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Relying on a result they attribute to Hussian [1], Pednault, Zucker, and
Muresan [2] claim to have proved that the independence assumptions used in
the PROSPECTOR [3] program do not permit the probabilities of hypotheses
to be changed by any evidence. The purpose of this note is to show that the
theorem stated by Pednault et al. is false, as is the result claimed by Hussian.

Let P be a probability function and let Hi,..., H, be a set of jointly
exhaustive and mutually exclusively hypotheses in the sense that

> P(H)=1 1)
and
PH;&H)=0 if i#j. )
Let E,,...,E, be a sequence of evidence sentences. We say that no
updating occurs iff for every subsequence E,, ..., E; of E,,...,E, and every
H;

P(H/E, ..., E)_ P(H;)
PHJE,...,E) P#H)

The independence assumptions used in the PROSPECTOR program are

P(E,, ..., EJH) = ﬁ P(E/H), @)
P(E,..... EJF)= [ PIE/A). @
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Pednault et al. are surely correct in claiming that requirements (3) and (4) are
excessively strong restrictions on the probability function P. Indeed, Pearl [4]
and Kim [5] have argued that keeping requirement (3) alone is empirically
more reasonable and yields an efficient updating scheme. If, however, Hus-
sian’s result were correct, (3) and the prior independence of the evidence would
be inconsistent with any updating, and Pednault et al. further claim that:

“Proposition. If the hypotheses H,, H,, ..., Hy with N >2 are complete and
mutually exclusive, i.e., if ¥ P(H;)= 1, and if the assumptions (3) and (4) are
satisfied, then . . . no updating takes place.”

That this proposition is false may be shown by producing a system of five or
more events H,, H,, H;, E;, E,, and a probability function P, such that
equations (1), (2), (3), (4) hold but updating does take place.

Consider the following case:

We specify that

(i) P(H)=} foralli
(i) PH;&H))=0 fori#j,
(i) P(E)=1
(iv) P(E:&H)=4¢ foralli,
(v) P(E)=5,
i) P(E,& H)=3,
(Vll) P(E2 & Hz) = P(Ez & H3) = 0,
(viii) P(E; & Ey)=4.

These conditions suffice to determine the value of P for every Boolean
combination of E,, E,, H,, H,, H;. In particular, they entail that

P(E\/H;) = P(E: & H)/P(H;) = 3,
P(E,/H)=1,

P(E,/H;)= P(E,/H5) =0,

P(E\& EoJH) =3,

P(E & Ex/Hy) = P(E\ & Ex/H3) =0,

as can readily be verified from the representation of the probability distribution
as a Venn diagram (see Fig. 1).
Observe that:

> P(H)=1 by (). (1)
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P(H,&H)=0 ifi#j by (ii). )
P(E, & E;/H;) = P(E\/H;) P(E,/H;), 3
because if i =1,
P(E\& Ey/H))=3=31= P(E/H)) P(EJJH)) ;
and if i =2 or 3.
P(E,\ & E;JH,)=0=¢-0= P(E,/H,)- P(Eo/H,).
And
P(E, & E,/H;) = P(E\/H))- P(Ey/H)), @
because if i = 1,

P(E, & E,/H)) = P(E, & E,/H, v H5)

_P(E\&Ex& H)+ P(E\& E2& HY) _
P(H)+ P(H,)

and

_ 1
pE Ay~ PESH) T PEGH) § _,
3

P(H,) + P(H,)
and P(E,/H;) = 0. So

P(E\/H)- P(EyH)=0;
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andifi=2or3, k#i, k#1,

P(E\ & E;/H))= P(E, & E,/H, v H)

_P(E\& E;& H))+ P(E, & E, & H})
P(H,)+ P(H,)

1

4

o

1

:iz
12

.

and

P(E\/H})- P(Ey/H)) = P(E//H, v H,)- P(EyH, v H,)
_ [P(El & H)+ P(E,&Hk)]
P(H) & P(H,)

y [ﬂEz&HltPgEg&Hk)]
P(H)+ P(HY)

_[},+g] [-‘3»+0]_1
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So P(E\ & E,/H)=P(E,/H))-P(E,/H,). Thus all four conditions of the hypo-

thesis of the theorem are met. But

P(H)/P(H)=3 foralli
and

P(HJ/E, & E)) _ P(HYE & E;) _
P(H)E, & E;) P(Hy/E,& E,)

and

P(H,/E, & E,)
P(H,/E, & E,)

is undefined. Hence the theorem is false.

The error in the proof given by Pednault et al. lies in their use of a result

claimed by Hussian, namely,

“Theorem. Let the set of hypotheses H;, i=1,2,..., N be exhaustive and

mutually exclusive; if
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P(E,...,En)=]]P(E),
k=1
P(E.,...,EJH)=]]|P(EJH), foralli,
k-1

then, for all i and k
P(E,/H)= P(E\).”

Hussian’s derivation contains an algebraic error. The counterexample just
given to the theorem claimed by Pednault et al. also shows that Hussian’s result
is false, and other counterexamples to the latter’s theorem are easily produced.
I do not know whether the result claimed by Pednault et al. would be true if
one required in addition to (1)-(4) that for all i, P(H/E,, ..., E.)#0.

From the Bayesian point of view, eliminative induction is just a special case
in which the evidence determines a posterior probability of unity for one
hypothesis and of zero for all others. Thus the example given here shows that
the very strong independence assumptions in PROSPECTOR are consistent
with learning by eliminative induction. This conclusion does not address the
empirical adequacy of PROSPECTOR’s updating scheme, which also contains
provisions for ad hoc updating rules [6]. It does, I hope, lay to rest the claim
that the program’s Bayesian component is impotent if strictly applied.
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