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Abstract

The past two decades have seen a dramatic growth in the use of statisticians and economists for
the presentation of expert testimony in legal proceedings. In this paper, we describe a hypothetical
case modeled on real ones and involving statistical testimony regarding the causal e%ect of lead
on lowering the IQs of children who ingest lead paint chips. The data we use come from a
well-known pioneering study on the topic and the analyses we describe as the expert testimony
are similar to ones that can be found in, major scienti4c journals. The battle of the experts
in this hypothetical case resembles that which many encounter as expert witnesses. The paper
concludes with some observations and advice.
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1. Introduction

Because statistics is used in so many di%erent 4elds, statisticians appear as expert
witnesses in diverse litigation contexts, ranging from the reliability of forensic evi-
dence, DNA 4ngerprinting, mass torts, and discrimination cases, to con4dentiality of
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scienti4c research data, cheating on examinations, drug smuggling, voting fraud, and
the adjustment of the US decennial census. For a wide variety of examples of the role
of this testimony in speci4c cases see DeGroot et al. (1986), Evett and Weir (1998),
Fienberg (1989, 1997a), Finkelstein and Levin (2001), Gastwirth (1988, 2000), and
Zeisel and Kaye (1997).
In many legal contexts the central issue is causal. In some, the causes of a single

event are under dispute. Did the leading driver’s sudden stop to avoid hitting a dog
cause the accident, or was it the failure of the anti-lock braking system in the trailing
driver’s car? In others, a causal generalization is at issue. Does chronic low-level
exposure to asbestos cause lung cancer? Does the level of radiation received by workers
at a nuclear power plant cause leukemia? If so, how strong is the e%ect, i.e., what is
the dose–response relationship?
In most cases where a causal generalization lies at the core of a legal action, for

practical or ethical reasons, no experimental evidence is available. On occasions where
experimental evidence is available, it usually involves laboratory animals and the re-
sults are very diJcult to extrapolate to humans. As a result, causal generalizations
are typically supported (or refuted) by non-experimental statistical evidence. In this
article, we lay out a prototypic case in which statistical and epidemiological evidence
is brought to bear by opposing experts on a causal claim: does chronic exposure to
low levels of lead cause cognitive de4cits in children? Using actual data sets, and a
4ctitious exchange between a plainti%s’ and a defendant’s expert, based in large part on
published exchanges in the statistical literature, we illustrate several classic argumen-
tative strategies used by econometric, epidemiological and statistical expert witnesses
to establish or refute causal generalizations from non-experimental statistical evidence.
After brieKy describing the case background, we present the core of the plainti%s’

expert testimony. The expert begins by showing a “raw” association between the pu-
tative cause and the e%ect, articulates possible confounders (covariates or exogenous
variables in statistical or econometric language), measures them, and then statistically
selects the ones that are worthy of further study. The expert then uses multiple regres-
sion to show that the “raw” association between cause and e%ect does not disappear
after controlling for such confounders. The same strategy is used not only in tort cases
but also in litigation involving discrimination as well as other areas of the law.
The defendant’s expert responds by challenging the validity of the initial presenta-

tion of evidence. The defendant’s expert argues that the plainti%s’ expert has omitted
important confounders from consideration, and has neglected to take into account mea-
surement error, especially in the confounders. The defendant’s expert then presents a
sensitivity analysis showing that there is indeed no e%ect of low levels of lead on IQ
for “reasonable” ranges of measurement error.
On rebuttal, the plainti%s’ expert shows that the way in which the defendant’s expert

has included the supposedly omitted variables is wholly unreliable and conveniently
misleading. He demonstrates that measurement error in the confounders can be taken
into account, even modeled statistically, and that doing so only strengthens the con-
clusions he drew.
Our presentation attempts to illustrate the technical aspects of the “battle of experts”

that an economist or statistician can expect to experience in a legal context (for some
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related discussions on strategic and other non-technical aspects see Fienberg, 1997b;
Fisher, 1986; Meier, 1986). It also illustrates the diJculties of making causal inferences
from non-experimental data, how such evidence can be legitimately challenged and
where it cannot.
In comments on an early draft of this paper, reviewers expressed some surprise at

the “unsophisticated” and simplistic nature of some of the “evidence” presented by the
experts in this 4ctitious case. Our response is that this is precisely how evidence is
presented in real cases. The expert’s job is to educate the trier of the fact, either a
judge or a jury, and to do so by building up from easily understood statistical ideas to
more complex ones (Fisher, 1986; Fienberg, 1989; Fienberg et al., 1995). Thus, while
econometricans, if left to their own devices, might begin with simultaneous equations
models involving carefully selected instrumental variables and perhaps a fully Bayesian
analysis replete with Markov chain Monte Carlo methods, most expert testimony at
trial begins instead with correlation coeJcients, 2× 2 contingency tables, and perhaps
Fisher’s exact test (see Good, 2001). The more complete and intellectually justi4able
analyses typically come later in the case, if at all.

2. The hypothetical case: lead and IQ

The 4ctional case that we describe here draws on actual epidemiological data con-
cerning the e%ects of exposure to lead on children’s IQ scores. Empirical studies in this
area have had an important inKuence on national policy and have been the focus of a
series of scienti4c disputes. The case arises under a tort claim raised by the residents
of a tenement dwelling and brought against the landlord. The plainti%s claim that the
landlord has failed to meet his responsibility to maintain a safe and healthy dwelling
and protect his tenants from undue exposure to lead. We have based the “facts” of the
case on a somewhat disguised tort case described by Frank (1992) as “The Case of
Sam Brown.” The focus of Frank’s analysis is the economic calculation of damages
on the basis of (1) medical costs of roughly $40,000, (2) losses in lifetime earnings—
estimated to be $189,000, and intangible factors—$70,000. These calculations involved
the use of statistics through regression analysis, etc. We address none of these issues
here.
Rather we cast the individual case of Sam Brown in the context of a hypothetical

lawsuit brought by multiple plainti%s, for which the evidence in the case of Sam Brown
is illustrative. Our focus is on the testimony by statistical experts intended to establish
or to contradict proof as to the e%ect of low-level lead exposure on cognitive function.
Only if convincing proof of such a causal e%ect is presented to the court can the issue
move to the assessment of damages.

2.1. Basic facts

“Samuel Brown was hospitalized at age 7 for severe lead intoxication (blood level
of over 70 mg=dl). Samuel was hospitalized in a tertiary care hospital, where chelation
therapy was administered. The duration of the hospital stay was 4 weeks. A psychological
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evaluation was performed subsequent to hospital discharge and it concluded that Samuel
had su%ered an 18 point IQ loss, from 109 Weschler full scale IQ to 91” (see Frank,
1992, pp. 262–263). The other plainti%s are children who lived in the same building
and were exposed to low-level quantities of lead through lead paint that had once been
used throughout the building. Information on health and behavioral problems that are
seemingly linkable to substantial lead exposure is also available and not in dispute;
however, there is a dispute regarding the implications of low-level lead exposure. All
of the children have current IQs below 100 and evidence available to indicate that,
at least in several instances their IQs are lower than when measured several years
earlier.
In support of their claims, the plainti%s present a case based on testimony of a

statistical expert with background in epidemiology. In actual cases, it is more likely
that there would be multiple experts, e.g., an epidemiologist who might have conducted
a study of the e%ects of low level lead exposure, as well as the statistician who
analyzed the data, and perhaps others to testify as to the extent to which the evidence
is consistent with other studies. In the case of the e%ects of lead on IQ, there is an
extensive epidemiological and statistical literature on which the experts could opine,
e.g., see Needleman and Gatsonis (1990), Pocock et al. (1994), and Waternaux et al.
(1998).

2.2. The Massachusetts study

In the hypothetical case we take as the principal data used for statistical analyses
to support the plainti%s’ claim come from an observational study of 270 children in
Massachusetts (Needleman et al., 1979). Each child in the study had just lost baby teeth
which were measured for concentrations of lead. Unlike blood levels of lead, which
can Kuctuate widely over a 24 h period and thus are poor measures of cumulative
exposure, the deposit of lead in baby teeth is a slow and stable response to the lead a
child has been exposed to over the course of his or her entire childhood.
Each child’s IQ was also measured, along with a variety of physical and social

factors, including weight, height, head circumference, sex, etc. Several measures of
parental status were also collected, e.g., time from conception to delivery of the child,
number of previous live deliveries by the child’s mother, the mother’s IQ, socioeco-
nomic status and education. 1 Values for some of the variables are missing for some of
the children. The data are non-experimental, that is, the exposure to which each child
was subjected was not under the control of scienti4c investigators.

1 We are indebted to Dr. Herbert Needleman of the University of Pittsburgh for providing us with his
original data, which we have used in these illustrative analyses. Because of di%erent choices of variables and
our use of di%erent statistical analysis packages, the results we obtained from various statistical procedures
do not strictly agree with those he has published, and are not intended to do so. See Needleman et al. (1979,
1985).
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3. Plainti�s’ statistical case

3.1. The raw association between lead exposure and IQ

By various standard statistical measures, for the children in the study sample, the
concentration of lead in teeth is negatively associated with IQ. One measure of depen-
dency is obtained by introducing a cuto% between high and low lead concentrations and
a cuto% between high and low IQ. In the absence of a good reason for another value, a
natural threshold is the median or middle value. The plainti%s’ statistical expert begins
by following the epidemiological approach and presents the numbers of children who
are high in both features (lead concentration and IQ), high in one but not the other,
or low in the form of a 2× 2 contingency table (Table 1).
Note that there are a total of 229 observations in this table, not 270, the number of

children in the study. That is because the table is based on all complete cases with no
missing observations for a subset of the variables including IQ and lead concentration.
Discarding observations with missing data is not usually considered a good statistical
practice (e.g., see Little and Rubin, 1987), but it is often done on practical grounds
and in the present instance this simpli4cation does not change the inferences reached
by the expert (cf., Kadane and Terrin, 1997).
The dependency between binary-valued variables can be measured by the cross-product

or odds ratio, which in this case equals 0.58, indicating a negative association between
high levels of lead and high IQ, and is signi4cant at a p-value = 0:042. The choice
of di%erent cuto% or threshold values in this particular data set will produce di%erent
cross-product ratio values. But for almost any choice of cuto% the sample data yields
a signi4cant cross product ratio. The sample correlation coe8cient between lead and
IQ is −0:253, which is signi4cant at p¡ 0:01. The expert explains that these analyses
show that, even at low levels, lead exposure and IQ are negatively associated to a
degree that cannot be explained by chance.

3.2. Confounders

The association between lead concentrations in children’s teeth and their IQs is
clearly not “logical”—one variable is not an aspect of the meaning of the other. There
is nothing in the measurement process, or in the way children were selected for the
sample, this suggests that the association is an artifact of measurement or sample
selection.

Table 1
Contingency table for IQ and lead

High lead Low lead Total

High IQ 51 66 117
Low IQ 64 48 112

Total 115 114 229
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Fig. 1. Alternative explanations of an association between lead and IQ.

Variables that inKuence both a possible cause and its supposed e%ect are said in
the epidemiological literature to be confounders. In statistics they are often referred to
as covariates and in econometrics as exogenous variables. The plausible alternatives
therefore are these:

1. The association found in the sample is due to the inKuence of lead on IQ (Fig. 1a).
2. The association found in the sample is due to the inKuence of other variables (con-

founders) on both lead exposure and IQ (Fig. 1b).
3. The association found in the sample is due to the inKuence of other variables

(confounders) on both lead exposure and IQ, and also to the inKuence of lead
on IQ (Fig. 1c).

If either alternatives 2 or 3 hold, then the raw association between lead and IQ
is not a reliable guide to the strength of the causal e%ect of lead on IQ. The expert
explains to the court that there are two basic strategies for dealing with this problem:
randomly assign treatment (in this case lead exposure), or measure the confounders
and statistically control for them. By randomly assigning treatment, we eliminate the
inKuence of any possible confounder on the putative cause, and thus create a situation
in which the resulting raw association is the appropriate measure of the causal e%ect.
In the present instance, and many others, however, randomly assigning the level of
lead exposure would have been neither ethical nor practical.
The expert explains that this leaves us with the second strategy to pursue.

3.3. Confounder selection

The expert explains that it is well understood in the statistical literature that con-
founders that can substantially bias an estimate of a causal e%ect, if they are not
measured and statistically controlled for, are those variables that are highly associated
with the putative cause and e%ect. Thus the Massachusetts study research team focused
on measuring variables that are plausibly common causes of the putative cause (lead)
and e%ect (IQ), and that are highly associated with both—they identi4ed and measured
over 40 potential confounders. At this point, the expert presents to the court a brief
synopsis of multiple regression and controlling for confounders (which the readers of
this journal need not receive).
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Table 2
Regression results of lead regression

Predictor Coef Stdev T p-Value

Constant −33:10 45.54 −0:73 0.468
lead −0:15169 0.07879 −1:93 0.056
ht 0.2937 0.4872 0.60 0.547
wt −0:0348 0.1016 −0:34 0.733
headc 1.6797 0.6826 2.46 0.015
sex −1:605 1.941 −0:83 0.409
birwt −0:05342 0.05522 −0:97 0.335
pregl 0.1838 0.5184 0.35 0.723
med −0:1166 0.8101 −0:14 0.886
faed 0.9190 0.4906 1.87 0.063
sesmo 0.488 1.844 0.26 0.792
sesda −1:015 1.213 −0:84 0.404
numpr −2:031 1.031 −1:97 0.051
nlb 1.158 1.220 0.95 0.344
schol −0:016330 0.009905 −1:65 0.101
teacg 0.00584 0.01304 0.45 0.655
piq 0.35529 0.07831 4.54 0.000
mab 0.5287 0.3616 1.46 0.145
fab −0:4898 0.2512 −1:95 0.053

S = 12:32 R-Sq=35:4% R-Sq(adj)=28:6%

Simply measuring every possible confounder one can think of and sticking it into
a multiple regression is by no means optimal, however. For one, if two variables are
redundant measures of the same basic confounder, and are themselves highly correlated,
then the statistical estimation can become unstable and hence unreliable. For another,
one pays a price in statistical power with every extra variable included in a regression—
thus the apparent relationship between cause and e%ect might come out numerically
the same in two regressions, but it might appear signi4cant relative to one set of
confounders and insigni4cant relative to another. (This is a lesson often lost in the
presentation of regression results in some economics journals.)
Having explained the statistical methodology, with data from the lead and IQ study,

the expert then presents the result of a multiple linear regression of IQ on 18 of the
40 confounder variables (Table 2).
The coeJcient for lead in this regression equation is −0:15169, indicating that IQ

falls approximately 0.15 points for every extra unit change in lead concentration found
in baby teeth, even controlling for all the other confounders. All of the regressors
together account for 35.4% of the variance of IQ in the sample. The coeJcient for
lead is signi4cant at the 0.06 level but not at the 0.05 level (p= 0:056).
Several of the confounders in this regression are far from being signi4cant predictors

of IQ, however, and thus cost us in the power for detecting whether the estimated e%ect
of lead on IQ is truly signi4cant. Further, several are themselves highly correlated,
making the regression results unstable. A more reasonable strategy is to conceive of and
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Table 3
Correlations and p-values (n = 221)

lead fab nlb med mab piq ciq

lead 1.00
fab 0.08 1.00

(0.23)
nlb 0.11 0.39 1.00

(0.10) (0.00)
med −0:14 0.02 −0:18 1.00

(0.04) (0.78) (0.01)
mab −0:15 0.85 0.47 0.003 1.00

(0.02) (0.00) (0.00) (0.96)
piq −0:06 0.17 0.03 0.53 0.16 1.00

(0.39) (0.01) (0.70) (0.00) (0.02)
IQ −0:23 −0:0003 −0:17 0.41 0.05 0.40 1.00

(0.00) (0.99) (0.01) (0.00) (0.43) (0.00)

Table 4

Predictor Coef SE Coef T p

Constant 56.091 7.635 7.35 0.000
lead −0:16267 0.07028 −2:31 0.022
med 1.3621 0.5158 2.64 0.009
nlb −1:3977 0.6277 −2:23 0.027
piq 0.27862 0.06636 4.20 0.000
mab 0.5948 0.2957 2.01 0.045
fab −0:3629 0.2116 −1:71 0.088

S = 12:66 R-Sq=26:0% R-Sq(adj)=24:0%

measure as many confounders as is practical, but then to select those that are important
with one of the many variable selection procedures available, and then estimate the
e%ect using the set of variables selected.
Using backwards-stepwise regression, Needleman et al. (1985) found that the fol-

lowing confounders should be controlled for when estimating the e%ects of lead on IQ:
mab—mother’s age at birth, fab—father’s age at birth, med—mother’s level
of education in years, nlb—number of live births previous to the sampled child,
piq—parent’s IQ scores.
The correlations among these variables and lead and IQ, as well as the p-values of

these correlations (in parentheses) are given in Table 3.
Performing the multiple regression using lead and only these confounders, we get

the results given in Table 4.
In this case, the coeJcient for the e%ect of lead on IQ is quite similar, −0:163, but

now statistically signi4cant (p= 0:022).
Variations on the set of confounders controlled for in fact make little di%erence in

the estimate of the e%ect of lead on IQ, an important piece of evidence in this case.
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Using TETRAD’s PC algorithm to select the confounders (see Spirtes et al., 2000,
or Scheines et al., 1994) the expert testi4es that he included only a subset of the
4ve found by Needleman et al. (1985): med—mother’s level of education in years,
piq—parent’s IQ scores.
The resulting regression, given in standardized form, with t-statistics in parentheses,

is as follows:

IQ=−0:177 lead + 0:251 med + 0:253 piq

(2:89) (3:5) (3:59):

All coeJcients are signi4cant (p¡ 0:05). The expert summarizes his testimony by
reminding the court that, in almost every case described by these regression results, a
child can expect to lose approximately 1 and 1

2 IQ points for every extra unit of lead
exposure. This, he claims, is strong evidence that lead has a deleterious e%ect on the
cognitive capacities of children even at low levels, and those who expose children to
it should be held responsible.

4. The defendant’s expert response

The defendant’s expert begins by explaining that the scienti4c case presented by the
plainti%s’ experts, which is thin statistically even assuming their models are correct,
rests on two assumptions that are clearly false. First, although they have considered
several possible confounders, they have omitted a few that have been shown in previous
studies to be crucial. Second, although they are using multiple regression to control for
confounders, they neglect to model the measurement error for the confounders. When
one corrects for these assumptions, 4rst by imputing the missing confounder and second
by doing a sensitivity analysis on the levels of potential measurement error, the expert
claims that the e%ect of low-level lead on IQ vanishes (cf., Marais and Wecker, 1998).
Here are some of the details.

4.1. Omitted variables

Although the plainti%s’ experts measured several properties of the mother and the
child, they omitted the father’s IQ, a crucial confounder that will surely bias the results
if not controlled for statistically. As a consequence of his review the literature on
lead exposure and IQ, the expert claims that it is clear that the following factors
are correlated with lead exposure and also play a signi4cant role in determining IQ:
mother’s IQ, father’s IQ, and quality of the home environment.
The data used by the plainti%s’ experts do not include the father’s IQ, and uses the

mother’s educational level as a proxy for the Home environment, which is dubious at
best. By omitting the father’s IQ, the plainti%s’ experts have performed an analysis in
which the e%ect of lead on IQ will be estimated with omitted variable bias. Since the
correlation between father’s IQ and lead is negative, and since the correlation between
father’s IQ and the child’s IQ is positive, omitting father’s IQ will most likely result
in a negative bias. That is, the estimate of the e%ect of lead on IQ in a model that
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Table 5
Partially completed correlation matrix

iq momiq dadiq home lead

iq 1
momiq 0.477 1
dadiq 1
home 1
lead −0:253 −0:124 1

Table 6
Completed correlation matrix

iq momiq dadiq home lead

iq 1
momiq 0.477 1
dadiq 0.5110 0.2550 1
home 0.4500 0.2300 0.1800 1
lead −0:253 −0:124 −0:1370 −0:4700 1

omits father’s IQ will be more negative than it should. The same is true for the quality
of the home environment (home). In the plainti%s’ expert analysis, it might well be
that the bias from omitting the father’s IQ and home is big enough to account for the
entire estimated negative e%ect.
In order to explore these issues, the expert has used other studies in the literature to

impute, or 4ll in, the correlations between father’s IQ, home, and the variables used
by the plainti%s in order to statistically examine the nature of the plainti%s’ omitted
variable bias. He began with the correlation matrix shown in Table 5, where the only
values we have are from the study used by the plainti%s.
For the remaining values, he used the mean value of other published studies in which

these variables are measured, or we use reasonable scienti4c background knowledge.
For example, in order to impute the correlation between home and lead, we found
seven published studies that include this correlation. The median of these published
correlations is −0:470. In order to impute the correlation between the father’s and
child’s IQ, he claims to use the theory of genetics, which tells us that the contribution
of the father and mother to the child’s genome is on average equal. He thus im-
putes a value close to 0.477. In similar fashion, he arrives at the correlation matrix in
Table 6.

4.2. Measurement error

In the statistical model described by the plainti%s’ expert, the estimates of the e%ect
of lead on IQ were obtained with multiple linear regression. In a regression analysis,
the variables are usually separated into the outcome (in this case the child’s IQ), and
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the regressors (lead, momiq, faiq, home, etc.). As is well known in the statistical and
economics community, the estimates from such an analysis are biased if the regressors
are measured with error. That is, if the absolute value of the correlation between the
real confounder and the variable used to measure it is less than 1, then there is a
measurement error. The lower this correlation, the more the measurement error. Since
the test–retest correlation of IQ scores is in between 0.9 and 0.95, we know that the IQ
regressors are measured with an error. We also have data on the lead measurements,
as well as the home score. The defendant’s expert explains that we can correct the
results from multiple linear regression to take the measurement error into account, but
the plainti%s’ expert neglected to do so.

4.3. Sensitivity analysis

Rather than to commit ourselves to a single value for the imputed correlations or the
exact amount of measurement error in each regressor, the defendant’s expert performed
10,000 analyses, each of which slightly perturbed the original values that we took as
our best guess. He sampled values for each correlation that we had to impute from a
low of 1

2 of our best guess to twice our best guess. He also did similar perturbations
for a wide range of measurement errors. For each of the 10,000 analyses performed,
he stored an estimate of the e%ect of lead on IQ and of the signi4cance level of
the estimates. In none of the 10,000 did he 4nd a signi4cant e%ect of lead on IQ.
Therefore, when omitted variables and measurement error are taken into account, he
claims that there is no scienti4c evidence to support the claim that low levels of lead
has a deleterious e%ect on IQ.

5. The plainti�s’ expert rebuttal

5.1. Omitted variables

Although the defense has applied a lot of energy in trying to negate two decades
of evidence on the e%ect of lead on IQ, there are several problems with their analysis
(Waternaux et al., 1998). On rebuttal, the plainti%s’ expert describes these problems,
the most important of which is the Kawed reasoning with respect to imputing “missing”
correlations. The defendant’s expert made it appear that his analysis was robust to small
errors of imputation by doing a sensitivity analysis in which he varied the imputed
correlation values by a factor of two both up and down. The plainti%s’ expert then
claims that he will show that this range is much to narrow and that in the most
important cases the results were way o% in a direction that, unsurprisingly, bene4ted
instead of weakened the defendant’s case.
The expert points out that, whereas it seems almost negligent for his study and

previous ones to have omitted the father’s IQ, there is a good reason that they did
so: namely, that in the population of children who are typically exposed to signi4cant
lead, the fathers are not around to take an IQ test. In fact, in many instances the
father is unknown! The defendant’s expert imputed correlations between the father’s
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Table 7

Correlation Defense’s imputed values More reasonable estimates

Home–momiq 0.230 0.410
Home–lead −0:470 −0:100

IQ and the other variables in the study by (1) using other studies in which father’s IQ
and any other variable in their analysis occurs, or (2) by reasoning from background
theory. The problem with the 4rst strategy is that correlations are population speci'c.
That is, the correlation between the father’s IQ and the amount of lead his child was
exposed to might be very di%erent in a middle class suburban population than it is in
a poor inner city. By using studies from di%erent domains to impute correlations into
the Massachusetts study, the expert neglected this basic fact of sampling. In several of
the correlations that he imputed, the other studies cited vary considerably depending
on the population studied, and in fact varied over a larger range than he used in his
sensitivity analysis.
After scrutinizing these external sources more carefully, the plainti%s’ expert made

more reasonable guesses as to the correlations to be imputed, and then repeated the
analyses. His results (Table 7) were completely at odds with the ones presented by the
defendant’s expert, in particular, linked to two imputed correlations: home and momiq,
and home and lead.
By using the defendant’s expert values, the home variable’s correlation with lead

and its correlation with IQ make it an omitted variable that, when included, accounts
for most of the association between lead and IQ, rendering the estimate of the direct
e%ect of lead on IQ insigni4cant. By using reassessed values, which he claims are
much more plausible for the population under study, the expert argues that the reverse
is true: the home variable does not account for enough of the association to make the
e%ect of lead on IQ fall below standard levels of signi4cance.

5.2. Measurement error

The expert goes on to agree with his counterpart that the regressors are probably
measured with error. What he then argues is that the defendant’s expert neglected to
mention that measurement error can often attenuate the apparent e%ect estimated by
multiple regression. In this case, measurement error might make the e%ect of lead on IQ
appear closer to zero than it is in reality. He concludes his testimony by describing an
attempt to include measurement error in his model. He does this by imposing particular
values on the amount of measurement error present in each regressor, a technique
which does not allow for any uncertainty over the amount of measurement error. By
varying how much measurement error is assumed to exist in their sensitivity analysis,
they include uncertainty, but only qualitatively. The analysis by the defendant’s expert
simply imposed a range on the amount of measurement error on each regressor, but
no information about what the likely value is, i.e., they put no probability distribution
over how much measurement error exists for each regressor.
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Fig. 2. Posterior distribution of the e%ect of lead on IQ.

The alternative he explains is to do a fully Bayesian analysis to incorporate the
entire distribution rather than simply consider the endpoints of an interval. He goes on
to describe such an analysis in which the regressors included lead, mother’s IQ, head
circumference, number of prior pregnancies, and father’s education (e.g., see Scheines
et al., 1999, for a more complete description of the model and its speci4cation). The
histogram in (Fig. 2) shows the posterior distribution over the causal strength of the
e%ect from lead to IQ. The median in the posterior is −0:175, the mean −0:1723, and
the standard deviation in the posterior is 0.148. Although there are some values in the
posterior over this e%ect that are positive, the bulk of the mass is negative, indicating
that lead has a deleterious inKuence on IQ. Almost all of the posterior probability is
assigned to values that imply lead exposure reduces IQ.

5.3. Meta-analyses

In science, replication is crucial to establishing hypotheses, and it is extremely rare
that a single study establishes any causal mechanism 4rmly, especially in epidemiology.
In the case of lead and IQ, there have been literally dozens of studies examining the
e%ect of low levels of lead exposure on a child’s IQ. For example, see Pocock et al.
(1994).
A few authors have gone through the trouble of systematically collecting the results

of previous studies via a meta-analysis. In particular, Pocock et al. investigated 14
studies in which lead was measured by taking blood samples, and 7 in which it was
measured by Needleman’s (1979) technique of assessing its concentration in baby teeth.
In all the studies catalogued, the authors tried to control parental IQ, the quality of
the home, socioeconomic factors, and other potential confounders. They summarize the
results as follows:

Overall synthesis of this evidence, including a meta-analysis, indicates that a typ-
ical doubling of body lead burden (from 10 to 20 �g=dl) (blood lead or from 5
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to 10 �g=g tooth lead) is associated with a mean de4cit in full scale IQ of 1–2
IQ points (p. 1189).

Testimony about this and other meta-analyses would likely be introduced at trial by
other expert witnesses and the defense would surely have witnesses to dispute the
4ndings!

6. Summary

We have described a hypothetical case where the expert testimony began with a
variety of fairly standard statistical methods and progressed through multiple regression,
sensitivity analyses, and a Bayesian approach to measurement error. These methods
cannot be relied upon to demonstrate causation in many instances, and so we borrowed
analysis from the recent statistical literature to demonstrate how, in the “battle of the
experts,” one can expect to see an escalation of the methodology and e%orts to use “new
results and approaches,” ones that may not have been fully vetted in the professional
literature. In such circumstances, judges may now exclude parts of statistical and other
expert testimony under the Daubert standard (for a description of Daubert v. Merill
Dow Pharmaceuticals, 113 S. Ct. 2783 (1993), and its implications for statistical
testimony, see Fienberg et al., 1995). Our description has focused on the technical
details of the expert testimony, but one must always keep in mind that this testimony
is part of an adversarial process not controlled by the experts (e.g., Fisher, 1986; Meier,
1986; Fienberg, 1997b).
The case study we have outlined has some lessons for statisticians and econometri-

cians, whether or not they are going to be testifying experts. In assessing arguments
about the strengths of causes that rely on regression analysis and related statistical
procedures, one must bear in mind that:

• The results typically depend on the variables selected.
• The “statistical signi4cance” slogan is often arbitrary and depends on details of
distribution and sample size that are easily hidden in the argument.

• The reliabilities of various statistical procedures are often unstated, and often un-
known.

• “Non-standard” procedures, such as alternatives to standard stepwise regression meth-
ods and the Bayesian techniques, are often better warranted than more conventional
methods.

It is worth noting that the Bayesian methods in expert testimony are gaining increas-
ing currency in the courts although the progress is slower than in the statistical and
econometric literatures (e.g., see Evett and Weir, 1998; Fienberg, 1997b; Kadane and
Terrin, 1997).
For judges and juries who might be faced by expert testimony of the sort outlined

here we note that there is simply no substitute for thinking through the statistical
claims and trying to understand the rationale behind competing claims. This is what
the Daubert decision by the supreme Court now demands.
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We have saved our conclusions about the substance of the analyses we have out-
lined here on lead and IQ. Most of the analyses we describe in this paper are ours,
and we 4nd those presented as the plainti%s’ rebuttal case quite compelling. Moreover,
the meta-analyses referred above are perfectly consistent with the analyses that “the
plainti%s’ expert reported here.” In virtue of such a consistent preponderance of repli-
cable evidence, we believe there is little doubt as to the fact that even low levels of
lead have a deleterious e%ect on a child’s IQ. The implication of such a 4nding for
the awarding of monetary damages in “The Case of Sam Brown” are another matter
and involve economic, statistical, and legal analysis.

7. For further reading

The following references may also be of interest to the reader: Fienberg and
Finkelstein, 1996; Fienberg and Kaye, 1991; Fienberg and Straf, 1991.
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