and B provide about
A is the same as the information that the
value of B alone provides.
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In other words, you can use the dia-
gram described above when, for predict-
ing C, if you know the value of B, then
the value of A doesn’t tell you anything
more about the probabilities of the val-
ues of C. In more technical terms, C is
independent of A conditional on B. (C

would also be independent of A condi-
tional on B if the structure were C B

A or C B A, but not if it were C B A

or B C A, etc.) The general version of
this connection between networks and
probabilities, known as the Markov con-
dition, was introduced explicitly by stat-
isticians around 1980, though it was used
implicitly in many subjects long before
that time, and almost formalized by
the philosopher Hans Reichenbach in
the 1950s. Without clearly formulating
the general idea, biologists, psycholo-
gists, sociologists, and even biblical his-
torians had used such diagrams to repre-
sent causal hypotheses and the probabil-
ity relationships of their variables.4 In
the 1980s a group at ucla, led by Judea
Pearl, developed a fast algorithm for
computing any conditional indepen-
dence relations implied by the Markov
condition when applied to such a dia-
gram, now called a Bayes net.

In the early 1990s a group of philoso-
phers and statisticians at Carnegie Mel-
lon noted that many of the information
restrictions, or conditional indepen-
dence facts, represented in a network

also hold in a related way if the arrows
represent causal relations, and, relying
on the Markov condition, they gave a
general characterization of the relation
between network structure, probabili-
ties, and causal claims.

The idea is easiest to see for interrup-
tions of a simple causal chain. For in-
stance, if pushing the doorbell button
causes the bell to ring, which in turn
causes the house parrot to say “hello,”
then if you intervene to keep the bell
from ringing, pushing or not pushing
the doorbell button will not change the
probability that the parrot says “hello.”
After your intervention, the state of the
button and the state of the parrot will be
independent of each other; neither will
provide information about the other. But
if you do not intervene to disconnect the
bell, pushing the button will be inde-
pendent of the parrot’s speech condi-
tional on the state of the bell, ringing
or not ringing; if you know whether
the bell is ringing, the parrot’s speech
won’t give you any more information
as to whether someone is at the door. In
many cases, the independence relations
produced by interventions in a system
parallel the conditional independence
relations implied by the network repre-
sentation of the causal structure of the
system.

These connections between causation,
probability, and network representations
suggested that with appropriate assump-
tions and background knowledge, some-
thing about the causal structure can be
learned from observation, and the out-
comes of some ideal interventions can
be predicted. If C and A are independent
conditional on B, and no other indepen-
dence relation holds, then C and A are
causally connected only through B,
which functions either as a common
cause or an intermediary. Inferences
like this readily combine with other
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information one might have–for exam-
ple, if the same probability relations
hold and B occurs before A and C, then
the causal structure should be A B C.5
The old shibboleth that correlation does
not imply causation is true for any pair
of variables considered in isolation, but,
when combined with otherwise routine
assumptions, is not necessarily true for
sets of correlations among several vari-
ables. The problem is to say in a mathe-
matically precise and useful way just
what causal information can be extract-
ed from such dependencies, and under
what assumptions.

The class of alternative networks that
might conceivably describe the causal
relations among a set of variables, before
data is collected, is astronomical even
for small numbers of variables, and with
larger numbers of variables remains
huge even if some of the variables are
ordered so that one can assume that later
variables do not influence earlier ones.

Even so, early in the 1990s, researchers
at the University of Pittsburgh, Carnegie
Mellon, ucla, and Microsoft developed
algorithms and software for searching
for the class of diagrams that can ac-
count for any set of independence rela-
tions among variables. Since then many
related algorithms have been proposed
and applied by others. These procedures
search ef½ciently for information within
the huge space of alternative possible
causal structures, but, unlike stepwise
regression, some of these procedures
come with a weak guarantee of reliabili-
ty. For example, as the size of the sample
increases, according to the Markov con-
dition and one other further technical
assumption, the Bayes net search pro-

grams ‘converge’ to giving correct infor-
mation about the causal structure be-
hind the data.6

Back to lead. In collaboration with
Dutch statisticians, Richard Scheines,
one of the Carnegie Mellon researchers,
applied a program implementing these
new search techniques to Needleman’s
data.

What the program found was simple
but astonishing: three of the six predic-
tion variables that had remained after
Needleman’s stepwise regression had
no correlation with iq scores–a fact
that had somehow eluded Needleman,
his collaborators, his critics, and, in-
deed, the stepwise regression procedure
alike. Of the initial variables possibly
correlated with iq that Needleman had
½rst considered, only lead and two other
factors now remained. But, with the
economists’ assumptions about meas-
urement error, the effect of lead expo-
sure on iq still could not be estimated.

To estimate the effect of lead, Scheines
and his Dutch collaborators resorted to a
relatively new technique in Bayesian sta-
tistics. Bayesian statistics proceeds by
assigning ‘prior probabilities’ to alterna-
tive hypotheses, by computing for each
hypothesis the probability of the data on
the assumption that that hypothesis is
true, and, from all this, computing a
new, or ‘posterior,’ probability for each
hypothesis or range of parameters con-
sidered. For a long time, because the
posterior probabilities often could not
be computed, Bayesian statistics was
chiefly a toy used only for simple prob-
lems; computational developments in
the last two decades have changed that

Dædalus  Winter 2004 73

The
automation
of discovery

5  I oversimplify. For the general theory,
caveats, and mathematical details, see Peter
Spirtes et al., Causation, Prediction and Search
(New York: Springer-Verlag, 1993; 2d ed.,
Cambridge, Mass.: mit Press, 2000).

6  Ibid.; Clark Glymour and Gregory F. Cooper,
eds., Computation, Causation and Discovery
(Menlo Park, Calif.: aaai Press; Cambridge,
Mass.: mit Press, 1999); Judea Pearl, Causality
(New York: Cambridge University Press, 2001).



considerably. Scheines used the econo-
mists’ judgments of the probability dis-
tribution for values of parameters relat-
ed to measurement error to assign prior
probabilities to their measurement er-
ror model. Then he and his collaborators
computed the posterior probability dis-
tribution for values of the parameter rep-
resenting the influence of lead on iq. By
this method, they found that low-level
lead exposure is almost certainly at least
two times more damaging to cognitive
ability than Needleman had estimated.7

Genetics is another ½eld in which sci-
entists are conducting research in new
ways by applying innovations in com-
puter software, lab techniques, and ob-
servational technology.

Every cell in your body has the same
dna but cells in different tissues look
and function very differently–brains,
after all, are not bones. The difference
comes from the proteins that make up
the physical structure of a cell and regu-
late–indeed, in some sense constitute–
its metabolism. The thousands of differ-
ent kinds of proteins are themselves pro-
duced by a collaborative manufacturing
process in the cell. Amino acids–any of
twenty simple molecules provided to the
cell from outside–are stitched together
to form a protein, which may then fold
and combine chemically or physically
with other proteins. Each basic protein
originates along a template of ribonucle-
ic acid (rna) outside the nucleus, and
different template molecules–different
kinds of rna molecules–make different
proteins. Messenger rna (mrna), itself
copied from dna, generates the tem-
plate rna. Whether a piece of dna is

copied into mrna within any interval of
time depends on several things, includ-
ing the chemical sequence of the partic-
ular dna piece (whether it is a coding
sequence, i.e., a gene), the chemical
sequences of other regions of the chro-
mosome that are physically close (regu-
lator sites), concentrations of small mol-
ecules inside the nucleus of the cell, and
concentrations of proteins. Certain pro-
teins attach to the regulator sites of a
gene and cause the gene to be copied (in
other terminology, ‘transcribed’ or
‘expressed’) into rna, which in turn
goes on to make proteins. An important
clue to fundamental biology and its
medical applications lies in this process
of gene expression, in knowing which
genes respond to new chemical or physi-
cal environments, and which cellular
functions are influenced by the proteins
those responding genes produce.

Traditionally, this kind of problem had
been approached one gene at a time–
for instance by ½nding some of the pro-
teins that regulate a gene, ½nding the
protein or proteins the gene yields, iden-
tifying some of the roles those proteins
play in cellular metabolism. But about
ten years ago, biologists developed tech-
niques for simultaneously measuring the
concentrations of each of the thousands
–and in some contexts essentially all–of
the distinct kinds of mrna molecules
present in a collection of cells. Biologists
could get a snapshot of how much each
gene in the cells had been copied or ex-
pressed. Multiple snapshots, moreover,
could be taken at different times, as little
as a few minutes apart, so that research-
ers could see the varying responses of
the cell genome to changing conditions.
So what affects what genes? Answers to
this question are coming in at an aston-
ishing rate.

About ½ve years ago, Tim Hammond,
a physician and research scientist at Tu-
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lane, flew samples of kidney tissue in the
space shuttle. When his samples, which
had been chemically frozen while in
microgravity, returned to Earth, Ham-
mond and his collaborators measured
the expression of thousands of genes
within the tissue. They found that a large
proportion expressed very differently
from the genes within the Earth-bound
samples of the same tissue, no matter
how the Earth-bound tissue had been
mechanically treated. Acceleration or
low-gravity or something else as yet un-
known about the shuttle environment
affected gene behavior. If, as seems like-
liest, the effect Hammond discovered is
an essentially mechanical effect of low
gravity, it has important implications
for long-term habitation in space, on
the Moon and Mars.

Mechanical issues–flow and sheer
over cellular surfaces–are known to in-
fluence genes that are important to hu-
man health. The cells that line the sur-
faces of blood vessels play crucial roles
in lethal disorders–for example, in
aneurisms–and particular genes in
these cells have been known for some
while to change their expression in re-
sponse to mechanical changes, in par-
ticular to changes in liquid flow across
their surfaces. Very recently, David
Peters, a young biologist at the Universi-
ty of Pittsburgh, and his colleagues mea-
sured the change in gene expression in
response to changes of flow for almost
all genes in living human cells lining
blood vessels. In their experiment, more
than a hundred genes changed, includ-
ing some known to be involved in cellu-
lar structure. Peters and his collabora-
tors are now measuring all of the genes
in such cells that respond to changes in
pressure and flow.

The few cases I have briefly described
here are merely samples of a trend that

can be seen in several sciences–a trend
to which we can also attribute the Virtu-
al Observatory that is planned to enable
astronomers to search and analyze vast
data stores taken by remote instru-
ments; and, in climate studies, the Earth
observation satellites that now send
down several gigabytes of data each
day–data that is increasingly being used
to monitor the state of the planet, to
locate causes of change, and to forecast
changes in the environment. Ever new
techniques make possible the measure-
ment of ever larger quantities of data;
data manipulation software makes pos-
sible the selection of samples that are
relevant to particular problems; auto-
mated search and statistical techniques
help guide researchers through the su-
perastronomical array of possible hy-
potheses.

Kuhn said that scienti½c revolutions
generally meet ½erce resistance–and the
automation of discovery in science is no
exception. In some cases the animosity
stems from nothing more than conser-
vatism, an effort to preserve academic
turf, or plain old snobbery. Above all,
automated science competes with a
grand craft tradition that assumes that
science progresses only by scientists ad-
vancing a single hypothesis, or a small
set of alternative hypotheses, and then
devising a variety of experiments to test
it. This tradition, most famously articu-
lated by Sir Karl Popper, is championed
by many historians and philosophers of
science, and resonates with the accounts
of science that many senior scientists
learned in graduate school.

While the history of science can serve
as an argument for norms of practice, for
several reasons it is not a very good argu-
ment. The historical success of research-
ers working without computers, search
algorithms, and modern measurement
techniques has no rational bearing at all
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on whether such methods are optimal,
or even feasible, for researchers working
today. It certainly says nothing about
the rationality of alternative methods of
inquiry. Neither was nor is implies ought.

The ‘Popperian’ method of trial and
error dominated science from the six-
teenth through the twentieth century
not because the method was ideal, but
because of human limitations, including
limitations in our ability to compute.
Historically, novel methods and strata-
gems were devised from time to time
to get round computational limitations.
For example, in the eighteenth century,
Leonard Euler, perhaps the most proli½c
mathematician ever, could not reconcile
seventy-½ve observations because the
calculations required far too many steps;
statistical estimation of theoretical pa-
rameters, introduced by Legendre in
1808 in a form known as ‘least squares,’
permitted the reconciliation of (for the
time) large quantities of data, such as
the seventy-½ve that defeated Euler. The
quick adoption of factor analysis in the
1940s was due in part to computational
tractability, and one could argue that the
same is true of the enormous influence
of Sir Ronald Fisher’s statistical meth-
ods.

When scientists seek to learn new,
interesting truths, to ½nd important pat-
terns hiding in vast arrays of data, they
are often trying to do something like
searching for a needle in a really huge
haystack of falsehoods, for a correct net-
work among many possible networks,
for a robust pattern among many appar-
ent but unreal patterns.

So how does one ½nd a needle in a
haystack?

1. Pick something out of the haystack.
Subject it to a severe test, e.g., see if it
has a hole in one end. If so, conjecture
it’s a needle; otherwise, pick some-

thing else out of the haystack and try
again. Continue until you ½nd the nee-
dle or until civilization comes to an
end.

2. Pick something you like out of the
haystack. Subject it to a test. If it
doesn’t pass the test, ½nd a weaker
test (e.g., is the thing long and nar-
row?) that it can pass.

3. Try 1 for a while, and if no needle
turns up, forget about needles and
start studying hay.

4. Try 1 for a while, and if no needle
turns up, change the meaning of nee-
dle so that a lot of ‘needles’ turn up
in the haystack.

5. Set the haystack on ½re and blow away
the ashes to ½nd the needle.

6. Run a magnet through the haystack.

Method 1 is still the standard descrip-
tion of how science is and should be
conducted–the account we ½nd explic-
itly in the introductory chapters of sci-
ence textbooks and implicitly in the crit-
icisms some scientists and methodolo-
gists express toward other ways of doing
things.

Method 2 is practiced and effectively
advocated by many social scientists (you
need only replace ‘something you like’ in
2 with ‘theory’).

Methods 3 and 4 are the practices that
postmodernists claim science does and
should follow.

Methods 5 and 6 are those made possi-
ble by the automation of discovery.

In principle, methods 5 and 6 are a lot
smarter than the other methods, but
they are not without limitations both
real and metaphorical. Burn the whole
haystack and you might melt the needle.
And that is a sound worry about auto-
mating science: it may rush things,
sometimes too much. Because a proce-
dure for ½nding hypotheses is fast and
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can be done by computer doesn’t mean
the procedure gives good results. Figur-
ing out what a method can and cannot
reliably do requires hard work.

Consider for example the problem of
identifying networks of gene regulation.
The ability to measure gene expression
simultaneously for thousands of genes
in normal and perturbed genomes (in
perturbed genomes, particular genes
have either been deleted or forced to
over-express) invited the application of
computer methods that search for causal
networks. Algorithms were proposed for
piecing together networks from compar-
isons of gene expression measurements
in cell lines with perturbed and unper-
turbed genomes; algorithms were pro-
posed for ½nding networks from correla-
tions with repeated measurements of
expression levels in unperturbed net-
works–and they did very well on data
produced by computer simulations of
gene expression.

It turns out, however, that much of
this work proved to be illusory. The al-
gorithm for assembling a network from
perturbation effects was incorrect. The
algorithms for inferring networks from
correlations of gene expressions over-
looked the fact that measuring expres-
sion levels in aggregates of cells (rather
than in individual cells, which is techni-
cally feasible but rarely done) creates
correlations due entirely to the aggrega-
tion itself rather than to the influence of
particular genes on the expression levels
of others. The simulations that seemed
to work so well also turned out to be
simulations of measurements at the lev-
el of individual cells–measurements of
a kind usually not made in reality. Un-
doubtedly the automated procedures got
some things right, but very likely what
they got right was cherry picking–
gene connections indicated by very
large changes in expression levels or

very large correlations.8 A real advance
in unraveling gene regulation networks
came recently–by chemical rather than
by computer automation. Tong Ihn Lee
and his colleagues found a way to identi-
fy a large fraction of the genes in yeast
that are, in turn, directly regulated by
genes known to be regulators. They did
so for more than a hundred regulator
genes, effectively identifying a good
piece of the regulatory structure in ‘wild
type’ yeast.

The automation of learning, whether
by computer or by new laboratory tech-
niques, does not render human judg-
ment obsolete, or marginalize scienti½c
creativity. Nor does it cheapen the sweat
and effort, the insight and ingenuity of
human scientists, but shifts them to-
ward the consideration of algorithms
that can ef½ciently and reliably compare
many hypotheses with vast quantities
of data and toward laboratory methods
that answer many questions at once.
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